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Abstract

Thispaperdescribestwo techniquesfor reducingthesizeof
statisticalback-off � -gramlanguagemodelsin computermem-
ory. Languagemodelcompressionis achievedthroughacombi-
nationof quantizinglanguagemodelprobabilities andback-off
weightsandthepruningof parametersthataredeterminedto be
unnecessaryafter quantization. The recognitionperformance
of the original and compressedlanguage modelsis evaluated
acrossthreedifferentlanguagemodelsandtwo differentrecog-
nition tasks.Theresultsshow that the languagemodelscanbe
compressedby up to 60%of their original sizewith no signifi-
cantlossin recognitionperformance. Moreover, thetechniques
that aredescribedprovide a principledmethodwith which to
compresslanguagemodelsfurther while minimising degrada-
tion in recognitionperformance.

1. Intr oduction
In this paperwe investigatetheeffect thatquantizing language
model (LM) parametershason the size and recognition per-
formanceof severalstatistical� -gramback-off languagemod-
els.Wedescribetwo methodsfor compressinglanguagemodels
eachof which involvesquantizinglanguagemodelprobabilities
andback-off weightsand includesa stageof parameterprun-
ing. Theaim of thetechniquesis simple: to reducethesizeof
thelanguagemodelin memorywhile minimisingany degrada-
tion in recognitionperformance.Thereareseveral compelling
reasonsfor addressingthis issue. The main reasonis that the
language model is in generalby far the largestcomponent of
a speechrecognitionsystem. From desktopdictationapplica-
tionsto incorporatingspeechon hand-held PCs,memorylimits
the sizeof the language model that can be usedand severely
restrictstheperformanceof thespeechrecognition system.

Several techniqueshave beendescribedin patentsandthe
language modelling literatureon methodsfor minimising the
size of language modelsin memory. One methoddescribed
in [1] avoids the issueto someextent by storingthe language
modelon disk andreadingthenecessaryportionsfrom disk as
they arerequired. Effective cachingroutinesmake this an ef-
fective solution althoughit is clearly slower than storing the
language modelin memoryandis unsuitable for speechappli-
cationsonhand-held devices.Othermethodshaveconcentrated
on compressingthe word identifiersandmanipulatingfloating
point parametervalues[2]. Webelieve thatno onehasreported
resultsonquantizing languagemodelparametersin theway we
describein this paper.

Webegin bybriefly describingtheconventionalstoragestruc-
ture of a back-off languagemodel in Section2. In Section3
we describetheapplicationof quantizationto compression.In

Figure1: Treestructurestorageof a back-off word trigramlan-
guagemodel showing the searchfor the trigram: THE OLD
MAN. Eachunigramentryrequires6 bytesof storage,eachbi-
gramentry requires8 bytesandeachtrigram entry requires4
bytes.

Section4 we describethefirst compression method, which we
call absoluteparameter compressionwhich quantizeslanguage
modelprobabiliti esandback-off weightsdirectly and in Sec-
tion 5 we describethesecondmethod,which we referto asdif-
ferenceparametercompressionwhich differs from the first by
quantizingthe differencesbetweenlanguagemodelprobabili-
tiesandtheirbacked-off probabiliti es.In Section6 wedescribe
the two recognition tasksthat are usedto evaluatethe effect
of quantization,the compositionandperformance of the three
baselinelanguage modelsand the resultsof the compression
methodson eachlanguage model. We discussthefindingsand
offer conclusions in Sections7 and8.

2. Languagemodel storage

Therearemany waysin whichback-off � -gramlanguagemod-
els can be storedin practice,however using hashtablesand
storing � -gram counts or probabilitiesin a tree structureare
probablythemostcommonmethods. In this paper, we assume
that � -gramprobabilities arestoredin atreestructureasshown
in Figure1.

