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ABSTRACT
Scheduling, routing, and layout tasks are examples of hard
optimization problems with broad application in industry.
Past research in this area has focused on algorithmic issues.
However, this approach neglects many important human-
computer interaction issues that must be addressed to
provide people with practical solutions to optimization
problems. Automatic methods do not leverage human
expertise and can only find solutions that are optimal with
regard to an invariably over-simplified problem description.
Furthermore, users must understand the generated solutions
in order to implement, justify, or modify them. Interactive
optimization helps address these issues but has not
previously been studied in detail. This paper describes
experiments on an interactive optimization system that
explore the most appropriate way to combine the respective
strengths of people and computers. Our results show that
users can successfully identify promising areas of the search
space as well as manage the amount of computational effort
expended on different subproblems.

Keywords
Semi-automatic optimization, interactive optimization,
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INTRODUCTION
Research on designing systems to solve optimization
problems, such as routing, layout, and scheduling problems,
focuses on developing automatic algorithms to search the
exponentially large space of possible solutions more
efficiently. Typically, the user’s role in these systems is to
specify the problem, including constraints on predefined
criteria for evaluating candidate solutions, and then to
initiate a computer search to find an optimal solution.

Such research, performed mainly by the operations-research
community, neglects aspects of the optimization task that
are essential for obtaining usable solutions. System users

must understand and trust the generated solutions to make
effective use of them. Furthermore, it is often impossible to
specify in advance all of the appropriate constraints and
selection criteria for all possible scenarios of a problem.

Consider, for example, someone producing a monthly work
schedule. She must understand the solution to convey it to
the affected employees. Moreover, she must understand
how to make modifications as new needs arise.
Furthermore, she probably cannot transfer all of her
experience in evaluating candidate solutions to the
computer. Thus, automatic methods can produce schedules
that conflict with the accumulated wisdom of the people
who implement them.

One way these issues have been addressed is by building
systems that involve people in the optimization process,
typically allowing them to guide or steer an optimization
algorithm. Users are more likely to understand a solution
that they helped create than one that is simply presented to
them. Furthermore, in an interactive system, as a user better
understands the available choices he can modify the
solution selection criteria as well as steer the computer
toward solutions that are most appropriate in practice.

By including humans “ in-the-loop”  during optimization, we
can leverage their problem-solving expertise and their skills
in areas where they currently outperform computers, such
as visual perception and strategic thinking. In essence,
combining the human’s superior intelligence with the
computer's superior computational speed can result in better
solutions than either could produce alone [1, 3].

The goal of our research is to investigate human-in-the-loop
optimization in more detail. Below, we discuss past
approaches to interactive optimization. Then, we present a
study that closely examines expert users’  performance on
three subtasks performed in an interactive optimization
system. To our knowledge, this is the first study that
evaluates several individual components of human-in-the-
loop optimization.
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After our first experiment, we developed an enhanced
version of our experimental system intended to train people
on one of the subtasks. This was motivated by the
observation that users’  performance improved during the
experiment and also by valuable user comments for
improving the system feedback to be more clear and
educational. Below, we describe a pilot study of this new
system on novice users.

HUMAN-IN-THE-LOOP OPTIMIZATION SYSTEMS
Cooperative systems that leverage the strengths of both
humans and computers have been shown to be effective at
producing valuable optimization solutions [1, 17]. These
interactive systems must somehow distribute the work
involved in the optimization task among the human and
computer participants. Existing systems have implemented
this division of labour in a variety of ways.

In some interactive systems, the users can only indirectly
effect the solutions to the current problem. In interactive
evolution, an approach primarily applied to design
problems, the computer generates solutions and the role of
the user is to select which solutions will be used to generate
novel solutions in the next iteration [9, 13, 16].  Smith et
al.’s [14] interactive system for solving large scale planning
and scheduling problems presents the users with a variety of
solutions that optimize different criteria.

