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Feline: Fast Elliptical Lines for Anisotropic Texture Mapping
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A
ô

bstract

T
õ

exture mapping using trili nearly filtered mip-mapped data
is e
ö

fficient and looks much better than point-sampled or bilinearly
f
÷
iltered data.  But trili near filtering represents the projection of a

pø ixel filter footprint from screen space into texture space as a
square, when in reality the footprint may be long and narrow.
Conse
ù

quently, trilinear filtering severely blurs images on surfaces
angled obliquely away from the viewer.

T
õ

his paper describes a new texture filtering technique called
Fe
ú

line (f or Fast E lli
û

ptical Lines).
ü

  Like other recent hardware
anisotropic filtering algorithms, Feline uses an underlying space-
inv
ö

ariant (isotropic) filter with mip-mapped data, and so can be
built
ý

 on top of an existing trili near filtering engine.  To texture a
pø ixel, it uses this space-invariant filter at several points along a
l
û
ine in texture space, and combines the results.  With a modest

inc
ö

rease in im plementation complexity over earlier techniques,
F
ú

eline more accurately matches the desired projection of the pixel
f
÷
ilter in texture space, resulting in images with fewer aliasing

artifacts.  Feline’s visual quality compares well against Elliptical
W
þ

eighted Average, the best software anisotropic texture filtering
algorithm known to date, but Feline requires much less setup
cÿ omputation and far fewer cycles for texel fetches.  Finally, since
it us
ö

es standard mip-maps, Feline requires minimal extensions to
standard 3D interfaces like OpenGL.
CR Categories and Subject Descriptors: I

�
.3.1 [Computer

G
�

raphics]: Hardware Architecture – Graphics processors; I.3.7
[Computer Graphics]: Three-dimensional Graphics and Realism –
C
ù

olor, shading, shadowing, and texture
Ad

�
ditional Keywords: texture mapping, anisotropic filtering,

space-variant filtering

1 INTRODUCTION

Ide
�

ally, computing a textured value for a pixel involves per-
spective projecting a filter from screen space (indexed by x�  and y�
coÿ ordinates) into texture space (indexed by u and v coordinates),
the

�
n combining this with a reconstruction filter to create a unified

f
÷
ilter in texture space.  Each texel inside the unified filter’s foot-

pø rint is weighted according to the unified f ilter’s corresponding

val� ue in screen space, the weighted samples are accumulated, and
th

�
e sum is divided by the filter’s volume in texture space.  Figure

1, inspired by Lansdale [8], gives an intuitive view of this process.
A

�
 pixel filter is a “window” onto a portion of the texture map; the

w� indow’s opacity at each point corresponds to the filter’s weight.
T
õ

he grid represents a texture map; the shaded rectangle the screen.
W
þ

e view an elliptical portion of the texture map through a round
pixø el filter.  (In degenerate cases, a circle projects to an arbitrary
coÿ nic section, but for our purposes an ellipse suffices.)

Fig
ú

ure 2 shows a typical pixel filter in screen space—a

G
�

aussian with weighting e	 –α
  (x� 2 + y2), truncated to zero beyond a
r� adius of one pixel, and with an α of 2.  Tick marks on the x�  and y�
axes are at one pixel intervals; the x� -y�  grid is at 1/


10 pixel intervals.

Fig
ú

ure 3 shows an exemplary perspective projection of this filter
i
ö
nto texture space, where the tick marks on the u and v axes are

spaced at one texel intervals, and the grid is at ½ texel intervals.
W
þ

e normalize all texture filter volumes to one to allow direct
coÿ mparisons between graphs, then highly exaggerate the vertical
axis.  Note the distorted filter profile: each contour line is an el-
lipse
û

, but the elli pses representing lower sample weights are in-
cÿ reasingly offset from the filter center.

Ma
�

pping the texel positions in Figure 3 back into pixel posi-
tions 

�
in Figure 2 (let alone creating a unified filter), so that rela-

tiv
�

e weights can then be applied to the texel values, is a gruesome
affair.  Rather than using a perspective projection, Heckbert and
G

�
reene [4][6] suggest using a locally parallel (aff ine) projection,

* Compaq Computer Corporation, Western Research Labo-
r� atory, 250 U niversity A venue, P alo Alto, CA  94301.
[Joel.McCormack, Keith.Farkas, Norm.Jouppi]@compaq.com.

† Mitsubishi Electric Research Laboratories, Inc., Cambridge
R

�
esearch Center, 201 Broadway, Cambridge, MA  02139.

pø erry@merl.com.

Fig
ú

ure 1: Viewing an ellip tical texture area through a circular
pixø el window.
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Fig
ú

ure 2: A circular Gaussian filter in screen space.
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as shown in Figure 4.  This drastically simplif ies computing the
f
÷
ootprint and weights of the projected filter.  This simplif ication is

vi� sually insignificant.  The modest weight differences between
F
ú

igure 3 and Figure 4 are not detectable in images, and to get the
dis

D
tortion shown in Figure 3 requires a nearly edge-on view of the

surface being texture mapped, in which all detail is lost anyway.
Our a

E
lgorithm approximates the elliptical filter shown in

Fig
ú

ure 4 by performing several isotropic (e.g. tril inear, Gaussian)
f
÷
iltering operations, called prF obes, along the major axis of the

eG llipse.  In comparison to other hardware anisotropic filtering
mH ethods, Feline better approximates the elliptical filter by more
accurately determining the length of the line along which probes
should be placed, spacing probes at better intervals, widening
prø obes un der c ertain c onditions, a nd Gaussian weighting the
prø obe results.  A more sophisticated algorithm, “Table Feline,”
de

D
scribed in [10], also better approximates the slope and length of

the
�

 ellipse’s major and minor axes.  Both versions of Feline re-
quireI  just a few additional computations over previous algorithms.