Thetreestructureoriginatesfrom a hypothetical root node
(not shown) which branchesout into the unigramnodesat the
first level of the tree, eachof which branches out to bigram



nodesat the secondlevel andso on. Eachnode in the treehas
a word id associatedwith it which representsthe � -gramfor
thatword with a context representedby thesequenceof words
from the root of the treeup to (but not including) the nodeit-
self. For vocabularieswith lessthan65536words,theword ids
generallyuse2-byterepresentations. In addition,all nodeshave
a probability associatedthemandall non-terminal nodeshave
anassociatedback-off weight.Ratherthanstore4-bytefloating
point valuesfor probabilities andback-off weightsthe values
arenormally quantized by truncatingthemso that the number
of uniquevaluesis lessthan65536.The4-bytevaluesarestored
in a look-up tableand2-byteindicesinto theappropriateprob-
ability andback-off weight look-up tablesarestoredin nodes
insteadof thevaluesthemselves.Theinformationfor all nodes
at a particularlevel in the treeis storedin sequential arraysas
shown in Figure1. Eacharrayin the � th level of thetreerepre-
sentssequentialblocksof child nodesof theparentnodesin the� ���
	�� th level of thetree.Thelargestindex of eachblock is the
boundary valuefor theblock which is storedin theparentnode
of thatblock. Sinceblocksareconsecutive theboundary value
of a parentnodein the

� �
��	�� th level togetherwith thebound-
ary valueof the(sequentially) previousparentnodeat thesame
level specifiestheexact locationof thechildrenof thatnodeat
the � th level. To locatea specificchild node a binarysearchof
word ids is performedbetweenthetwo specifiedboundary val-
ues. In Figure1, the exampleof searchingfor � � MAN �THE,
OLD � is given. Firstly, theword id of THE is determined. The
upperboundary value of THE’s children nodesat the bigram
level is givenby thevaluein theboundaryarray(bounds)asso-
ciatedwith the word id of THE. The boundary valuespecified
by the word beforeTHE in the word id array (ids), plus one,
specifiesthe lower boundarypositionof THE’s children.A bi-
nary searchof word ids is thenperformedbetweenthe upper
andlower boundary valuesfor the word id of OLD. A similar
processis thenperformedat the bigramlevel culminatingin a
searchof word ids of THE OLD’s childrenat thetrigramlevel
for the word id of MAN. Finally, the positionof MAN in the
word ids array is alsothe positionof � � MAN �THE, OLD � in
theprobabilityarray(probs).

Sincethe boundaryvaluescanbe very large,4-bytenum-
berswould berequired.However, a 4-bytenumber canberep-
resentedas ������������� where��������� , soboundary valuescan
be storedusing2-bytesandan additionallook-up table. Each
entry in the look-up tablestoresthe index of the lastnode that
hasa boundary valuewhosefirst 2 bytesarethesamenumber
asthe index of thatentry in the look-up table. A binarysearch
of valuesin thelook-uptableis performedfor the

� � �!	�� th and
� th look-up tableentriesbetweenwhich the valueof the posi-
tion of the parentnodelies. The valueof � is thusgiven by
� . The value of � is storedwith the parentnodeitself. This
is theschemeemployedin theCMU-CambridgeToolkit [3] for
example.

Thus, in summary, eachunigramentry needsa total of 6
bytesof storage,eachbigramentryneeds8 bytes,andeachtri-
gramentryneeds4 bytes. The total sizeof the languagemod-
elsis 6* � �#" $ �&%('*)(+-,�� + 8* � �#. �&%('*)(+-,�� + 4* � �0/ '1�#%('*)(+-,�� ,
where � �32 � is thenumberof thetypesof eventsin parentheses.
Memory for hashingof vocabulary entriesandmemoryalloca-
tion overheadswerenot consideredsignificant.

3. Quantization
Quantizationis the processby which a variablewith a contin-
uousrangeof valuesis mappedonto one of a discreteset of

quantizationlevels. Quantizationprovidesan effective way of
reducingthe numberof bits neededto storea variable,at the
costof introducingerrorsin itsvalue(i.e.thedifferencebetween
thetruevalueof thevariableandits quantizedvalue).Thequan-
tization levelsarestoredin an index tableandindicesinto this
table are storedagainstthe variable rather than its value. A
variablequantizedto ��4 quantizationlevelscanthusbestored
using only � bits. For this reasonthis is also referredto as
� -bit quantization.

