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Abstract

Scheduling, routing, and layout tasks are examples of
hard operations-research problems that have broad ap-
plication in industry. Typical algorithms for these
problems combine some form of gradient descent to find
local minima with some strategy for escaping nonop-
timal local minima. Our idea is to divide these two
subtasks cleanly between human and computer: in our
paradigm of human-guided simple search the computer
is responsible only for finding local minima using a sim-
ple hill-climbing search; using visualization and inter-
action techniques, the human user identifies promising
regions of the search space for the computer to explore,
and intervenes to help it escape nonoptimal local min-
ima. We have applied our approach to the problem
of capacitated vehicle routing with time windows, a
commercially important problem with a rich research
history. Despite its simplicity, our prototype system is
competitive with the majority of previously reported
systems on benchmark academic problems, and has the
advantage of keeping a human tightly in the loop to
handle the complexities of real-world applications.

Introduction

Most previous research on scheduling, routing, and lay-
out problems has focused on developing fully automatic
solution methods. There are, however, at least two rea-
sons for developing cooperative, interactive systems for
optimization problems like these. First, human users
may have knowledge of various amorphous real-word
constraints and objectives that are not represented in
the objective function given to computer algorithms. In
vehicle-routing problems, for example, human experts
may know the flexibility or importance of certain cus-
tomers, or the variability of certain routes. The sec-
ond reason to involve people in the optimization pro-
cess is to leverage their abilities in areas in which hu-
mans (currently) outperform computers, such as visual
perception, learning from experience, and strategic as-
sessment. Although both motivations seem equally im-
portant, we have used the second, more quantitative
consideration to drive our current round of research.
In this paper, we present a new cooperative
paradigm for optimization, human-guided simple search

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

(HuGSS). In our current framework, the computer per-
forms a very simple, hill-climbing search. One or more
people interactively “steer” the search process by re-
peatedly initiating focused searches, manually editing
solutions, or backtracking to previous solutions. When
invoking a focused search, the user determines which
modifications to the current solution should be con-
sidered, how to evaluate them, and what type of hill-
climbing search to use.

We have designed and implemented a prototype sys-
tem that supports HuGSS for the capacitated-vehicle-
routing-with-time-windows (CVRTW) problem. Below,
we describe the CVRTW problem and our prototype,
and report results from 48 hours of controlled testing
with our system.

Sample Application
Problem Description and Definitions

We chose vehicle routing as our initial problem do-
main for three reasons: it is commercially important;
it has a rich research history, which facilitates com-
parison with previous work; and routing problems are
ones for which the human capabilities of vision, learn-
ing, and judgment should be useful. In the CVRTW
problem (Solomon 1987), trucks deliver goods from a
single central depot to customers at fixed geographic
locations. Each customer requires a certain quantity of
goods, and specifies a time window within which de-
livery of the goods must commence. All trucks have
the same capacity, and travel one unit of distance in
one unit of time. Delivery takes a constant amount of
time, and each customer can receive only one delivery.
All trucks must return to the depot by a fixed time.
A solution to a CVRTW problem is an ordered list of
customers assigned to each truck, and is feasible if it
satisfies all the constraints. The optimization problem
is first to minimize the number of trucks required to
construct a feasible solution; and second to minimize
the total distance traveled by the trucks.

As we describe below, users can force the system to
consider infeasible solutions. Thus we needed to extend
the classical objective function for CVRTW to rank in-
feasible as well as feasible solutions. We define the max-
imum lateness of a truck as the maximum tardiness
with which it arrives at any of its customers; or if a



truck has insufficient capacity to service its customers,
we assign it an infinite maximum-lateness value. We
optimize infeasible solutions by minimizing the sum of
the maximum latenesses over all the routes. We rank
any feasible solution as better than any infeasible solu-
tion.