I
�
n this paper, we first discuss previous work, including the

b
ý

est efficient software technique, and shortcomings of recent
ha

J
rdware anisotropic filtering techniques.  We next describe the

de
D

sired computations for using several probes along a line, show
how

J
 to make these computations amenable to hardware, and dis-

cÿ uss techniques to reduce the number of probes per pixel.  Finally,
w� e present several pictures comparing the various methods of
f
÷
iltering.  More details about Feline can be found in [10].

2
K

 PREVIOUS WORK

W
þ

e first describe Elliptical Weighted Average (EWA), the
mH ost efficient direct convolution method known for computing a
te

�
xtured pixel.  This provides a quality benchmark against which

to c
�

ompare other techniques.  (We do not describe previous soft-
w� are efforts like [2] and [3], as we feel that EWA either super-
sedes these algorithms, or that they are so slow as to be in a dif-
f
÷
erent class.)  We discuss trilinear f iltering, which is popular but

blurry
ý

.  We delve more deeply into Texram, a chip that performs
anisotropic filtering by repeated applications of an isotropic filter
along a line, and discuss its weaknesses.  We briefly mention
other algorithms apparently similar to Texram, but which are not
de

D
scribed in sufficient detail to analyze.

2.1
K

 Elliptical Weighted Average

P
L

aul Heckbert’s and Ned Greene’s Elliptical Weighted Aver-
age (EWA) algorithm [4][6] exactly computes the size, shape, and

orientation of an ellipt ical filter like the one shown in Figure 4.  If
th

�
e center of the filter in texture space is translated to (0, 0), then

th
�

e filter in texture space can be characterized as:

d
M 2(u, v) = 

ü
Au2 + Buv + Cv2

T
õ

he value d
M 2rep� resents the distance squared from the center

of the pixel when the texel position is mapped back into screen
space.  Thus, d

M 2cÿ an index a table of weights that is unrelated to
the

�
 affine projection, but depends only upon the pixel filter.

EWA
N

 determines d
M 2 for each texel in or near the elliptical

f
÷
ootprint.  Texels inside the footprint (d

M 2 ≤ 1) are sampled,
w� eighted, and accumulated.  The result i s divided by the sum of
th

�
e weights, which is the elliptical filter’s volume in texture space.

G
�

iven the partial derivatives ∂u/
O
∂x� , ∂v/

O
∂x� , ∂u/

O
∂y� , and ∂v/

O
∂y� ,

w� hich represent the rates of change of u and v in texture space
re� lative to changes in x�  and y�  in screen space, the biquadratic co-
effG icients for computing d

M 2 are:

A
P

nn = (∂v/
O
∂x� )
ü  2 + (∂v/

O
∂y� )
ü 2;

Bnn = –2 * (∂u/
O
∂x�  * ∂v/

O
∂x�  + ∂u/

O
∂y�  * ∂v/

O
∂y� );
ü

Cnn = (∂u/
O
∂x� )
ü 2 + (∂u/

O
∂y� )
ü 2;

F
Q

 = A
P

nn*Cnn – Bnn
2/4;

O
A

P
 = A

P
nn/

O
F;

B
R

 = B
R

nn/
O
F;

C = Cnn/
O
F;

P
L

ixels that map to a large area in texture space can be han-
d

D
led by using mip-maps [12], where each level of a mip-map is ½

the
�

 height and width of the previous level.  Heckbert [6] suggests
sampling from a single mip-map level in which the minor radius
is
ö

 between 1.5 and 3 texels, though he later implemented unpub-
lis
û

hed code in which the minor radius is between 2 and 4 texels, in
order to avoid subtle artifacts.

Ev
N

en using mip-maps, highly eccentric ellipses may encom-
pø ass an unacceptably large area.  This area can be limited by
cÿ omputing the ratio of the major radius to the minor radius, and if
this 

�
ratio is too large, widening the minor axis of the ellipse and

red� eriving the coefficients A
P

, B
R

, and C.  The combination of mip-
mH aps and elli pse widening allows EWA to compute a textured
pixø el with a constant time bound.