Colgan et al. [4] present a system which allows users to
interactively control the parameters which are used to
evaluate candidate solutions. Users are provided with a
visualization of the optimization process so that they can
better understand the trade-offs in the design space. Several
constraint-based systems have been developed for drawing
applications [8, 10, 11]. Typically, the user imposes
geometric or topological constraints on an emerging
drawing such that subsequent manipulations are constrained
to useful areas of the design space.

Other approaches allow the users to manually modify
computer-generated solutions, with little or no restrictions,
and then to invoke various computer analyses on the
updated solution. An early vehicle-routing system allows
users to initiate route analyses and map redrawings, and to
request suggestions for improvements after making
schedule refinements to the initial solution [17]. Chien et
al.’s [2] space-shuttle operations scheduling system allows
users to invoke a repair algorithm on their manually
modified schedules to resolve any conflicts that have been
introduced by the user.

The human-guided simple search (HuGSS) framework [1]
allows users to manually modify solutions and steer the
optimization process itself.  In this approach, users invoke,
monitor, and halt optimizations as well as specify the scope
of these optimizations. Thus, users control how much effort
the computer expends on particular sub-problems. Users
can also backtrack to previous solutions. HuGSS was
implemented in an interactive vehicle-routing system [1].

Experiments with this system showed that human-guided
optimization outperformed an equivalent amount of
unguided optimization. An approach similar to HuGSS was
used in an interactive graph drawing system, which also
allowed users to add constraints to the problem at runtime
[6].

The mixed-initiative approach to human-in-the-loop
systems uses agents to mediate the cooperation between the
computation system and the user to help the user solve an
optimization problem. This approach has been applied to
transportation scheduling [3], aircraft design [12], and
planning [5, 7].

In the above systems, the role of the user in the
optimization process has generally been determined by the
intuitions of system designers and the availability of
interaction and visualization techniques. Experiments have
been performed on some of these systems by having users
interactively optimize sample problems using the whole
system [1, 3]. In more specific investigations, Do
Nascimento and Eades [6] evaluated their system under
conditions that varied which system features were available
to the user.

What is lacking in the design of interactive optimization
systems is input from experiments focused on determining
which optimization subtasks are best suited to the strengths
of the human and which are most appropriate for the
computer. The study presented in this paper examines
several user tasks within a human-in-the-loop optimization
system and compares users’  performance in these tasks to
the performance of the computer on the same tasks.

METHOD
Participants
The study’s three participants were software professionals
and computer-science graduate students. All participants
had at least 8 hours of previous experience using the
experimental application through their participation in a
previous study of the interactive optimization system.

Experimental Apparatus
The experimental setup included a tabletop display, called
the Optimization Table (OpTable), see Figure 1. The
OpTable is comprised of a top-projected image from an
IBM-compatible PC running Linux and a wireless keyboard
and mouse. The tabletop surface is a 3-foot by 4-foot
whiteboard lying face-up on table of the same size.
Participants remained seated at the OpTable for the
duration of the experimental sessions.

Human Guided Simple Search
We studied a HuGSS system (described in the previous
section), available for research purposes, which allows
users to guide optimization of capacitated-vehicle-routing-
with-time-windows (CVRTW) problems. The CVRTW
problem is a variant of the traveling-salesman problem in
which multiple trucks must deliver goods to a set of
customers, under a variety of time, capacity, and geographic



constraints. A solution to a CVRTW problem is a routing
schedule that prescribes which trucks should service which
customers and in what order they should service them. The
objective is to find the least-cost solution based on the
number of trucks and the distance they drive that satisfies
all the constraints. Details can be found in [1].