We define a 1-ply move as the transfer of a customer
from its current route onto another route. Such a move
requires that both routes be re-optimized for distance
(if feasible) or maximum lateness (if infeasible).! An
n-ply move is simply a combination of n 1-ply moves.

HuGSS for CVRTW

In our system, the user controls the optimization pro-
cess by performing the following three actions:

1. Edit the current solution by making a 1-ply move.

2. Invoke a focused local search, starting from the cur-
rent solution. The user controls which n-ply moves
are considered, how they are evaluated, and what
type of search is used.

3. Revert to an earlier solution, or to an initial seed
solution generated randomly prior to the session.

We now describe each type of action in the context
of our implemented system, followed by a description
of the visualization and interface (see Figures 1 and 2)
that support these actions.

Manual edits: To edit the current solution manu-
ally, the user simply selects a customer and a route.
The system transfers the customer to the route and
re-optimizes both affected routes. Moving the last cus-
tomer off a truck’s route eliminates that truck. Also,
the user can create infeasible solutions by assigning cus-
tomers with conflicting constraints, or with too much
total demand, to a single truck.

Focused searches: The principal feature of our sys-
tem is the following set of methods for allowing users
to repeatedly invoke deep, focused searches into regions
of the search space they feel are promising. The user
determines which moves the hill-climbing engine will
evaluate by:

e Setting a priority (high, medium, or low) for each
customer. The user controls which customers can
be moved, and the routes onto which they can be
moved, by assigning priorities to them. The search
engine will only consider moving high-priority cus-
tomers, and only consider moving them onto routes
that have no low-priority customers. For example,
the user can restrict the search engine to exchang-
ing customers between a pair of routes by setting all
the customers on those routes to high priority and all
other customers to low priority.

!Computing the route for a truck once customers have
been assigned to it is an instance of the Traveling Salesman
Problem with Time Windows. Although an NP-hard prob-
lem, the instances that arose in our experiments are small
enough that exhaustive search is practical.

Figure 1: The Optimization Table.

e Deciding which n-ply moves (1-ply to 5-ply) to enable.
In general, deeper searches are more likely to produce
good results, but take more time.

o Setting an upper bound on the number of moves that
the computer can consider. The search is stopped
when all enabled moves have been considered, or
when this user-supplied upper limit is reached.

Focusing the search dramatically reduces the number
of moves that the search engine evaluates. In one ex-
ample from our experiments, we focused the search on
two of 12 routes (20 of 100 customers), which decreased
the number of 1-ply moves considered by a factor of 30,
2-ply moves by a factor of 222, and 3-ply moves by a
factor of 18,432.

In addition to determining which moves are evalu-
ated, the user determines how they are evaluated by se-
lecting an objective function. We currently support two
objective functions: the standard CVRTW objective
function modified to assess infeasible solutions; and a
function we call minimize-routes, which removes 2xlen?
from the cost attributed to each route that contains
len < 6 customers. The idea behind this objective func-
tion is to encourage a short route to become shorter,
even if it increases the total distance traveled, in the
hope of eventually eliminating that route.

Finally, the user can select between greedy or
steepest-descent search mode. In greedy mode, the
search engine immediately adopts any move that im-
proves the current solution under the given objective
function. It considers 1-ply moves (if enabled) first,
then 2-ply moves (if enabled), and so on. Within a ply,
the moves are evaluated in a random order. As soon
a move is adopted, the search engine begins, again, to
evaluate 1-ply moves.

In steepest-descent mode, moves are considered in
the same order as in greedy mode, but only the best
move is adopted. The best move is defined as the one
that decreases the cost of the solution the most, under
the given objective function. If no move decreases the
cost of the solution, then the best move is the one that
increases the cost the least.? Making the least-bad move

*However, we never adopt a move that increases the in-
feasibility of a solution. Finding and ranking all infeasible
moves is not worth the added computational expense.
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Figure 2: A snapshot of our interface.

provides useful information to the user, and can always
be undone by reverting to the previous solution.
Switching among candidate solutions: The third
type of action the user can perform is to switch candi-
date solutions, either to backtrack to a previous solu-
tion, or to load a precomputed, “seed” solution. The
seed solutions are generated prior to the session using
our hill-climbing search engine. They are intended to
be used both as starting points for finding more opti-
mal solutions and to give users a sense of how various
combinations of customers can be serviced.