C
ù

hoosing a mip-map level and testing for very eccentric el-
lipse
û

s requires computing the major and minor radii of the ellipse:

root = sqrt((A
P

 – C)
ü 2 + B2);

ü
A’

P
 = (A

P
 + C – root)/2

ü
;

C’ = (A
P

 + C + root)/2
ü

;
maS jorRadius = sqrt(1/A’

P
);
ü

mS inorRadius = sqrt(1/C’);
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Fig
ú

ure 3: A perspective projection of a Gaussian filter into texture
space.
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ure 4: An affine projection of a Gaussian filter into texture
space.
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W
þ

idening an elli pse requires seven multiplies, a square root,
an inverse root, and a divide.  These setup computations, plus
log
û

ic to visit only texels in or near the elli pse and compute d
M 2,

ha
J

ve thus far precluded hardware implementation of EWA.
T
õ

he only complaint that can be leveled against EWA’s visual
quaI lity  is its choice of a Gaussian filter.  Other filters produce
sharper images without introducing more aliasing artifacts (see
W
þ

olberg [13] for an excellent discussion).  However, these filters
ha

J
ve a radius of two or three pixels, which increases the work

r� equired to compute a textured pixel by a factor of four or nine.
A

�
nd as Lansdale [8] points out, none of these filters are as

matH hematically tractable as the Gaussian for unifying the recon-
struction filter and projected pixel filter (warped prefilter).

2.2
K

 Trilinear
W

 Filtering

T
õ

rilinear filtering emphasizes simplicity and efficiency at the
cÿ ost of visual quality.  Rather than computing the shape of the
pø rojected filter footprint, it uses a square filter in  texture space.
B

X
y blending two 2 x 2 bilinear filters from adjacent mip-map

le
û

vels, trilinear filtering approximates a circular filter of an arbi-
tra

�
ry size.  Figure 5 shows a trilinear filter that (poorly) approxi-

mH ates the EWA filter shown in Figure 4.  The axis tick marks are
spaced one texel apart, while the grid is spaced at ½ texel inter-
val� s.  Strictly speaking, because it blends two 2 x 2 bilinear fil-
te

�
ring operations, a trilinear filter samples a square area of 2n x 2n

te
�

xels.  However, most of the filter volume resides inside a circle
w� ith the nominal filter radius.  In the 2D pictures below, we thus
show a trilinear filter’s footprint as a circle of the nominal radius.

A
�

 trilinear filter blurs or aliases textures applied to surfaces
t

�
hat are obliquely angled away from the viewer.  These artifacts

arise because the fixed shape of the trilinear filter poorly matches
the

�
 desired filter footprint, and so the tril inear filter samples data

outside the elli pse, doesn’t sample data inside the elli pse, or both.

2.3
K

 Texram
W

T
õ

exram [11] provides higher visual quality than trilinear fil-
te

�
ring with less complexity than EWA.  Texram uses a series of

triline
�

ar filter probes along a line that approximates the length and
slope of the major axis of EWA’s elliptical footprint.

T
õ

he Texram authors considered computation of the ellipse
paø rameters too costly for hardware, and so substituted simplif ied
approximations.  These approximations underestimate the length
of the major axis of the ellipse, introducing aliasing; overestimate
the

�
 length of the minor axis, introducing blurring; and deviate

f
÷
rom the slope of the major axis, introducing yet more blurring

and aliasing.  Nonetheless, with the exception of environment
mapH ping, these errors are visually insignificant under typical per-
spective projections, as discussed further in Section 3.2 below.

 Texram has other problems that manifest themselves as
aliasing artifacts.  Its sampling line is usually much shorter than
th

�
e ellipse, and the tril inear probes can be spaced too f ar apart.

T
õ

exram always uses 2n equally weighted probes, which causes
pooø r high-frequency rejection along the major axis.  These prob-
le
û

ms make Texram’s visual quality noticeably inferior to EWA.
T
õ

exram uses the four partial derivatives to create two vectors
i
ö
n texture space: (∂u/

O
∂x� , ∂v/

O
∂x� )
ü
 and (∂u/

O
∂y� , ∂v/

O
∂y� ).
ü

  The authors
clÿ aim to sample roughly the area inside the parallelogram formed
by
ý

 these two vectors, by probing along a line that has the length
and slope of the longer of the two vectors.  This line can deviate
f
÷
rom the slope of the major axis of EWA’s elliptical filter by as

mH uch as 45°.  This is not as bad as it sounds.  The largest angular
eG rrors are associated with nearly circular filters, which are rela-
tiv

�
ely insensitive to such errors in orientation.

T
õ

exram’s sampling line can be shorter than the true elli pse’s
majH or axis by nearly a factor of four.  One factor of two comes
f
÷
rom Texram’s use of the length of the longer vector as the length

of the sample line.  Note that if  orthogonal vectors are plugged
into
ö

 the elli pse equations in Section 2.1 above, the major radius is
the

�
 length of the longer vector, and so the ellipse’s major diameter

is a
ö

ctually twice the length of this vector.  Texram’s error is ap-
paø rently due to an older paper by Paul Heckbert [5], in which he
suggested using a filter diameter that is really a filter radius.

A
�

nother factor of two comes from non-orthogonal vectors.
If

�
 the two vectors are nearly parallel and equal in length, the el-

liptic
û

al footprint is v ery narrow and has a major r adius nearly
tw

�
ice the length of either vector.  Again, this is not as bad as it

sounds: typical perspective distortions yield a true elli pse radius
t

�
hat is no larger than about 7% of the longer vector.