In the HuGSS framework, the users begin with a
precomputed solution that an optimization algorithm has
produced after many hours of computation. Users then
attempt to improve this initial solution by repeatedly
performing one of the following three operations: (1)
modify the current solution manually, (2) invoke a focused
search for improvements to the current solution, or (3)
backtrack to a previous solution. Specifically, in the vehicle
routing system, users can modify the solution by
reassigning a customer to a new route. When a customer is
reassigned, the system reoptimizes the two affected routes.
Users can also invoke a simple optimization process, which
we will refer to as the “search algorithm.”  When invoked,
the search algorithm begins to evaluate ways of reassigning
customers to new routes (henceforth called “moves”).
When halted by the user, the search algorithm performs the
move that most improves the overall schedule. While
running, the search algorithm reports the improvement that
will result from the best move it has found so far.

The user can also constrain the search algorithm by
assigning mobilities to each of the customers. These
mobilities determine which moves the computer will
evaluate. In particular, each customer can be assigned a
high, medium, or low mobility and the computer will only
consider moves that consist of reassigning high-mobility
customers to routes without any low-mobility customers on
them. This simple scheme gives the user a great deal of
flexibility in determining which moves are evaluated. An
advantage of focusing the search is to allow the computer to
search more deeply in promising regions of the search
space. As a simple example, suppose that a user correctly
believes that half of the routes are optimal (for some
definition of optimal). By setting all the customers on those
routes to low, the user essentially reduces the size of the

problem by a factor of two, making it dramatically easier to
solve given the exponential nature of the problem.

Thus, a user of the HuGSS vehicle-routing system is always
viewing a visualization of one solution, i.e., a routing
schedule, to the current problem (see Figure 2). A typical
sequence of user actions is to assign mobility values to
customers, to invoke the search algorithm (by pressing a
button), to watch the progress reports produced by the
search algorithm, and then to halt the search at some point
(again with a button press), resulting in a schedule update.
More details can be found in [1].

Experimental Design
Participants all performed each of the three experimental
tasks, in the same order.

Experimental Tasks
Focusing
In the focusing task, users invoked a focused search by
setting the mobilities of customers in a series of routing
schedules. When a user finished setting the mobilities for a
schedule, she would invoke the search algorithm.
Participants were told that the goal was to set the customer
mobilities to yield the most effective search possible. Once
the search algorithm was started, participants could let it
continue for at most two minutes, or halt it at any time
themselves, in order to see the effect of the mobilities
settings they had chosen. For comparison purposes, after
each trial the users were shown a description of what
happened when an unfocused search, i.e., all customers set
to high mobility, was precomputed for the same initial
schedule. This description showed the improvement that
was found, in 10-second intervals, for two minutes of
unfocused search. Generally speaking, the user would hope
that their focused search would yield greater improvements
than the unfocused search.

Figure 2. An example of a vehicle routing schedule shown
in the HuGSS system. The black circle near the center
represents a central depot and the other circles represent
the customers. Wedges in the customer circles indicate the
time windows during which deliveries can be made.  Truck
routes are shown by polylines, each in a different color.

Figure 1. The Optimization Table.



Finding Targets
In the finding-targets task, users tried to identify certain
“ target”  customers in a series of routing schedules. A target
customer was defined as any customer that could be
reassigned as part of a move that improved the current
score that involved moving two or three customers (as a
practical matter, we could not compute all moves that
involved reassigning four or more customers). While the
focusing task only measures people’s ability to guide a
particular search algorithm, the finding-targets task more
directly measures people’s ability to provide information
that could be useful for improving search. This information
might be used, for example, to probabilistically guide
search.

To identify a customer as a target, the user was required to
set that customer to high mobility and set non-targets to low
mobility. Participants were told that the goal was to select
as many potential targets as possible, while trying to avoid
selecting customers that were actually non-targets. When
the user was finished identifying potential targets, the
current schedule was updated to reveal the actual targets
along with the customers he had guessed were targets.