Interface and Implementation

For our initial implementation we have used a tabletop
display, which we call the Optimization Table (see Fig-
ure 1). We project an image down onto a whiteboard.
This allows users to annotate candidate solutions by
drawing or placing tokens on the board, a very useful
feature. In addition, several users can comfortably use
the system together.

For this kind of problem, creating an effective visual-

ization is an intrinsic challenge in bringing the human
into the loop. Figure 2 shows our attempt to convey
the spatial, temporal, and capacity-related information
needed for CVRTW. The central depot is the black cir-
cle at the center of the display. The other circles rep-
resent customers. The pie slices in the customer circles
indicate the time windows during which they are will-
ing to accept delivery. The truck routes are shown by
polylines, each in a different color. At the user’s op-
tion, the first and last segments of each route can be
hidden, as they are in the figure, to avoid visual clut-
ter around the depot. The search-control operations
described in the previous subsection are supported by
mouse operations and pull-down menus. Detailed infor-
mation about individual customers and trucks can also
be accessed through standard interface widgets.

The interface was written in Tcl, and the hill-
climbing algorithm in C+4. We use a branch-and-
bound algorithm to optimize truck routes during move
evaluation. We carefully crafted several pruning rules
and caching procedures to streamline this algorithm.



Experimental Investigation

Four test subjects participated in our experiments.
Three of them are authors of this paper. The fourth
tester is a Ph.D. student unaffiliated with this project,
who received five hours of training prior to his first test.

The Solomon datasets (Solomon 1987) were our
source of benchmark CVRTW problems. This corpus
consists of 56 problem instances, each with 100 custom-
ers, divided into three categories according to the spa-
tial distribution of customers: C-type (clustered), R-
type (random), and RC-type (a mix of the two.) There
are two problem sets for each category: the C1, R1,
RC1 sets have a narrow scheduling horizon, while the
C2, R2, and RC2 sets have a large scheduling horizon.

As we developed and refined our system, we tested
users informally on a selection of R1 and RC1 problems.
In the second, more controlled, phase of experimenta-
tion, we ran two tests on each of the RC1 problems.
During this phase, subjects worked only on problem in-
stances to which they had no previous exposure. In
each test, the user spent 90 minutes working on the
problem without reference to the precomputed seed so-
lutions. Then, after an arbitrarily long break, the user
spent another 90 minutes working on the same problem,
this time with the precomputed seed solutions available
for perusal. We recorded logs for a total of 79.4 hours
of test sessions, 48 hours of which were the controlled
experiments.

We generated the seed solutions using the settings
we found to be the most effective on a small sample of
the Solomon problem instances. In particular, we used
greedy search with 1-ply and 2-ply moves enabled and
all customers set to high priority; we used the minimize-
routes objective function, and started the search from
an initial solution in which each customer is assigned
its own truck, and searched until we reached a local
optimum. Multiple runs produce varied results due to
the random order in which moves are considered in the
greedy search. We ran the algorithm repeatedly until
we had generated 1000 solutions or a 10-hour time limit
was reached. On average, it took 8.4 hours to generate
the seed solutions for a problem. We ran all our exper-
iments on a 500 MHz PC.

