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Abstract
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gramlanguagemodelsin compuer memory Languag modelcompresionis achieved
throughacombirationof quanizing languagemodelprobabilitiesandbad-off weights
andthe pruning of parameterghataredetaminedto be unnecessay afterquantzation.
Therecagnition performanceof the original andcompressedianguagemodelsis eval-
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resuts showthatthelanguagemodelscanbe compresedby up to 60%of their original
sizewith no significantlossin recagnition perfoomance.Moreover, thetechriquesthat
aredescibed provide a principled methodwith which to compres languagemodels
furtherwhile minimising degradationin recagnition perfaomance.
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Abstract

This paperdescribeswo techniquedor reducingthesizeof
statisticaback-of N-gramlanguaganodelsin computermem-
ory. Langua@ modelcompressioris achiezedthroughacombi-
nationof quantizinglanguagemodelprobablities andback-of
weightsandthepruningof parametershataredeterminedo be
unnecessaryafter quantization. The recognitionperformane
of the original and compressedlanguaye modelsis evaluated
acrosghreedifferentlanguagenodelsandtwo differentrecog-
nition tasks. Theresultsshav thatthe languagemodelscanbe
compressetby up to 60% of their original sizewith no signifi-
cantlossin recognitionperformanceMoreover, thetechniques
that are describedprovide a principled methodwith which to
compresdanguagemodelsfurther while minimising degrada-
tion in recognitionperformance.

1. Intr oduction

In this paperwe investigatethe effect that quantizing languag
model (LM) parameterhason the size and recogrition per
formanceof severalstatisticalV-gramback-of languag@ mod-
els. Wedescribeéwo method for compressinganguag models
eachof whichinvolvesquantizinglanguagemodelprobalilities
and back-of weightsandincludesa stageof parametemprun-
ing. Theaim of thetechniquesis simple: to reducethe size of
thelanguae modelin memorywhile minimising ary degrada-
tion in recognitionperformance.Thereare several compelling
reasondor addressinghis issue. The main reasonis thatthe
langua@ modelis in generalby far the largestcomporent of
a speeclrecognitionsystem. From desktopdictation applica-
tionsto incorporatingspeechon hand-héd PCs,memorylimits
the size of the languaye model that can be usedand severely
restrictsthe performane of the speectrecogrition system.

Severaltechnigqeshave beendescribedn patentsandthe
langua@ modelling literature on methodsfor minimising the
size of langua@ modelsin memory One methoddescribed
in [1] avoidsthe issueto someextent by storingthe langua@
modelon disk andreadingthe necessaryportionsfrom disk as
they arerequired. Effective cachingroutinesmale this an ef-
fective solution althoughit is clearly slower than storing the
langua@ modelin memoryandis unsttable for speechappli-
cationson hand-hdéd devices. Othermethodshave concertrated
on compressinghe word identifiersand manipulatingfloating
point parameteralues[2]. We believe thatno onehasreported
resultson quartizing languagenodelparameteri theway we
describen this paper

Webegin by briefly describinghecornventioral storagestruc-
ture of a back-df languagemodelin Section2. In Section3
we describethe applicationof quantizationto compressionin
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Figurel: Treestructurestorageof a back-of word trigramlan-
guagemodel shawing the searchfor the trigram: THE OLD
MAN. Eachunigramentryrequiresb bytesof storagegachbi-
gramentry requires8 bytesand eachtrigram entry requires4
bytes.

Section4 we describethefirst compressia method which we
call absoluteparameder compessionwhich quantizedangua@
model probaliliti es and back-df weightsdirectly andin Sec-
tion 5 we describethe secondmethod which we referto asdif-
ferenceparametercompessionwhich differs from the first by
quantizingthe differencesbetweenlanguagemodel probalili-
tiesandtheir bacled-off probabiliti es.In Section6 we describe
the two recogrition tasksthat are usedto evaluatethe effect
of quantization the compositionand performarce of the three
baselinelanguag@ modelsand the resultsof the compression
methodson eachlanguag model. We discussthefindingsand
offer conclusiorsin Sections7 and8.

2. Languagemodel storage

Therearemary waysin whichback-of N-gramlanguagenod-
els can be storedin practice,however using hashtablesand
storing N-gram courts or probabilitiesin a tree structureare
probablythe mostcommonmethods. In this paper we assume
that N-gramprobabilities arestoredin atreestructureasshavn
in Figurel.