Stopping
In the stopping task, participants were given control only of
when to halt the search algorithm, on a sequence of routing
schedules. For each schedule, the user could examine the
board as long as they wanted. When ready, the user would
invoke the (unfocused) search and then watch the progress
report, shown at the bottom of the application, to determine
when to halt the search algorithm. If not halted by the user,
the algorithm would stop automatically after two minutes.
To give users some sense of what two minutes was worth,
they were told to imagine that each search was part of a one
hour long optimization session. Participants were told that
the goal was to stop the search algorithm after the most
significant score improvement had occurred in the least
amount of time. They were told that, as an example, if a 10-
point improvement occurred after 30 seconds and then
another 1-point improvement occurred after 90 seconds,
then it would be considered a more effective use of their
scheduling time to stop the search shortly after the 30-
second point. After the search algorithm was stopped, the
user’s schedule improvement was displayed. For
comparison purposes, the results of a precomputed two-
minute unfocused search on the same schedule, shown in
10-second intervals, were also displayed. Thus, users could
see what would have happened had they not halted the
search. Generally speaking, the users would hope that no
large improvements would occur soon after the point at
which they had halted the search.

Selection of Test Routing Schedules
The vehicle-routing schedules used for this experiment
came from the Solomon benchmarks [15]. Each problem in
this corpus has 100 customers. A variety of initial solutions
were precomputed for several problems by running the

search algorithm from a random starting schedule
repeatedly until the schedule could no longer be improved
by reassigning one or two customers. A second, less
optimal, class of solutions was also generated by restricting
the search algorithm to reassigning at most one customer at
a time. We then ran the search algorithm on these schedules
to compute the information needed to provide feedback to
the users for each task described above.

Selection criteria for the initial routing schedules used for
the experimental trials differed slightly based on the
experimental task. For the focusing task, the solutions were
categorized based on whether a two-minute unfocused
search would improve the schedule or not. In the focusing
trials, we used an equal number of schedules that would and
would not be improved by an unfocused search. For the
stopping task, the routing schedules were categorized based
on the number of times a different improvement would be
reported in the feedback to the user. For example, if the
search algorithm found a better move at 30 seconds, and
then again at 80 seconds, this would be considered two
changes. (If multiple changes occurred within a 10-second
window, however, this was counted as a single change.) In
the stopping trials, initial solutions were used that yielded
no change (0 schedule changes), little change (1-2 schedule
changes), and large change (3+ schedule change). For the
finding-targets task, routing solutions were selected that had
no more than 20 target customers.

Procedure
The entire experimental session lasted 3 to 4 hours. with
breaks between the experimental tasks. The experiment
started with a 20-minute refamiliarization session with the
HuGSS application. Next, participants performed the
focusing task, the finding-targets task, and then the stopping
task. Participants began each experimental task trial with a
new vehicle-routing schedule displayed in the HuGSS
system. Once users became familiar with the routing
schedule by visually inspecting the schedule, they began the
appropriate actions to complete the experimental task as
described in the experimental tasks section above.

In both the focusing and finding-targets tasks, participants
each performed one practice trial and then ten randomly
ordered experimental trials. For the stopping task,
participants each performed one practice trial and then nine
experimental trials. The nine experimental stopping trials
included three sets of routing-schedule sequences. Each
sequence contained a starting schedule followed by two
successive improvements on that schedule. Each successive
schedule in a sequence was the result of a precomputed
unfocused two-minute search on the previous routing
schedule.

Data Analyses
Data were gathered from two sources during the study,
computer logs and field notes recorded by a researcher
during the experiment. Mobility settings for the focusing
task, user selections for the finding-targets task, and



optimization times for the stopping task were extracted
from the computer log files.

Post-processing was performed on the focusing task data to
enable comparison of participants’  results to the results of
the computer’s unfocused search for the corresponding
initial solutions. Each user’s mobility settings for the
focusing task trials were applied to a full two-minute
focused optimization and its progress was recorded every
minute. Therefore, regardless of when the user stopped the
optimization during the trial, both the optimization progress
and end schedule improvement was known for the total time
period for all trials.