T
õ

exram approximates the radius of the minor axis of the el-
lips
û

e by choosing the shortest of the two parallelogram side vec-
tors a

�
nd the two parallelogram diagonals (∂u/

O
∂x�  + ∂u/

O
∂y� , ∂v/

O
∂x�  +

∂v/
O
∂y� )
ü
 and (∂u/

O
∂x�  – ∂u/

O
∂y� , ∂v/

O
∂x�  – ∂v/

O
∂y� ).
ü

  If the side vectors are
neY arly parallel and the shorter is half  the length of the longer, this
approximation can be too wide by an arbitrarily large factor.

O
E

ne of the Texram authors was unsure which values round
up Z or down in the division that computes the number of probes.
W
þ

e have assumed values in the half-open interval [1.0 to 1.5)
r� ound to one probe, values in [1.5 to 3) round to two probes, val-
ueZ s in [3 to 6) round to four probes, etc.  Texram does not adjust
the

�
 probe diameter when it rounds down (as discussed in Section

3.1 below), and so can space probes too far apart.  Rather than the
smoothly sloped “shield volcano” filter of EWA, Texram can use
a “mountain range” filter with individual peaks.  These peaks beat
against repeated texture patterns to create phantom patterns.

F
ú

igure 6 shows an extreme example of these errors, in which
(∂u/

O
∂x� , ∂v/

O
∂x� )
ü
 is (13, 0) and (∂u/

O
∂y� , ∂v/

O
∂y� ) i
ü

s (12, 5).  The area
sampled by EWA is shown as the large heavil y outlined elli pse,
w� hile Texram’s trilinear filter footprints are shown as circles.
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ure 5: A trili near filter approximation to Figure 4.
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2.4
K

 Other Hardwar
a

e Algorithms

Mic
�

rosoft’s Talisman [1] uses a filtering algorithm “in the
spirit of”  Texram.  Few details are provided, but the aliasing evi-
de

D
nt in the examples suggest that they may have inherited some or

all of Texram’s problems.  Evans & Sutherland holds U.S Patent
#

b
5,651,104 for using space-invariant probes along a line.  The

paø tent doesn’t describe how to compute the probe line, but the
dia

D
grams imply a line that is at most a single pixel in length in

screen space, which is once again so short that it will produce
vi� sible aliasing artifacts.

3
c

 THE FELINE ALGORITHM
W

Li
d

ke Texram, Feline uses several isotropic probes along a
line
û

 L
e

 to implement an anisotropic filter.  However, we compute a
mH ore appropriate length for the sampling line L

e
, allow the number

of probes to be any integer, don’t space probes too far apart, and
w� eight the probes using a Gaussian curve.  Feline achieves higher
v� isual quality than Texram with little additional logic.

W
þ

e first describe the desired computations to yield the loca-
tions

�
 and weights for a series of probe points along a line.  We

the
�

n describe “Simple Feline,”  which inherits Texram’s approxi-
mH ations of the major and minor radii, after which it implements
the

�
 desired computations in a fashion suitable for hardware.  Un-

de
D

r highly distorted perspective projections, which may occur
w� hen environment mapping, Simple Feline’s major and minor
ra� dii approximations result in blurring.  “Table Feline,”  described
in 
ö

[10], uses a table to compute the ellipse axes more accurately.
W
þ

e conclude with techniques to reduce the number of probes,
w� ithout substantially decreasing Feline’s image quality.

3.1
c

 The Desir
W

ed Computations

T
õ

he combination of multiple isotropic probes should closely
mH atch the shape of the EWA filter.  Thus, the probe points should
occur along the major axis of the ellipse, the probes should be
G

�
aussian weighted, and the probe filter width should be equal to

the
�

 minor axis of the ellipse.
(Theoretically, the probe filter width should be related to the

w� idth of the ellipse at each probe position.  We initially did not
i
ö
nvestigate this because we didn’ t know how to optimize the

tr
�

ade-off between the probe diameter, probe weighting, probe
spacing, and the number of probes.  After implementing constant
d

D
iameter probes, we saw no reason to pursue variable diameter

prø obes.  The “improvement” was unlikely to be visible, but would
significantly increase the number of probes due to closer spacing
of small probes near the ends of the ellipse.)

W
þ

e compute mS ajorRadius and minoS rRadius as in Section 2.1
above, and then the angle theta of the major axis:

theta = arctan(B
R

/(
O

A
P

-C))/2
ü

;
// If

O
 theta is angle of minor axis, make it angle of major axis

 if (A
P

 > C) 
ü

theta = theta + πf /2;
O

If
�

 mS inorRadius is less than one pixel (that is, we are magni-
f
÷
ying along the minor axis, and possibly along the major axis), the

appropriate radii should be widened—there is no point in making
several probes to nearly identical locations.  Heckbert’s Master’s
T
õ

hesis [6] elegantly addresses this situation.  He unif ies the recon-
struction and warped prefilter by using the following computa-
tions

�
 for A

P
 and C rather than the ones shown in Section 2.1 above:

A
P

nn = (∂v/
O
∂x� )
ü  2 + (∂v/

O
∂y� )
ü 2 + 1g ;

Cnn = (∂u/
O
∂x� )
ü 2 + (∂u/

O
∂y� )
ü 2 + 1g ;