Thetreestructureoriginatesfrom a hypotheical root node
(not shawvn) which branchesut into the unigramnodesat the
first level of the tree, eachof which brancles out to bigram



nodesat the secondevel andsoon. Eachnoce in thetreehas
aword id associatedvith it which representshe N-gram for
thatword with a context representedtby the sequaceof words
from the root of the tree up to (but not including) the nodeit-
self. For vocalularieswith lessthan65536words,theword ids
generallyuse2-byterepresentatios In addition,all nodeshave
a probalility associatedhemandall non-termind nodeshave
anassociatedack-of weight. Ratherthanstore4-bytefloating
point valuesfor probalilities and back-df weightsthe values
arenormally quartized by truncatingthem so that the numkber
of uniquevaluesis lessthan65536.The4-bytevaluesarestored
in alook-up tableand2-byteindicesinto the appropriateprob-
ability andbackoff weight look-up tablesare storedin nodes
insteadof the valuesthemseles. Theinformationfor all nodes
at a particularlevel in the treeis storedin sequetial arraysas
shavn in Figurel. Eacharrayin theith level of thetreerepre-
sentssequentiablocksof child nodesof the parenthodesin the
(i — 1)thlevel of thetree. Thelargestindex of eachblockis the
boundary valuefor theblock whichis storedin theparentnode
of thatblock. Sinceblocksareconseative the boundary value
of aparentnodein the (s — 1)th level togethemwith the bourd-
ary valueof the (sequetially) previous parentnodeat the same
level specifieghe exactlocationof the childrenof thatnodeat
thesth level. To locatea specificchild node a binary searchof
word ids is performedbetweerthe two specifiedboundary val-
ues. In Figure 1, the exampleof searchingor P(MAN|THE,
OLD) is given. Firstly, theword id of THE is determined The
upperbourdary value of THE's children nodesat the bigram
level is givenby thevaluein the bourdaryarray(bounds) asso-
ciatedwith theword id of THE. The boundary value specified
by the word before THE in the word id array (ids), plus one,
specifieshe lower bourdary positionof THE’s children. A bi-
nary searchof word ids is then performedbetweenthe upper
andlower boundary valuesfor the word id of OLD. A similar
processs thenperformedat the bigramlevel culminatingin a
searchof word ids of THE OLD’s childrenat the trigram level
for the word id of MAN. Finally, the position of MAN in the
word ids arrayis alsothe positionof P(MAN|THE, OLD) in
the probability array(probs).

Sincethe boundaryvaluescanbe very large, 4-byte num-
berswould be required.However, a 4-bytenumker canberep-
resentedisA%2'% 4+ B whereB < 2!, sobounday valuescan
be storedusing 2-bytesand an additionallook-up table. Each
entry in the look-up table storesthe index of the lastnode that
hasa boundary valuewhosefirst 2 bytesarethe samenumber
astheindex of thatentryin thelook-uptable. A binary search
of valuesin thelook-uptableis performedfor the (: — 1)th and
ith look-up table entriesbetweenwhich the value of the posi-
tion of the parentnodelies. The value of A is thusgiven by
i. Thevalueof B is storedwith the parentnodeitself. This
is theschemeemplgyedin the CMU-CambridgeToolkit [3] for
example.

Thus, in summary eachunigramentry needsa total of 6
bytesof storagegachbigramentry needs8 bytes,andeachtri-
gramentry needs4 bytes. The total size of the languaye mod-
elsis 6* N (unigrams) + 8*N (bigrams) + 4*N(trigrams),
whereN (-) is thenumberof thetypesof eventsin parentheses.
Memory for hashingof vocahulary entriesandmemoryalloca-
tion overhead werenot consideed significant.

3. Quantization

Quantizationis the processhy which a variablewith a contin-
uousrangeof valuesis mappedonto one of a discreteset of

quantizationlevels. Quantizationprovides an effective way of
reducingthe numberof bits neededto storea variable,at the
costof introducingerrorsin its value(i.e.thedifferencebetween
thetruevalueof thevariableandits quantizedsalue). Thequan-
tizationlevels arestoredin anindex tableandindicesinto this
table are storedagainstthe variableratherthan its value. A
variablequantizedo 2%V quartizationlevels canthusbe stored
usingonly N bits. For this reasonthis is alsoreferredto as
N-bit quantization.