DISCUSSION OF RESULTS
The goal of this study was to elucidate how best to leverage
the strengths of the human collaborator in an interactive
optimization system. We had people repeatedly perform
various subtasks of the overall optimization process within
an interactive system. We hoped to gain insight into which
of these subtasks people perform well, how much system
use varies from user to user, and which aspects of the
system the users’  found especially frustrating or helpful.
We were also interested in understanding how best to train
people to effectively use interactive optimization systems.

Focusing
To explore the users’  ability to focus the search algorithm
process we examined several aspects of the focusing task.

One question we wanted to answer was whether the
subjects’  mobility settings improved the performance of the
search algorithm compared to an unfocused search.  (Note
that this is not the same as trying to prove that human-
guided search is better than automatic search. To show this
would require exploring all possible ways of automatically
setting mobilities. Furthermore, it is possible that computers
could one day automate whatever strategy the human users
are using to guide the search.)   Focused searches improved
63.3% of the routing schedules (subject 1 and 3 both
improved 70% of their schedules, subject 2 improved 50%),

while unfocused searches only improved 50%, which
followed from our selection of the schedules as described
above. It is promising that users were able to improve
26.6% of the schedules that the computer could not
improve.

To compare the extent of the improvements made by
focusing the search, we normalized the scores for a
schedule based on the maximum improvement found by any
focused or unfocused search on that schedule. Thus, the
maximum score possible for a schedule was 1.0 and the
score for any search that did not improve the schedule was
0. Figure 3 shows the average normalized improvement,
compared to unfocused search, for each user for each
second of the two minutes of search. Thus, in this figure,
any point above zero represents better performance than
unfocused search, while any point below zero represents
worse performance than unfocused search. As shown in the
figure, after two minutes of search, only one user’s focused
search outperforms the unfocused search. Interestingly, the
focused search of all three users significantly outperforms
unfocused search for the first 30-40 seconds of search. This
shows that the users were able to identify regions of the
solutions that were especially promising for shorter
searches. If future testing confirms this pattern, then
interactive optimization systems could be designed to take
advantage of this, e.g., by relaxing the user’s focus as time
elapses or encouraging shorter searches. The latter would
allow the user to evaluate more candidate solutions during
an optimization session.

Furthermore, it seems likely that the users improved during
the course of the experiment. Figure 4 shows the
normalized improvement of each subject’s focused search
compared to unfocused search for each trial. (The users
were given the same set of solutions in random order.)
Although there is not enough data to confirm a learning
trend, it appears that learning took place. This suggests that
the system used in this experiment could be developed into
a training system to help people learn to set mobilities more
effectively.

Focused vs Unfocused Search over Time
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Figure 3. The normalized difference between focused and
unfocused search results, over all schedules. Points above
zero indicate focused search outperformed unfocused search.
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We were also interested in comparing the focusing styles of
the different users, as well as the choices made by different
users on the same schedules. Table I shows the average
number of high, medium, and low mobilities used by each
subject, as well as for each routing schedule. Additionally,
for each schedule, it shows the percentage of customers
who were assigned the same mobility by all three users. As
shown in the table, Subject 1 produced much more focused
searches than Subject 3, and never used medium mobility.
Additionally, the average number of high-mobility
customers was surprisingly similar from schedule to
schedule. This suggests that people applied a similar
amount of focus on each schedule. Two subjects indicated
that they were trying to make the most of the two-minute
period by focusing the search narrowly enough so that the
computer would consider complex moves during the two-
minute search time, yet not so narrowly that the search
algorithm would complete before the two minutes ended.

 The table also shows that people used similar mobility
settings on some schedules but very different settings on
others. This suggests that people often see different
promising areas when they look at the same schedule.
Subjects seemed to use a variety of strategies to determine
how to set customer mobilities. One subject used the truck
capacities as a guide. For example, he would set customers
on an underutilized truck to medium mobility and
customers on nearby, more heavily utilized trucks to high
mobility. These mobilities would encourage the search
algorithm to redistribute the customers on these routes.
Other users focused the search algorithm on overlapping
routes containing customers with flexible time-windows.
These, and other strategies used, all have merit, and often
produced different improvements in the schedules.