In thispaperweusetheLloyd-Maxalgorithm[4] for thede-
terminationof optimal quantizationlevels. This is an iterative
procedurewhichestimatesthequantizationlevelsthatminimize
theaveragesquarederrorintroducedin thevariableby quantiza-
tion. Theresultingquantizationlevelsaremoredenselyplaced
in regionswherethe densityof the variableis high andmore
sparselylocatedin regionsof low density.

4. Absoluteparameter compression
This methodassumesthat a back-off trigram languagemodel
hasalreadybeenbuilt in which for each� -gram( �657	98:��8<; )
event there is an associatedprobability and for eachcontext
thereis a back-off weight. Model compressionis achieved in
two steps:a)quantizationof � -gramprobabilitiesandback-off
weightsandb) pruningof parametersfrom thelanguagemodel.

4.1. Quantization

All unigram,bigramandtrigramprobabilitiesandunigramand
bigram back-off weightsare quantizedto a small number of
quantizationlevels. Quantizationis performedseparatelyon
eachof the � -gramprobability andback-off weight lists and
separatequantizationlevel look-uptablesgeneratedfor eachof
thesesetsof parameters.Compressionresultsfrom thereduced
numberof bits neededto storethe indicesinto the look-up ta-
bles.Weinvestigatedquantizingparametersusing 	98:�(8=;>8@?A?A?B8<C
bits.

4.2. Pruning

Pruningis the processby which some � -grameventsaredis-
cardedfrom thelanguagemodelto reducethesizeof themodel.
The pruningmethodproposed hereusesthe following heuris-
tic. If DFE<G H I�JK L 2 M is a function that mapseither a probability
( � ) or back-off weight ( N ) in the � -gramtableto its quantized
value,� �32 � is theprobabilityof aneventand N �32 � is theback-off
weightof somecontext, thenif:

D GO L � �#P K � P K&QSR 8 P K&Q � �
M 5

D GO L D I R L N �#P K#QTR 8 P K#Q � �
M�2 D GR L � �#P K � P K#Q � �

MUM
(1)

theexplicitly storedtrigramevent(
P K&QSR 8 P K&Q � 8

P K ) isdiscarded
from the languagemodel. This heuristicis similar in philoso-
phyto themethoddescribedin [5]. Pruningwasonly performed
on trigrameventsalthoughthesameprinciplecaneasilybeex-
tendedto bigramevents.

5. Differ enceparameter compression
This methodalsoassumesthat thelanguagemodelhasalready
beenconstructed.Onceagain,languagemodelcompressionis
achievedbothby quantizationandpruning.



5.1. Quantization

Here,for � -grameventswhere �WVX	 , we quantizethediffer-
encebetween� -gramprobabilities andtheirquantizedbacked-
off estimates.The storedvaluesnow represent indicesto the
quantizedprobability differences.During recognitionthe true
probability must be composedby adding the backed-off esti-
mateto the quantizeddifferences.Unigramprobabilities and
all back-off weightsarequantizedasin Section4.

Procedurally, first the unigramprobabilitiesand back-off
weightsare quantized. Bigram back-off weightsand the dif-
ferencesbetweenthe true bigramprobabiliti esandtheir quan-
tizedbacked-off estimatesarethenquantized.Finally thediffer-
encesbetweenthetruetrigramprobabilitiesandtheirquantized
backed-off estimatesarequantized.

5.2. Pruning

To prune parametersan additionalquantizationlevel of zero
valueis enforcedduringquantization.This resultsin two bene-
fits. First theadditionalquantizationlevel resultsin loweraver-
agequantizationerror. Second,all parameterswhosedifference
is quantizedto zero neednot be explicitly storedand can be
pruned,sincetheseparameterscannow be entirely composed
by backing-off with no additional loss (other than that intro-
ducedby thequantizationitself).