T
õ

his makes the filter radius sqrt(2) t
�
exels f or a one-to-one

mH apping of texels into pixels.  (The radius approaches one texel
as magnification increases.)  While theoretically superior, this
w� ider filter blurs more than the radius one tril inear filter conven-
tiona

�
lly used for unity mappings and magnif ications.  In order to

mH atch this convention, and to make hardware implementation
f
÷
easible, we clamp the radii to a minimum of one texel:

mS inorRadius = max(mS inorRadius, 1);
maS jorRadius = max(maS jorRadius, 1);

T
õ

he space-invariant probes along the major axis have a
nomY inal radius equal to mS inorRadius, and so the distance between
pø robes should also be mS inorRadius.  The end probes should be set
in f
ö

rom the ellipse by a distance of mS inorRadius as well, so that
the

�
y don’t sample data off the ends of the ellipse.  Therefore, the

numY ber of probes we’d lik e (fProbe
h

s)
ü
, and its integer counterpart

(iProbes)
ü
, are derived from the ratio of the major and minor radii

of the ellipse as follows:

fProbe
h

s = 2*(mS ajorRadius/
O
mS inorRadius) –

ü
 1;

iProbes = floor(fPr
h

obes + 0.5);
if
ö

 (iProbes > maS xProbes) 
ü

iProbes = mS axProbes;

T
õ

o guarantee that texturing a pixel occurs in a bounded time,
we�  clamp iProbes to a programmable value maS xProbes.  An ap-
pø lication can use a small degree of anisotropy at high frame rates,
and then allow more eccentric filters for higher visual quality
w� hen motion ceases.

Wh
þ

en iProbes > fPro
h

bes, because fP
h

robes is rounded up, we
space probes closer than their radius, rather than blur the image by
sampling data off the ends of the ellipse.

Wh
þ

en iProbes < fPr
h

obes, either because fPro
h

bes is rounded
d

D
own, or because iProbes is clamped, the ellipse will be probed at

f
÷
ewer points than desired.  Spacing the probes farther apart or

shortening the line L
e

 may cause aliasing artifacts.  Instead, we
b
ý

lur the image by increasing mS inorRadius t
�
o widen the ellipse.

In
�

creasing mS inorRadius increases the level of detail and thus the
nomY inal radius of the probe filter.

if
ö

 (iProbes < fProbe
h

s)
ü

mS inorRadius = 2*maS jorRadius / (
O

iProbes+1g );
levelOfDetail = log2(m

S inorRadius);
ü

A
�

nalogous to c lamping mS inorRadius and maS jorRadius, we
usZ e a single probe in the smallest 1 x 1 mip-map, which reduces
cÿ ycles spent displaying a repeated texture in the distance.  We
don

D
’t bother with a similar optimization for the 2 x 2 or 4 x 4 mip-

mapH s.  Consider the worst 2 x 2 case, in which a checkerboard is
mH irror repeated, and an ellipse with a minoS rRadius of 1 is cen-
t

�
ered at a corner of the texture map.  Figure 7 depicts this situa-

tion
�

, where the thin lines delineate texels, and the thick lines de-
l
û
ineate the (repeated) 2 x 2 mip-map.  The circle on the left uses

one probe to compute an all-white pixel.  The elli pse on the right
usZ es 6 probes to compute the darkest possible pixel of 52% white,
48%

i
 shaded.  (The white texels apparently inside the ends of the

eG llipse don’t contribute to the pixel’s color, as only texel centers
are sampled.)  Since longer ellipses converge so slowly to an in-
te

�
rmediate color, we restrict ourselves to the trivial adjustment:

Fig
ú

ure 7: Ellipses in a 2 x 2 texture map oscillate around a blend
of the two colors as eccentricity increases.
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if
ö

 (levelOfDetail > texture.maS xLevelOfDetail) {
ü

levelOfDetail = texture.maxLevelOfDetail;
iProbes = 1;

}

W
þ

e compute the stepping vector (∆
j

u, ∆
j

v), w
ü

hich is the dis-
t

�
ance between each probe point along the line, as follows:

lineLength = 2*(maS jorRadius – minoS rRadius);
ü

∆
j

u = cos(theta) *
ü

 lineLength / (iProbes – 1);
∆

j
v = sin(theta) *

ü
 lineLength / (iProbes – 1);

(The stepping vector is irrelevant if iProbes is 1.)  The sam-
pleø  points are distributed symmetrically about the midpoint
(umk , vmk )

ü
 of the sampling line L in the pattern:

(un, vl n) = (
ü

umk , vl mk ) + 
ü

nm /2
O

 * (∆u, ∆v)
ü

w� here nm  = ±1, ±3, ±5, … if iProbes is even, as shown in Figure 8,
and nm  = 0, ±2, ±4, … if iProbes is odd, as shown in Figure 9.

W
þ

e apply a Gaussian weight to each probe nm  by computing
the

�
 distance squared of the probe from the center of the pixel filter

i
ö
n screen space, then exponeø ntiating:

d
M

 = nm /
O
2 * sqrt(∆u2 + g ∆v2) / 

ü
maS jorRadius;

d
M 2 = nm 2/4

O
 * (∆u2 + g ∆v2 ) / 

ü
maS jorRadius2;

relativeWeight = e	 -α
  * d2
;

F
ú

inally, we divide the accumulated probe results by the sum
of all the weights applied.