Observations

User strategies: During a session, the user repeat-
edly invokes the hill-climbing engine to perform focused
searches. This simple mechanism supports a surpris-
ingly broad range of optimization strategies. For exam-
ple, consider the goal of truck reduction. A user might
start by browsing the precomputed seed solutions for
one with a “vulnerable” route, e.g., one that might be
eliminated because it has a small number of loosely
constrained customers, and nearby routes that have
available capacity and slack in their schedules. Having
identified such a solution, the user can shift customers
off the vulnerable route by invoking a steepest-descent
search: setting the route’s customers to high priority
and the customers of nearby routes to medium priority
will cause the search algorithm to return the least costly

feasible move of a customer off the vulnerable route and
onto one of the nearby routes. An alternative strategy
for shortening and eliminating routes is to set all the
customers in the neighborhood of a vulnerable route
to high priority, and to use the minimize-routes objec-
tive function and a high search ply: a search with these
parameters would consider compound moves, involving
multiple customers on different routes, that have the
net effect of shortening the vulnerable route. A third
alternative, which users often had to resort to, is to
manually move a customer off a vulnerable route, even
if the move produces an infeasible solution; fixing the
resulting infeasibility then becomes a subproblem for
which there is another suite of strategies.

User behaviors: During test sessions, our users spent
more time thinking than the search algorithm spent
searching. On average, the search algorithm was in use
31% of the time; the range was 11% to 61%. Solu-
tion improvements were made throughout the sessions.
Averaging over all the test runs, a new best solution
was found a little over five times per hour. Of course,
improving the current solution was much more com-
mon than finding a new best solution. Focused searches
yielded an average of 23 improvements per hour, and
manual adjustment yielded an average of 20 improve-
ments per hour.

Tables 1 and 2 show what features of the system were
used, as well as how usage varied among the test sub-
jects. (Note that some of the variation is very likely
due to differences in the nature of the individual prob-
lems.) Three of the four users primarily used steepest-
descent search instead of greedy search. We feel that
steepest-descent mode was preferred largely because it
makes the least-bad move if no good move is available,
which turned out to be a very useful feature for shifting
customers onto or off of specific routes. The minimize-
routes objective function was almost never used. Every-
one spent at least half of the time working on infeasible
solutions. All four users made substantial use of 1-ply,
2-ply, and 3-ply searches, but only two users frequently
used 5-ply search. There was a wide range among the
users in terms of how often the different priorities were
used, and in how many searches were invoked, on aver-
age, per hour.

During the controlled experiments, each user did bet-
ter than some other user on at least one data set. The
one user who was not an inventor of the system (User
D in the tables) turned out to have the best record. He
generated three of the eight best results on the RC1
problem instances, which are shown in Table 3.

Quantitative results

HuGSS vs. unguided simple search: Our results
show that human guidance provided a significant boost
to the simple search in almost all cases. Table 3 com-
pares the best scores on the RC1 datasets found by the
hill-climbing engine alone with the best scores found
using the HuGSS system.? For the hill-climbing en-

3To interpret the scores correctly, it is important to re-
call that the primary objective is to minimize the number of



User || Moves | Searches | Percent | Percent

per per steep in infeasible
hour hour searches | space

A 53 47 30 78

B 46 53 99 52

C 107 101 87 60

D 26 72 99 76

Table 1: User styles: action and mode

User || Customer priority Search ply used
high | med. | low | 1 2 3 4

A 34 50 16 |83 |84 | 87 | 84 | 83

B 16 8 77 | 100 | 95 | 81 | 76 | 65

C 17 13 70 |94 |89 | 53|26 11

D 40 29 31 |99 (9939|100

Table 2: User styles: depth and focus. The numbers in-
dicate the fraction of customers assigned high, medium,
or low priorities, and the frequency with which the var-
ious ply moves were enabled. E.g., on average, subject
A assigned 34% of the customers to have high priority,
and included 3-ply moves 87% of the time.

gine, the scores are the best found in approximately 100
hours of computation on a 500 MHz Pentium PC. The
scores for the HuGSS system are the best found in at
most 10 hours of precomputation and 10 hours of guided
searching. (The table includes scores from all logged
testing and training sessions, as well as those from the
controlled experiments.) On three of the problems, the
human-guided solution uses one fewer truck; on four of
the five remaining problems, the human-guided solu-
tion has a lower distance value. The only dataset on
which the unguided hill-climbing search prevailed was
RC101, which is the most heavily constrained of all the
problems. The very narrow time windows facilitate ex-
tremely fast computer searches (a new local optimum
is found every six seconds), while making visualization
more difficult.