Consequently, it seems valuable to design collaborative
optimization systems that support groups of people working
together to solve an optimization problem.

Finding Targets
One claim made of the HuGSS system is that people can
use their visual perception to identify promising regions in
which to focus the search algorithm. The goal of this task
was to determine if the users could identify customers that
would participate in moves that would improve a given
solution. Table II shows the results of this task in terms of
how many of the targets the users correctly selected (true
positives), how many of the non-targets they correctly did
not select (true negatives), how many non-targets they
incorrectly selected (false positives) and how many targets
they failed to select (false negatives).

In all ten boards, there were 1000 customers and 109 actual
targets (true positives plus false negatives), and thus
random selection of targets would yield, on average, a
precision of .109.  That is, 10.9% of randomly selected
customers would actually be targets. Two of the three users
had substantially higher precision.  This suggests that they
can provide a search algorithm with valuable information,
namely which customers are more likely to be involved in a
move that improves the schedule.

These results are surprising, considering that users found
this task to be quite frustrating. Some users’  comments
made during this session were: “ this is so frustrating” ; “ it’s
very hard for the eye to measure where things will move
because of the time windows” ; “ this [task] is impossible to
predict” ; “ this is brutal” ; and “how can you determine the
best customer to move, that’s what the computer is good
at” . Part of the users’  frustration resulted from the
scarceness of information given in the trial feedback. Only
the target customers were indicated on the feedback screen,
without any indication of the receiving routes for each
target nor any indication of the groupings of customers that
constituted a two- or three-customer move. Users found this
frustrating, because they could not generalize or create rules
to help them improve in the task. Two of the users tried to
learn how to improve their accuracy by examining the
feedback information but they found it very confusing. This

Table II. User performance for the finding-targets task.

User True
Positive

True
Negative

False
Positive

False
Negative

Precision
�

Recall
�

1 9 843 48 100 0.158 0.083

2 18 815 76 91 0.191 0.165

3 26 633 258 83 0.092 0.239

Mean 17.67 763.67 127.33 91.33 0.147 0.162
�
Precision is the ratio of correct selections to selections.�

Recall is the ratio of correct selections to actual targets.

Table I. Mobilities distribution across users and board.

Source High Medium Low Same (%)

All Subjects 41.27 10.60 49.13

Subject 1 34.10 0.00 66.90

Subject 2 29.70 17.30 54.00

Subject 3 60.00 14.50 26.50

Board 1 42.67 29.67 28.67 7

Board 2 44.00 15.00 42.00 1

Board 3 42.00 10.67 48.33 5

Board 4 44.33 5.67 51.00 62

Board 5 47.33 4.67 49.00 86

Board 6 41.67 12.33 47.00 0

Board 7 37.67 1.67 61.67 28

Board 8 39.33 10.00 51.67 8

Board 9 35.00 13.00 53.00 23

Board 10 38.67 3.33 59.00 6



suggests that with more informative feedback, users might
be able to improve their task accuracy.

Stopping
Although not part of the original HuGSS design, the ability
to halt the search algorithm at any time has become an
integral part of all HuGSS systems. Users seem to enjoy
having this control over the optimization process. Before
this experiment, however, it was not at all obvious that
people had an accurate sense of when to stop the search.

However, our data shows that users performed very well on
the stopping task. We normalized the scores for each trial,
dividing the improvement obtained at the point the user
halted the search by the maximum improvement that would
have been obtained by a full two-minute search. As shown
in Table III, all three users stopped the search, on average,
after approximately 60 seconds. Although they only used
half the total time, two of the users obtained over 80% of
the possible schedule improvements and the other user
obtained 73% of the possible improvement. This is
impressive in that it suggests the users were able to
correctly guess that they were getting a large percentage of
the possible gains. Table III also shows the results that
would be obtained by various fixed policies that always halt
the search after a fixed amount of time has elapsed. The
users performed much better than a fixed 60-second policy,
and about as well as a fixed 90-second policy. This shows
people could allocate the computational effort much more
effectively than a fixed strategy could.