3.2
c

 Implementing Simple Feline

Simple Feline implements the above computations, except it
useZ s Texram’s ellipse axes approximations rather than computing
t

�
he exact values.  We use the longer of the two vectors (∂u/

O
∂x� ,

∂v/
O
∂x� )
ü
 and (∂u/

O
∂y� , ∂v/

O
∂y� )
ü
 as the major radius, and the shortest of

thos
�

e and the two diagonals (∂u/
O
∂x�  + ∂u/

O
∂y� , ∂v/

O
∂x�  + ∂v/

O
∂y� ) an
ü

d
(∂u/

O
∂x�  – ∂u/

O
∂y� , ∂v/

O
∂x�  – ∂v/

O
∂y� )
ü
 as the minor radius length.

W
þ

e were surprised that these approximations work essen-
tia

�
lly as well as the exact values under typical perspective projec-

t
�
ions.  We discovered that the two vectors (∂u/

O
∂x� , ∂v/

O
∂x� ) an
ü

d
(∂u/

O
∂y� , ∂v/

O
∂y� )
ü
 are more or less orthogonal under typical perspec-

t
�
ive distortions.  In the images shown below, the angle between

t
�
he two are in the range 90° ± 30°, and the most extreme angles

occur with very unequal vector lengths.  The simple approxima-
t

�
ions are tolerably close to the true values under these conditions.

W
þ

e use a two-part linear approximation for the vector length
square root.  Without loss of generalit y, for a vector (an , b

o
)
ü
 assume

tha
�

t an , b
o

 > 0 and a n > p b
o

.  The following function is within ±1.2% of
the

�
 true length sqrt(an 2 + b

o 2):
ü

if
ö

 (b
o

 < 3an /
O
8) return an  + 5b

o
/3

O
2

else retuG rn 109an /1
O

28 + 35b
o

/6
O

4

W
þ

e do not compute the stepping vector with trigonometric
f
÷
unctions, but instead scale the longer vector directly.  Call the

long
û

er vector components (maS jorU, maS jorV)
ü
.  E ither this vector

de
D

scribes mS ajorRadius, or else iProbes is one and the stepping
v� ector is irrelevant.  By substituting maS jorU/

O
mS ajorRadius for

coÿ sine, and maS jorV/
O
maS jorRadius for sine, we get:

r = mS inorRadius / mS ajorRadius;
i = oneq OverNMinusOneTable[ iProbes];
∆

j
u = 2*(maS jorU – maS jorU*r) *

ü
 i;

∆
j

v = 2*(maS jorV – maS jorV*r) *
ü

 i;

Fina
ú

lly, we use a triangularish two-dimensional weight table
to a

�
void computing and exponentiating d

M 2.  We use the smaller of
fProbe

h
s truncated to a couple fractional bits, or iProbes, as the

w� eight table’s row index, so that each row of weights applies to a
small range of ellipses.  The column index is floor((abs(nm )+

ü
1)/2).

B
X

y dividing each of the relative weights in a row by the sum of
t

�
he weights for that row, the weights in each row sum to 1.  Con-

sequently, we need not normalize the final accumulated result.
Note

r
 that if iProbes is odd, the W0 entry in a row should count

h
J

alf as much as the other entries when computing the sum: it is
uZ sed once, while the other weights are used twice.

M
�

ost of the computations specific to Feline can use group
scaled numbers with a precision of 8 bits.  (The center point
(umk , vmk )

ü
 must still be computed with high precision, of course.)

Small errors cause sampling along a line at a slightly different
angle, and at intervals that are slightly smaller or larger than de-
sired.  These arithmetic errors are negligible compared to the in-
accuracies caused by the gross approximations to the ellipse axes.

3.3
c

 Increasing Efficiency

W
þ

e investigated how far we could “push the envelope”  to re-
duc

D
e the number of probes by shortening and widening the elli pse,

and by spreading probe points farther apart than their radius.
W
þ

e can shorten the ellipse using a lengthFactor <= 1:

maS jorRadius = max(maS jorRadius * lengthFactor,
 mS inorRadius);

ü
maS jorU *= lengthFactor;
maS jorV *= lengthFactor;

T
õ

he code in Section 3.1 proportionately widens an ellipse
mH ore when rounding down a small value of fProbes than a large
one.  W

þ
e can instead compute iProbes so that for all values of

fProbe
h

s, we widen the ellipse to at most a blur
o

Factor times the
mH inor radius.  We also allow stretching the distance between
prø obe positions by up to alin asFactor times the probe filter radius:

f
h
 = 1 / (bl

o
urFactor * aliasFacn tor);

ü
iProbes = ceiling(f

h
  * 2 * (mS ajorRadius/

O
mS inorRadius)

ü
) –  1;

If
�

 iProbes is not clamped to maS xProbes, we blur (widen the
eG llipse) by increasing mS inorRadius by up to bl

o
urFactor:

n = -3s n = -1s
n = +1s

n = +3s

mid-t
pointu

Fig
ú

ure 8: Positioning an even number of probes.

n = -4s n = -2s
n = +2s n = +4s

n = 0s

Fig
ú

ure 9: Positioning an odd number of probes.