The HuGSS results in Table 3 reflect the combined
benefit of precomputed seed solutions and human-
guided search. To tease these two factors apart, we
considered the solutions produced by the first 90 min-
utes of each controlled experiment, during which pre-
computed seed solutions were not available to the user.
In Table 4 we report these results in two ways: the
average of the two scores available for each dataset rep-
resents what can be achieved with 1.5 hours of pure
guided search (i.e., guided search without the benefit of
precomputed seed solutions); the best of the two scores
for each dataset represents what can be achieved in 3.0
hours of pure guided search, albeit using two people
for separate 1.5-hour sessions. The table also shows
the average results obtained by the hill-climbing engine
without human guidance.? From this data we can con-

trucks, which often works against the secondary concern of
minimizing total distance traveled. Additionally, it is stan-
dard practice in the literature to report results by averaging
the trucks and distances over many problem instances.
4We estimated the average value of computer-only search

Best found | Best found by Best pub.
by simple human-guided solution
search simple search

Veh. | Dist. | Veh. Dist. Veh. Dist.
RC101 || 15 1631 | 15 1662 14 1669
RC102 || 13 1499 | 12 1569 12 1555
RC103 || 11 1293 11 1224 11 1110
RC104 || 10 1156 10 1136 10 1136
RC105 || 14 1558 | 13 1691 13 1637
RC106 || 12 1407 | 11 1475 11 1432
RC107 || 11 1247 11 1236 11 1231
RC108 || 10 1191 10 1185 10 1140
Ave. 12.0 | 1373 | 11.63 | 1397 11.50 | 1364

Table 3: Best solutions found during 800 hours of simple
search compared to 67.2 hours of precomputation and
79.4 hours of human-guided search. The best published
solutions are shown for comparison.

clude that 1.5 hours of pure human-guided searching is
comparable to about 5.0 hours of unguided hill climb-
ing. However, 3.0 hours of pure guided searching is
better than 20.0 hours of unguided hill climbing, which
indicates that additional time is of more benefit to the
guided regime than to the unguided one. The average
score for 3.0 hours of guided search with precomputed
seed solutions is also shown: the seed solutions impart
a distinct benefit, but are not the sole factor behind the
dominance of HuGSS over unguided simple search.
HuGSS vs. state-of-the-art techniques: The
Solomon datasets are a very useful benchmark for com-
paring all the different heuristic-search techniques that
have been applied to the CVRTW problem, including
tabu search and its variants, evolutionary strategies,
constraint programming, and ant-colony optimization.
Table 4 includes performance data for these techniques
and others. The scores we obtained with the full HuGSS
approach (i.e., with precomputed seed solutions) are
competitive with those obtained by the state-of-the-
art techniques, dominating several of them, and being
clearly dominated only by the results from a recent ge-
netic algorithm (Homberger & Gehring 1999).

However, the full HuGSS technique uses between one
and two orders of magnitude more computational effort
than other techniques. Other algorithms may benefit
from a comparable amount of computation, but there
is not enough information in the cited papers to accu-
rately assess how much benefit to expect, if any.

To test whether the HuGSS approach for this prob-
lem can be effective with less computational effort, we
ran a pilot set of experiments with the latest version of
our system (its improvements over the system described
above are listed in the concluding section of this paper).
In these experiments, we used only 90 minutes of pre-
computation and 90 minutes of guided search. We ran
one test per problem, with three of the test subjects

for N hours of computation by taking the best score found
in NV hours of computation randomly sampled from the 100
hours of unguided search we recorded for each problem in-
stance. We repeated this 1000 times for each problem and
report the average result.



from the first set of experiments. (In some cases, the
subjects worked on a problem instance that they had
worked on some months earlier.) As shown in Table 4,
we achieved comparable results with our new system
with significantly less computational and human effort,
thus closing the gap with the state-of-the-art systems.