6. Experimental work
6.1. Recognitiontasks

Experimentswere run to evaluatethe effect of the proposed
compressionschemeson the size and the recognitionperfor-
manceof languagemodels. Two different recognition tasks
were usedin the experimentalwork in this paper: the 1998
DARPA HUB4 evaluation [6] and the 2000 DARPA SPINE
evaluation[7]. Both tasksdiffer significantly in difficulty and
hencethe performanceof state-of-the-artsystems.All recog-
nition experiments usethe CMU SPHINX-III recognitionsys-
tem [8]. For the DARPA HUB4 evaluation task continuous
density3-stateHMMs with 6000tied states,eachmodelledby
a mixture of 16 Gaussians,weretrainedusingthe 1996Hub4
trainingdataprovidedby LDC. For theexperimentsontheSPINE
task 3-statecontinuous densityHMMs with 2600 tied states,
eachmodelledby a mixture of 8 Gaussians,wereused. The
acousticmodelsand the languagemodel for the SPINE task
wereprovidedby Carnegie Mellon University.

6.2. Baselinelanguagemodels

Two differentlanguagemodelswereinvestigatedfor theHUB4
task. The two modelsusedifferentvocabularies,differentdis-
countingschemes,differenttraining dataandwerebuilt using
different tools. Only one language model was usedfor the
SPINEtask.It is expectedthatassessingtheimpactof thecom-
pressiontechniquesacrosstasksand languagemodelswill be
moremeaningful thaninvestigatingnumerouslanguagemodels
on only one task. The performanceandsalientcharacteristics
of eachlanguagemodelaregivenin Table1.

Theoriginal languagemodelsin thesubsequentexperiments
areidentifiedusingtheLM identifier in thefirst columnof the
table.Thetotal numberof � -grams( �Y5Z	18:�(8<; ) in eachlan-
guagemodel is shown in the third columnof Table1 andthe
approximate sizein Mb is shown in the fourth column. Thefi-
nal columnshows the word error rate(WER) achieved on the
secondevaluationsetof the1998DARPA Hub4evaluationfor

LM Task # � -grams size(Mb) WER%
1 HUB4 15,134,669 75.7 22.0
2 HUB4 20,323,339 100 20.9
3 SPINE 45,189 0.241 33.9

Table1: Characteristicsandbaselineperformanceof LMs.

theHUB4 modelsandtheWER achievedon theSPINEevalu-
ationsetusingtheSPINElanguagemodel.

Figure2: Treestructurestorageof back-off trigram language
modelshowing compressionachievedthroughparameterquan-
tizationandpruning.Thenumberof bytesrequiredto storeany
event is muchlessthanthecorresponding numberin Figure1.

Figure2 shows thestoragestructurefor a compressedlan-
guagemodel. This is essentiallythe sameas the structurein
Figure 1 except that all lists are narrower due to the reduced
numberof bits neededto storeparameters.The lists arealso
shorterwhenparametersarepruned.In addition,thenumber of
bits usedto storeboundaryvaluesis alsoreducedby represent-
ing boundaryvaluesas �
�[� R3\ �]� where�^���*_ , andstoring
the onebyte offset value � in eachnon-terminal nodeof the
tree,andanadditional3-bytelook-uptablefor � .

LM Bits # 3-gramdels. size(Mb) WER%
1 4 0 43.5 22.2
1 4 1686294 39.3 22.2
1 2 0 40.6 23.1
1 2 5260335 36.9 23.3
2 4 0 58.0 21.1
2 4 457148 56.8 21.3
2 2 0 54.1 22.7
2 2 5348062 42.1 23.2
3 4 0 0.134 34.0
3 2 0 0.127 34.3

Table 2: Recognitionperformanceof languagemodelsquan-
tizedusingabsoluteparametercompression.

Table2 showstheresultsobtainedwhenabsoluteparameter



compressionwasusedto compress the language models. The
resultsreportedarefor 4-bit and2-bit quantizationof trigram
probabilities.In all casesunigramandbigramprobabilitiesand
back-off weightswerequantizedto 4 bits. In caseswhereprun-
ing wasused,the number of deletedtrigramsis shown in the
third column. Zerotrigramdeletionsindicatethatpruningwas
not attempted.