In this papemwe usetheLloyd-Maxalgorithm([4] for thede-
terminationof optimal quantizationlevels. This is aniterative
proceduewhich estimateshequantizatiorlevelsthatminimize
theaveragesquarecerrorintroducedn thevariableby quantiza-
tion. Theresultingquartizationlevelsaremoredenselyplaced
in regions wherethe density of the variableis high and more
sparselylocatedin regionsof low density

4. Absolute parameter compression

This methodassumeshat a back-of trigram languagemodel
hasalreadybeenbuilt in which for eachV-gram(V = 1, 2, 3)
event thereis an associatedprobability and for eachcontext
thereis a back-of weight. Model compressions achieved in
two steps:a) quantizatiorof V-gramprobabilitiesandback-of
weightsandb) pruningof parameterfrom thelanguagemodel.

4.1. Quantization

All unigram,bigramandtrigram probabilitiesandunigramand
bigram back-of weightsare quantizedto a small number of

guantizationlevels. Quantizationis performedseparatelyon

eachof the V-gram probability and back-df weight lists and
separatguartizationlevel look-uptablesgeneratedor eachof

thesesetsof parametersCompressiomesultsfrom thereduced
numberof bits neededo storethe indicesinto the look-up ta-
bles.Weinvestigatedjuantizingparametersising1, 2,3, ...,8

bits.

4.2. Pruning

Pruningis the processby which some N-grameventsare dis-

cardedrom thelangua@ modelto reducethesizeof themodel.
The pruning methodpropo®d hereusesthe following heuris-
tic. If Q}P""}[-] is a function that mapseither a probability
(P) or back-df weight () in thei-gramtableto its quantized
value,P(-) istheprobabilityof aneventanda(-) is theback-of

weightof somecontet, thenif:

Q3 [P(wi | wi—a, wi1)] =
Q3 [Q5 [a(wi—2,wi—1)] - Q3 [P(wi | wi—1)]] (1)

theexplicitly storedrigramevent(w;—», w;—1, w;) isdiscarded
from the languagemodel. This heuristicis similar in philoso-
phytothemethoddescribedn [5]. Pruningwasonly performed
on trigrameventsalthoughthe sameprinciple caneasilybe ex-

tendedto bigramevents.

5. Difference parameter compression

This methodalsoassumeshatthe languaye modelhasalready
beenconstructed Onceagain,languae modelcompressionis
achiezedboth by quantizatiorandpruning.



5.1. Quantization

Here,for N-grameventswhere N > 1, we quantizethe differ-
encebetweenV-gramprobabilities andtheir quantizedaclked-
off estimates.The storedvaluesnow represehnindicesto the
quantizedprobalility differences.During recognitionthe true
probability must be composedby addingthe bacled-off esti-
mateto the quantizeddifferences. Unigram probabilities and
all back-df weightsarequartizedasin Section4.

Procedurally first the unigram probabilitiesand back-of
weightsare quantized. Bigram back-of weightsand the dif-
ferencesbetweerthe true bigram probabiliti esand their quan-
tizedbacled-off estimatesrethenquartized. Finally thediffer-
enceshetweerthetruetrigramprobabilitiesandtheir quartized
bacled-off estimatesrequartized.

5.2. Pruning

To prune parametersan additional quantizationlevel of zero
valueis enforcedduring quantization This resultsin two bene-
fits. Firsttheadditionalquartizationlevel resultsin lower aver-
agequantizatiorerror Secondall parametersvhosedifference
is quantizedto zero neednot be explicitly storedand canbe
pruned,sincetheseparametergannow be entirely composed
by backing-of with no additionalloss (other than that intro-
ducedby the quantizationitself).

6. Experimental work
6.1. Recognitiontasks

Experimentswere run to evaluatethe effect of the proposed
compressiorscheme®n the size and the recognitionperfor
manceof languagemodels. Two different recogrition tasks
were usedin the experimentalwork in this paper: the 1998
DARPA HUB4 evaluation[6] and the 2000 DARPA SPINE
evaluation[7]. Both tasksdiffer significantlyin difficulty and
hencethe performanceof state-of-the-arsystems.All recog-
nition experimens usethe CMU SPHINX-III recognitionsys-
tem [8]. For the DARPA HUB4 evaluationtask continuots
density3-stateHMMs with 6000tied statesgachmodelledby
a mixture of 16 Gaussiansweretrainedusingthe 1996 Hub4
trainingdataprovidedby LDC. For theexperimentontheSPINE
task 3-statecontinwous density HMMs with 2600 tied states,
eachmodelledby a mixture of 8 Gaussianswereused. The
acousticmodelsand the languagemodel for the SPINE task
wereprovided by Carngyie Mellon University