In summary, these results suggest that human guid-
ance can replace the painstakingly crafted, problem-
specific heuristics that are the essence of other ap-
proaches without significant compromise in the quality

of the results.

Time Veh. Dist.
Our hill- 1 hour 12.35 | 1424
climbing 2 hours 12.23 | 1416
search engine 5 hours 12.15 | 1403
alone 8.4 hours 12.13 | 1390
20 hours 12.06 | 1388
HuGSS 1.5 hours 12.13 | 1432
(w/out seeds) 3 hours 12.00 | 1413
HuGSS 10 hours precomp- 11.88 | 1389
(with seeds) utation and 3 hours
guided search on
500 MHz machine
HuGSS 90 min. precomp- 11.88 | 1380
(pilot experi- utation and 90 min.
ments with guided search on
newest system) 500 MHz machine
Carlton’95% - 13.25 | 1402
Rochat and 44 min. on 100 12.38 | 1369
Taillard’95 MHz machine
Chiang and - 11.88 | 1397
Russell’97°
Taillard 3.1 hours on 50 11.88 | 1381
et. al.’97 MHz machine
De Backer and - 14.25 | 1385
Furnon’97
Shaw’98 1 hour on 100 12.00 | 1361
MIPS machine
Shaw’98 2 hours on 100 12.00 | 1360
MIPS machine
Cordone and 12.1 min on 12.38 | 1409
Wolfer-Calvo’98° | 18 Mflops Pentium
Gambardella 30 min on 11.92 | 1388
and Taillard’99 167MHz, 70 Mflops
Sun UltraSparc
Kilby, 48.3 min. on 12.12 | 1388
Prosser and 25 Mflops/s
Shaw’99° Digital Alpha
Homberger and 5 hours on 200 11.5 1407
Gehring’99 MHz machine
Best published About 15 years 11.5 1364
solutions on multiple machines

@ As reported by (Taillard et al. 1997).

® As reported in (Homberger & Gehring 1999).
¢ As reported in (Gambardella, Taillard, & Agazzi 1999).

Table 4: Reported results. The numbers are averages
over the eight instances in Solomon’s RC1 problem set.

Versatility

Because the user is directing the search, our system can
be used for tasks other than the classic CVRTW opti-
mization task. For example, it can be used to balance
routes. Many of the best solutions found by state-of-
the-art methods might be unsuitable for real use be-
cause they assign only one or two customers to a truck.
The users of our system can direct the hill-climbing en-
gine to find the lowest cost way of moving N customers
to a particular truck, by only enabling N-ply moves
and setting the priorities so that the search engine only
considers moving customers onto the target truck.

Alternatively, it may be desirable to have a lightly
loaded truck as a backup if other trucks encounter sig-
nificant delays. This can be accomplished by the same
means used in attempting to eliminate a truck. Sim-
ilarly, in the case where there simply are not enough
trucks to satisfy all the customers’ needs, our system
can be used to explore various infeasible options. It is
often easy to shift the infeasibility around the board, if
in fact some customers are more flexible than others.

Of course, other algorithms might be modified to
solve any of these tasks. The ability of our system
to handle these tasks without any recoding (or even
recompiling!) suggests that it will be more effective
at handling new tasks as they arise. Furthermore, it
demonstrates that our system can be used to pursue an
objective function that is known by the human users
but is difficult to describe to the computer algorithm.
In this regard, HuGSS is distinctly more versatile than
the algorithms cited in Table 4.

Related Work

The HuGSS paradigm is one way of dividing the work
between human and computer in a cooperative opti-
mization or design system. Other interface paradigms
organize the cooperation differently.