LM Bits # 3-gramdels. size(Mb) WER%
1 4 1119492 40.7 22.1
1 2 3526503 32.8 22.5
2 4 201013 57.5 21.1
2 2 932822 52.0 21.7
3 4 3379 0.126 34.1
3 2 9651 0.106 34.2

Table 3: Recognitionperformanceof languagemodelsquan-
tizedusingdifferenceparametercompression.

Table3 shows theresultsobtainedwhendifferenceparam-
etercompressionwasusedto compressthe language models.
Recognitionresultsobtainedusing4-bit and2-bit quantization
of trigram probabilitiesare shown. In all casesunigramand
bigramprobabilities andback-off weightswerequantized to 4
bits. Thenumberof trigramsdeletedfrom eachlanguagemodel
is givenin thethird column.

7. Discussion
It is clearfrom theresultsthat thenumber of quantizationlev-
els requiredfor eachset of parameterscan be maderemark-
ably small while still preservingessentiallythe samerecogni-
tion accuracy. In addition,both compression techniqueshigh-
light unnecessaryparametersthat can then be discarded. As
expected,theperformancedegradation increasesasfewerquan-
tization levelsareusedto representthe parametersandalsoas
moreparametersarediscarded.Thereis a trade-off evidentbe-
tweenthe two techniquesin termsof the performancefor the
numberof operationsneededto retrievean � -gramprobability.
Parameterscompressedusingabsoluteparametercompression
canberetrieveddirectlyfrom theLM. Ontheotherhand, differ-
enceparametercompression,while resultingin slightly lower
degradation, requiresthatbacked-off probabilitiesof eventsbe
retrievedin orderto retrieve theprobability of theevent. Also,
thepruningachievedusingthemethodsdescribedin this paper
is greaterfor absoluteparametercompression.

Contraryto mostlanguagemodelcompressionschemesthat
attemptto reduceLM sizeby length-wisecompression,i.e. re-
ductionof the lengthof the lists of storedevents,the schemes
proposed in this paperconcentrateon width-wisecompression,
i.e. reductionin theamount of storagerequiredfor any specific
event.Length-wisecompression is achievedprimarily asa side
effect of the width-wisecompression. However, the proposed
compressionschemesshould alsowork equallywell in conjunc-
tion with any otherlength-wisecompressionscheme,resulting
in cumulative reductionof LM size.This is examinedin [9].

The quantization schemeusedin this paper, Lloyd-Max
quantization,optimizedthe averagequantizationerror in LM
parameters.While this wasobservedto resultin improvedper-
formanceover linear quantization,it is expected that quanti-
zationschemesthat utilize betteroptimizationcriteria suchas
perplexity would furtherreducethedegradationin performance
dueto parameterquantization.

Althoughthediscussionin thispaperhasrelatedto back-off
word � -gramlanguagemodelsit is clearthatthetechniquesare
directlyapplicabletoback-off � -grammodelsthatusedifferent
modellingunits,e.g.classesor sub-word units. Indeed,in any
language model wherea probability is storedfor a language
‘event’ it is likely thatthecompressionschemesthathave been
presentedor variationson themcouldbeappliedwith success.

8. Conclusion
In this paperwe have describedtwo techniquesthat compress
language modelswhile minimisingthedegradationin recogni-
tion performance.Language modelsusedon large vocabulary
broadcast news taskshave beencompressedby up to 60% of
theiroriginalsizewith minimal lossin recognitionperformance
usinga combinationof parameterquantizationandparameter
pruning.We have shown thatthetechniqueswork equallywell
for different language modelson the samerecognitiontaskas
for a languagemodelfor a differenttask.Thesemethods show
whatcanbeachieved in termsof parametervaluecompression
andto someextentwhatcanbeachievedthroughpruning. Fur-
ther compressionstrategiesshould addressways in which the
treestructureitself canbecompressed.
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