6.2. Baselinelanguagemodels

Two differentlanguaye modelswereinvestigatedor the HUB4
task. The two modelsusedifferentvocalularies,differentdis-
countingschemesdlifferenttraining dataand were built using
different tools. Only one languagye model was usedfor the
SPINEtask. It is expectedthatassessingheimpactof thecom-
pressiontechniquesacrosstasksand languagemodelswill be
moremeaningfli thaninvestigatinghumeraislanguagemodels
on only onetask. The performanceand salientcharacteristics
of eachlanguagemodelaregivenin Table1l.
Theoriginallanguaganodelsin thesubsegentexperiments
areidentifiedusingthe LM identifierin the first columnof the
table.Thetotal numberof N-grams(V = 1,2, 3) in eachlan-
guagemodelis shown in the third columnof Table1 andthe
approximae sizein Mb is shown in the fourth column. Thefi-
nal columnshaows the word error rate (WER) achieved on the
secondevaluationsetof the 1998 DARPA Hub4 evaluationfor

LM Task | # N-grams| size(Mb) | WER%
1 HUB4 | 15,134669 75.7 22.0
2 HUB4 | 20,323339 100 20.9
3 SPINE 45,189 0.241 33.9

Tablel: Characteristicandbaselingperformancef LMs.

the HUB4 modelsandthe WER achieved on the SPINEevalu-
ationsetusingthe SPINElanguagemodel.
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Figure 2: Treestructurestorageof back-df trigram languag
modelshaving compressiorachieved throughparameteguan-
tizationandpruning. Thenumberof bytesrequiredto storeary
eventis muchlessthanthe corresponthg numberin Figurel.

Figure2 shaws the storagestructurefor a compressedan-
guagemodel. This is essentiallythe sameasthe structurein
Figure 1 exceptthat all lists are narraver due to the reduced
numberof bits neededto store parameters.The lists arealso
shorterwhenparameterarepruned.In addition,thenumbe of
bits usedto storebourdary valuesis alsoreducedoy represent
ing boundary valuesas A * 2°* + B whereB < 28, andstoring
the one byte offset value B in eachnon-termin& node of the
tree,andanadditional3-bytelook-uptablefor A.

LM | Bits | #3-gramdels. | size(Mb) | WER%
1 4 0 435 22.2
1 4 168624 39.3 22.2
1 2 0 40.6 23.1
1 2 5260385 36.9 23.3
2 4 0 58.0 21.1
2 4 45718 56.8 21.3
2 2 0 54.1 22.7
2 2 5348062 42.1 23.2
3 4 0 0.134 34.0
3 2 0 0.127 34.3

Table 2: Recognitionperformanceof languagemodelsquan-
tized usingabsoluteparametecompression.

Table2 shawvs theresultsobtainedvhenabsoluteparameter



compressiorwas usedto compres the languag models. The
resultsreportedarefor 4-bit and 2-bit quantizationof trigram
probabilities.In all casesunigramandbigramprobabilitiesand
back-of weightswerequantizedo 4 bits. In casesvhereprun-
ing was used,the numbe of deletedtrigramsis shavn in the
third column. Zerotrigram deletionsindicatethat pruningwas
notattempted.

LM | Bits | #3-gramdels. | size(Mb) | WER%
1 4 111982 40.7 22.1
1 2 352693 32.8 225
2 4 201013 57.5 21.1
2 2 93282 52.0 21.7
3 4 3379 0.126 34.1
3 2 9651 0.106 34.2

Table 3: Recognitionperformanceof languagemodelsquan-
tized usingdifferenceparametecompression.

Table 3 shaws the resultsobtainedwhendifferenceparam-
eter compressionwas usedto compresghe languag models.
Recognitionresultsobtainedusing4-bit and 2-bit quartization
of trigram probabilitiesare shavn. In all casesunigramand
bigram probailities andback-df weightswerequartizedto 4
bits. Thenumberof trigramsdeletedrom eachlanguagemodel
is givenin thethird column.

7. Discussion

It is clearfrom the resultsthatthe numbe of quantizatiorlev-
els requiredfor eachsetof parametercan be maderemark-
ably small while still preservingessentiallythe samerecogni-
tion accurag. In addition, both compresion techniqueshigh-
light unnecesaryparameterghat can then be discarded. As
expectedtheperformancalegraddion increaseasfewer quan-
tization levels are usedto representhe parameterandalsoas
moreparametergrediscarded.Thereis a trade-of evidentbe-
tweenthe two techniquesn termsof the performanceor the
numberof operationseededo retrieve an V-gramprobability
Parametersompressedising absoluteparametecompression
canberetrieveddirectlyfromtheLM. Ontheotherhand differ-
enceparameteicompression,while resultingin slightly lower
degradation requiresthatbacled-off probabilitiesof eventsbe
retrievedin orderto retrieve the probability of the event. Also,
the pruningachiezed usingthe methodsdescribedn this paper
is greaterfor absolue parametecompression.