In an iterative-repair paradigm, the computer detects
and resolves conflicts introduced by the human user. In
a system for scheduling space-shuttle operations (Chien
et al. 1999), the computer produces an initial schedule
that the user iteratively refines by hand. The user can
invoke a repair algorithm to resolve any conflicts intro-
duced.

Another way for the computer to address conflicts or
constraint violations is to not let the user introduce
them in the first place. Constraint-based interfaces
are popular in drawing applications, e.g., (Nelson 1985;
Gleicher & Witkin 1994; Ryall, Marks, & Shieber 1997).
Typically the user imposes geometric or topological
constraints on a nascent drawing such that subsequent
user manipulation is constrained to useful areas of the
design space.

The interactive-evolution paradigm offers a different
type of cooperation: the computer generates successive
populations of novel designs based on previous ones,
and the user selects which of the new designs to ac-
cept and which to reject (Kochhar & Friedell 1990;
Sims 1991; Todd & Latham 1992).



A related but very different line of inquiry takes
human-human collaboration as the model for cooper-
ative human-computer interaction, e.g., (Ferguson &
Allen 1998). The emphasis in this work is on mixed-
initiative interaction between the user and computer
in which the computer has some representation of the
user’s goals and capabilities, and can engage the human
in a collaborative dialogue about the problem at hand
and approaches to solving it.

The HuGSS paradigm differs significantly from
the iterative-repair, constraint-based, and interactive-
evolution paradigms in affording the user much more
control of the optimization/design process. By setting
customer priorities and specifying the scope of the local
search, the user decides how much effort the computer
will expend on particular subproblems. And there are
no dialogue or mixed-initiative elements in our system:
the user is always in control, and the computer has no
representation of the user’s intentions or abilities.

Other researchers have also allowed a user to inter-
act with a computer during its search for a solution to
an optimization or constraint-satisfaction problem, e.g.,
(Choueiry & Faltings 1995; Smith, Lassila, & Becker
1996); one group has even applied this idea to a vehicle-
routing problem (Bracklow et al. 1992). We believe,
however, that HuGSS embodies a stronger notion of hu-
man guidance than previous efforts. Furthermore, our
work is the first rigorous investigation of how human
guidance can improve the performance of an optimiza-
tion algorithm.

Future Work And Conclusions

The contributions of this work are novel mechanisms for
the interactive control of simple search, an application
of these mechanisms to a vehicle-routing problem, and
an empirical study of that application.

We are currently making our hill-climbing engine
more efficient and our interface more interactive. The
user now receives feedback from the hill-climbing en-
gine that indicates the current depth of the search and
the best move found to that point. The user can halt
the search at any time, at which point the system re-
turns the best solution found so far. This gives the
user a much higher degree of control of the system
and effectively removes the need to decide, in advance,
the search depth, the maximum number of moves to
evaluate, and blurs the distinction between greedy and
steepest-descent search. Our pilot experiments (see Ta-
ble 4) indicate that these changes greatly improve our
system.

We had two principal motivations for investigating
human-guided search: to exploit human perceptual
and pattern-recognition abilities to improve the perfor-
mance of search heuristics, and to create more versa-
tile tools for solving real-world optimization problems.
Our initial investigations show that human guidance
improves simple hill-climbing search to world-class lev-
els for at least one optimization task. We are also en-
couraged by the system’s pliability and transparency:
users pursued a variety of strategies, developed their

own usage styles, and were highly aware of what the
search engine was doing and why.

The separation made in HuGSS between the human’s
and the computer’s roles has several pleasant conse-
quences. The optimization engine is more generic and
reusable than those used in state-of-the-art, problem-
specific systems; and many of the user-interface con-
cepts are also eagsily generalized to other problems. This
raises the possibility of developing a general toolkit for
creating a family of human-guided optimization tools.
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Appendix

Table 5 shows the actual scores attained during our
controlled experiments and the pilot experiments for
our new system.
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