247



mS inorRadius = min(2*mS ajorRadius / (iProbes+1g ),
mS inorRadius * blur

o
Factor)

ü

 The computations of ∆
j

u and ∆
j

v automatically make up any
re� maining difference between iProbes and fPro

h
bes by increasing

pø robe spacing.  If iProbes is clamped, we blur (in excess of blur
o

-
Fac

Q
tor) t
ü

o the point where the computations of ∆
j

u and ∆
j

v will
i
ö
ncrease probe spacing by aliasFacn tor:

mS inorRadius = 2 * mS ajorRadius /
((iProbes+1g ) * aliasFacn tor);

ü

W
þ

e chose two sets of parameter values
eG mpirically.  The “high-quality”  set
(lengthFactor 0.97, b

o
lurFactor 1.16, aln ias-

Fac
Q

tor 1.15) reduces the number of probes
by
ý

 24% with almost no degradation of im-
age quality, compared to the constant
r� ounding of Section 3.1.  The “high-
effG iciency” set (lengthFactor 0.97, bl

o
ur-

Fac
Q

tor 1.31, alin asFactor 1.36) uses the
same number of probes as Texram to pro-
vi� de images that contain more artifacts than
the

�
 “high quality”  setting, but are nonethe-

le
û

ss much better than Texram.
T
õ

he high-efficiency aliasFacn tor cre-
ates large valleys between the peaks of a
triline

�
ar filter, especially along diagonal

proø be lines.  We obtained slightly better
im
ö

ages by changing the probe filter from a
b
ý

ilinear filter on each of the two adjacent
mH ip-map levels to a Gaussian filter trun-
catÿ ed to a 2 x 2 square.  We then linearly
cÿ ombine the two Gaussian results using the
f
÷
ractional bits of the level of detail.  (This

also makes single-probe magnif ications look
be
ý

tter.)  A hardware trilinear filter tree is
easiG ly adapted to implement Gaussian rather
t

�
han bilinear weightings [9].  Four copies of

a small one-dimensional table map the frac-
tiona

�
l bits of u and v on each of the two

mH ip-maps to Gaussian weights.

4
v

 COMPARISONS WITH
w

PREVIOUS WORK

F
ú

igure 10 t hrough F igure 14  s how
v� arious algorithms generating a pattern of
cuÿ rved lines.  Figure 15 through Figure 18
show a floor of bricks, and Figure 19
thr

�
ough Figure 22 show magnif ied texture-

mH apped text.  Texram images use the origi-
naY l algorithm; correcting the errors de-
scribed in Section 2.3 above results in many
mH ore probes ann d degrades visual quality!
A

�
liasing artifacts mostly remain, and im-

ages significantly blur due to the equal
w� eighting of probes.  Simple Feline images
usZ e parameters as described in Section 3.3
above, and a mip-mapped Gaussian for the
proø be filter.  Mip-mapped EWA samples
f
÷
rom a mip-map level where the minor

ra� dius is between 1.5 and 3 texels; this
look
û

s identical to a radius between 2 and 4,
but s
ý

amples about half  as many texels.
T
õ

rilinear, Texram, and Feline images use a
ra� dius 3 Lanczos filter to create mip-maps.

EWA
N

 images use a box filter: the Lanczos filter causes “bluriness
ba
ý

nding”  artifacts when EWA jumps from using a large ellipse in
one mip-map to using a small ellipse in the next.higher mip-map.

Fe
ú

line with high-quali ty parameters generates images com-
paø rable to EWA, but with slightly stronger Moiré patterns.  The
only exception occurs if a box filter is used to create mip-maps for
t

�
extures like checkerboards.  Because the base texture and all i ts

Fig
ú

ure 10: Trilinear paints curved lines with blurring.

F
ú

igure 11: “High-efficiency” Simple Feline paints curved lines with fewer artifacts.

Fig
ú

ure 12: Texram paints curved lines with strong Moiré artifacts.

Fig
ú

ure 13: “High-quality”  Simple Feline paints curved lines with few artifacts.

Fig
ú

ure 14: Mip-mapped EWA paints curved lines with few artifacts.
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mH ip-maps then contain illegally high frequencies
tha

�
t Feline’s relatively narrow filter cannot re-

mH ove, Feline displays much stronger Moiré arti-
f
÷
acts than EWA.  Using a better filter, such as the

L
d

anczos, to create the mip-maps makes Feline
dis

D
play fewer

h
 artifacts than EWA—Feline is more

lik
û

ely to use filtered mip-mapped data, rather than
the

�
 unfiltered base texture.