Figure 5 shows the amount of time each user spent on each
schedule. As shown in these charts, there was relatively
little variation between users on this task.

INITIAL EXPLORATIONS IN TRAINING USERS
As a follow up to the above experiment with experienced
users, we also ran a longer series of the focused trials on
two novice system users. These participants received two
hours of training on the HuGSS system prior to the
experimental session. Based on users’  comments in the
above experiment, slight modifications were made to the

experimental application. More trials were added and the
per-trial feedback was enhanced to first display the updated
schedule that resulted from the user’s focused search, and
then to display the feedback screen with the results of the
unfocused search. During the experimental session for the
novice users, one practice trial was performed followed by
40 experimental trials3, split over two days (20 each day).

The novice users performed quite well. Their focused
searches, on average, improved 68.4% of the routing
schedules, while the unfocused searches improved only
55.7% of the schedules. The average, normalized
improvement (again, we normalized by the best score found
by any search per schedule) yielded by a two-minute
focused search was 0.52, while the unfocused search
yielded only 0.40 improvement. One user’s focused
searches improved the schedules, on average, by 36.6% and
the other’s by 25.9%.

Although both users performed well, they often did so on
different schedules. In 58% of the schedules one user’s
normalized score was at least 0.5 higher than the other’s.
This suggests that people might be using a variety of
strategies. It also suggests that invoking multiple searches
per schedule might be beneficial and that groups might
outperform individuals on this task,

The users’  performance over the 40 trials is shown in
Figure 6. This figure shows the average normalized
improvement, compared to unfocused search, for each
experimental trial.

Subject 2’s performance decreased in the last few trials of
each day. Interestingly, this user commented that he was
feeling tired during the end of session and believed it was
making the task more difficult. This suggests that the
focusing task requires a great deal of user concentration.

Subject 1’s average performance was better in the first
session, while Subject 2 performed better in the second.
Subject 1 reported that he took more risks during the
second session. Both performance improvement and the
                                                          
3 Due to technical difficulties, the first subject only performed 39 test

trials and only 38 of these used a starting schedule also used by the
second subject.
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Figure 5. Stopping times for each user shown for all trials.

Table III. Average stopping time and schedule
improvement across all trials.

Stopping
Source

Average Time Average Schedule
Improvement

Subject 1 58.67 0.810

Subject 2 57.00 0.738

Subject 3 56.67 0.801

Fixed at 60 60.00 0.677

Fixed at 90 90.00 0.800

Fixed at 120 120.00 1.000

Random 65.00* 0.637

*  The average random stopping time is skewed above the 60- second
halfway point because it is not possible to stop at zero seconds.



tendency to take risks after some initial training suggest that
this system is a good environment for learning how to focus
an interactive search.

CONCLUSIONS AND FUTURE WORK
Previous interactive optimization systems have
demonstrated that having humans in-the-loop can enhance
optimization. However, we believe that further progress in
this area requires more rigorous investigation of the
individual components of these systems and the
assumptions that underlie them.

In particular, a key issue in designing interactive
optimization systems is determining the most appropriate
division of labour between the human and computer
participants. The preliminary studies reported provide some
insights on how to build better interactive optimization
systems. The studies suggest that people are especially
effective at managing how computational effort is expended
in the optimization process and focusing short searches,
while somewhat less effective at visually identifying
promising areas of the search space.

The main contribution of this research, however, is
demonstrating that applying HCI evaluation techniques to
the study of interactive optimization systems can elucidate
the most appropriate division of labour between the human
and computer participants. This knowledge, in turn, can
help design more effective systems.

The success of our preliminary investigations warrant
further, more rigorous experiments involving more subjects
and exploring other aspects of the optimization process.
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Figure 6. The normalized difference between focused and
unfocused search for novices, per trial. Points above zero
indicate focused search outperformed unfocused search.
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