Contraryto mostlanguag modelcompressioschemeshat
attemptto reducelLM sizeby length-wisecompresion,i.e. re-
ductionof the lengthof the lists of storedevents,the schemes
proposel in this paperconcentraten width-wisecompresion,
i.e.reductionin theamourt of storagerequiredfor ary specific
event. Length-wisecompressia is achiezed primarily asa side
effect of the width-wise compression However, the proposed
compressioischemsshoud alsowork equallywell in conjurc-
tion with ary otherlength-wisecompressiorschemeresulting
in cumulatize reductionof LM size. Thisis examinedin [9].

The quartization schemeusedin this paper Lloyd-Max
quantization,optimizedthe averagequantizationerror in LM
parametersWhile this wasobseredto resultin improved per
formanceover linear quantization,it is expeded that quanti-
zationschemeghat utilize betteroptimizationcriteriasuchas
perpleity would furtherreducethe degradationin performane
dueto parameteguantization.

Althoughthediscussiorin this paperhasrelatedto back-of
word N-gramlangua@ modelsit is clearthatthetechniquesre
directlyapplicableo back-df V-grammodelsthatusedifferent
modellingunits, e.g.classesr sub-word units. Indeed,in ary
langua@ model where a probability is storedfor a langua@
‘event’ it is likely thatthe compressiorschemeshathave been
presentear variationson themcould be appliedwith success.

8. Conclusion

In this paperwe have describedwo techniqueghat compress
langua@ modelswhile minimising the degradationin recogni-
tion performance.Langua@ modelsusedon large vocahlulary
broadcas news taskshave beencompressedby up to 60% of
theiroriginal sizewith minimal lossin recognitionperformane
using a combinationof parameteiquantizationand parameter
pruning. We have shavn thatthe technigeswork equallywell
for differentlanguag@ modelson the samerecognitiontaskas
for alanguagemodelfor a differenttask. Thesemethod shav
whatcanbe achiezed in termsof parameteralue compression
andto someextentwhatcanbe achiezedthroughpruning Fur
ther compressiorstratgies shoud addressvaysin which the
treestructureitself canbe compressed.

9. References

[1] M.K. Ravishankay Efficient Algorithmsfor Speeb Reca-
nition, Ph.D.thesis,Schoolof ComputerScienceCarngie
Mellon University 1996

[2] D. Kanersky andS.P Rao, “SystemandMethodfor Pro-
viding LosslessCompressiomf N-gramLanguag Models
in aReal-timeDecodef US PatentUS6092038, July 2000.

[3] P. R. Clarksonand R. Rosenfeld, “Statistical Langua@
Modeling Using the CMU-CambridgeToolkit,” in Pro-
ceedingf the EuropeanConfeenceon Speebh Commu-
nicationand Technolagy, RhodesGreece 1997.

[4] S.P Lloyd, “LeastSquareQuantizationin PCM; IEEE
Transactionn InformationTheory 1982.

[5] K.SeymoreandR.Rosenfeld;'ScalableBacloff Languag
Models;] in Proceedingsof the Internatioral Confeence
on SpolenLanguaye ProcessingPhiladelphialJSA, 1996.

[6] D. S. Pallet, J. G. Fiscus,J. S. Garofolo, A. Martin, and
M. A. Przybocki, “1998 BroadcastNews benchmarkTest
Results, in Proceedingsof the DARFA broadcast news
workshop Feb28 - Mar 3 199.

[7] R.Singh,M. L. SeltzerB. Raj,andR. M. Stern, “Speech
in Noisy Environmerts: Rolust Automatic Segmentation.
FeatureExtractionand HypothesisCombinatiorj’ in Pro-
ceedingof the IEEE International Confeence on Acous-
tics, Speeh and Signal Processing Salt Lak City, Utah,
May 2001

[8] P. Placevay et al., “The 1996 HUB-4 SPHINX-3 Sys-
tem; in Proceedingsl997 DARFA Speeh Reca@nition
Workshop Chantilly, Virginia, Feb2-51997.

[9] E.W.D. WhittakerandB. Raj, “Comparisorof Width-wise
andLength-wiseLangua@ Modd Compressiofi, Submit-
tedto the EuropeanConfeenc on Speeb Communication
and Technolagy, Aalborg, Denmark,2001.