Bo
X

th sets of Feline images are much sharper,
and exhibit far fewer Moiré artifacts, than those
gx enerated by trilinear filtering.  Though not
shown here, we note that high-efficiency Feline
and Texram are both subject to “probe banding”
on repeated textures: some images show a visible
l
û
ine where the number of probes increases from

one value to another.
T
õ

exram images sometimes seem a little
sharper than Feline images, but then, aliased im-
ages always seem sharper than antialiased images.
Rep

�
eated texture patterns amplify Texram’s

aliasing problems to create strong Moiré patterns,
as shown in the curved lines and bricks images.
T
õ

hese patterns are even more disturbing in mov-
i
ö
ng images, where they shimmer across the sur-

f
÷
ace.  Texram’s aliasing is more subtle in non-

rep� eated textures, such as text.  Comparing the
hig

J
h-eff iciency Feline images to Texram is espe-

cÿ ially interesting: both use the same number of
pø robes, but the Feline images exhibit far fewer
artifacts.  Experiments show that Feline’s quality
is due
ö

 to the use of a Gaussian probe filter, the
G

�
aussian weighting of probe results, and the end-

to-e
�

nd coverage of the ellipse.
Hig

y
her visual quality comes at increased

cÿ omputational cost for setup and sampling.  But
mH uch of Feline’s setup can be performed in par-
allel with the perspective divide pipeline, and so
i
ö
ncreases pipeline length over Texram by only a

f
÷
ew stages.  Feline’s setup costs are substantially

smaller than mip-mapped EWA’s.
Both 

X
Feline and Texram access eight texels

eachG  probe, and probes overlap substantially (especially in the
smaller of the two mip-maps).  A texel cache [7][9] eliminates
mH ost redundant memory fetches.  We assume these algorithms
cÿ an perform one probe per cycle; higher performance requires
dup

D
licating large portions (100k to 200k gates) of the texture

mH apping logic.
Mip-

�
mapped EWA doesn’ t fetch texels more than once per

pixø el and samples a substantially larger area.  “Optimistic EWA”

naY ively assumes we can sample 8 texels/cycle on all but the last
cÿ ycle for each ellipse.  “Realistic EWA” assumes that hardware
tra

�
verses the ellipse using a 4 x 2 texel “stamp” for u-major ellip-

ses, and a 2 x 4 stamp for v-major ellipses.  Thus, each cycle sev-
eG ral of the stamp’s texels usually lie outside the ellipse.

F
ú

igure 23 shows how many cycles/pixel each algorithm uses
f
÷
or different viewing angles of one exemplary surface.  At 0°, the

surface normal is parallel to the viewing angle, and mip-mapped

Fig
ú

ure 15: Texram paints bricks with herringbone artifacts.

Fig
ú

ure 16: “High-efficiency”  Simple Feline paints bricks with fewer artifacts.

Fig
ú

ure 17: “High-quality”  Simple Feline paints bricks with few artifacts.

Fig
ú

ure 18: Mip-mapped EWA paints bricks with fewest artifacts.

Fig
ú

ure 19: Trilinear paints blurry text.

Fig
ú

ure 20: Texram paints text with stairstepping.

Fig
ú

ure 21: “High-efficiency”  Simple Feline paints smooth text.

Fig
ú

ure 22: Mip-mapped EWA paints smooth text.
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E
N

WA samples the same size circle for each pixel.  We made this
ciÿ rcle’s area the same as would be obtained by averaging results
f
÷
rom randomly distributed viewing distances.  This graph should

be
ý

 interpreted like EPA gas mileage numbers: it is useful for rela-
tiv

�
e comparisons, but mileage will vary depending upon position

on the screen, perspective distortion, etc.
Fina
ú

lly , note that if a scene uses multiple textures per sur-
f
÷
ace, anisotropic texture mapping performance doesn’ t always

slow down by these cycles/pixel ratios.  For example, illumination
mH aps tend to be small, so are usually magnif ied [7], which takes a
single probe.  They also tend to be blurry (that is, contain mostly
l
û
ow frequencies), so even when minified, an application might

lim
û

it illumination mapping to one or two probes per pixel.

5
z

 CONCLUSIONS
w

Fe
ú

line provides nearly the visual quality of EWA, but with
mH uch simpler setup and texel v isiting logic, and many fewer cy-
cÿ les per textured pixel.  Feline provides better image quality than
T
õ

exram, especially for repeated textures, even when limited to use
t

�
he same number of probes.  Feline requires somewhat more setup

and texel weighting logic than Texram, but this cost is small com-
paø red to the increase in visual quality.  Feline can be built on top
of an existing trilinear filter implementation; for better results, the
triline

�
ar filter can be converted to a mip-mapped Gaussian at little

coÿ st.  Since several aspects of Feline are parameterized, Feline
cÿ an gracefull y degrade image quality in order to keep frame rates
h

J
igh during movement.  This degradation might accentuate

aliasing for irregular textures, in order to preserve image sharp-
nY ess, and accentuate blurring f or repeated regular t extures, i n
order to avoid Moiré artifacts.

In the
�

 Sep/Oct 1998 issue of IEEE C
{

omputer Graphics and
Applic

P
ations, Jim Blinn wrote in his column that “No one will

eG ver figure out how to quickly render legible antialiased text in
peø rspective.  Textures in perspective will always be either too
f
÷
uzzy or too jaggy.  No one will ever build texture-mapping

ha
J

rdware that uses a 4x4 interpolation kernel or anisotropic fil-
te

�
ring.”  Feline is simple enough to implement, yet of high enough

v� isual quality, to prove him at least partially wrong.

6
|
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