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Abstract

We describe a method for transforming a generalized parity check (GPC) matrix
representation of a block linear binary code into another GPC matrix representation
of the same code. The output GPC matrix has some attractive features from the
point of view of iterative decoding algorithms like belief propagation. In particular,
the number of ones in each row is reduced, and there are no cycles of length four
in the equivalent graphical representation of the code. We illustrate the method
for toy examples including the Golay code, and also for a Euclidean Geometry
(n = 255,k = 127) code. The decoding performance of the belief propagation
algorithm using our new GPC matrices improves significantly when they are used
on the binary erasure channel, but the results are mixed for the additive white
Gaussian noise channel-for the Euclidean Geometry code, the performance still
improves, but for the Golay code it deteriorates.

1 Introduction

The study of error-correcting codes defined by sparse parity check matrices, and message-
passing decoding algorithms for such codes, was pioneered nearly four decades ago by
Gallager [1]. The practical and theoretical interest in such codes and decoding algorithms
has been intense for the last decade, and it is now known that this approach can achieve
nearly Shannon-limit error performance in the long block-length limit [2].

For shorter block-lengths, there is still some room for improvement. However, the
best codes that have so far been discovered are usually defined in ways that do not im-
mediately give a sparse parity check matrix representation. For this reason, large classes
of classical textbook codes, which would give excellent performance under optimal de-
coding, have been mostly ignored as candidates for message-passing algorithms like the
belief propagation (BP) decoding algorithm. A notable exception to this rule are the
one-step majority logic decodable codes, which do have sparse parity check matrix rep-
resentations and have indeed been shown to have excellent error-correcting performance
when decoded using BP [3].

The present paper is motivated by the question of whether there are ways to represent
other classical codes by sparse parity check matrices, and whether the BP decoding
algorithm could be successful using such representations. We report here on an approach



that takes as input any (generalized) parity check matrix representation of a code, and
outputs another generalized parity check matrix representation of the same code that
will hopefully be more suitable for message-passing decoding algorithms.

The outline of this paper is as follows: in section 2, we review some background mate-
rial about generalized parity check matrices. In section 3, we give a detailed description
of the particular algorithm that we use to re-represent codes. In sections 4 and 5, we
describe some empirical results using our algorithm on the Golay code and a multi-step
majority logic code based on Euclidean Geometry. The approach seems to work very well
for the binary erasure channel (BEC), but the results are more mixed for the additive
white Gaussian noise (AWGN) channel. In section 6, we discuss why this may be so and
speculate on ways to improve the method.

2 Generalized Parity Check Matrices

In this paper, whenever we refer to “codes,” we are referring to binary linear block codes.
We recall some elementary facts about such codes. The idea behind codes is to encode
messages of k bits using blocks of n bits, where n > k. The extra bits are used to help
in decoding messages corrupted by noise.

An (n, k) code C is defined by the set of 2¥ possible code-words v of length n. Every
(n, k) code can be represented by an (n — k) by n parity check matrix H such that every
code-word v satisfies vH? = 0, where every addition and multiplication is understood
to be over GF(2). For example, for the (7,4) Hamming code, one possible parity check
matrix is

111010
H=[0111010]. (1)
001110

Other parity check matrices for the same code can be obtained by using linear com-
binations of the rows of H;. As long as the resulting rows span an n — k£ dimensional
sub-space, they will give another parity check matrix for the same code.

A parity check matrix might have redundant constraints (rows). For example, another
parity check matrix for the (7,4) Hamming code would be
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Although there are seven rows in Hy, only three of them are linearly independent. As an
aside, n by n circulant parity check matrices like Hy can always be constructed for cyclic
codes.

If a parity check matrix has more than n columns, we say that it is a generalized
parity check (GPC) matriz [4]. In general, an M by N GPC matrix for an (n, k) code
will have N > n columns, and M > N — k rows, where the M rows span an N — k
dimensional sub-space. We follow the convention of always listing the n columns of the
GPC matrix that correspond to the n bits of a code-word first. We will refer to these



bits as symbol bits. The additional N — n columns correspond to auziliary bits, which
are also sometimes called “hidden bits” or “state variables.” These bits help define the
code, but they would not be transmitted along with the n bits of a message.

A GPC matrix H satisfies xHT = 0, where x is an N-tuple of bits such that the first
n bits form a codeword v, and the last N — n auxiliary bits are uniquely determined
given v and HT.

An example of a GPC matrix for the (7,4) Hamming code is the matrix

10000001000
010000007100
0010000T10T10

Hy=| 00010001101 (3)
0000T1000T1T10
0000O0T1000T11
00000010001

This matrix is obtained by concatenating the n by n identity matrix with an n by &
matrix that is the transpose of a generator matrix G for the code. Such a construction is
justified by the fact that any code-word x of a code can be obtained from the generator
matrix G and a k bit message a using v = aG. If we interpret the bits of a as auxiliary
bits, we obtain this GPC matrix construction [6].

GPC matrices have straightforward graphical representations in terms of factor graphs
[5, 6], which can be drawn in a number of slightly different ways. One approach would
be to denote the n symbol bits with darkened circles, the N — n auxiliary bits with open
circles, and connect both kinds of bits with lines to squares representing the parity check
constraints they are involved in. Collectively, we refer to the N symbol and auxiliary
bits as wvariable bits.

How to implement the BP (or “sum-product”) decoding algorithm using GPC matri-
ces, or their equivalent factor graph representations, is by now very widely known [2, 5, 6],
and we will not describe the algorithm here. We simply reiterate the well-known fact that
the performance of the BP algorithm will depend on the factor graph (or equivalently
GPC matrix) used, even for factor graphs that correspond to the same code. It is this
degree of freedom that we wish to exploit.

We will describe a particular algorithm to transform GPC matrices that is motivated
by the observation that the BP algorithm seems to work best on parity check matrices
that have the following characteristics:

1. The number of ones in each row is small.
2. The number of ones in each column is large.

3. For all pairs of rows of the matrix, the number of columns that have a one in
both rows is small; ideally zero or one. (The corresponding characteristic of the
factor graph for the code would be that it ideally has no cycles of length four.)

Our algorithm produces GPC matrices which are improved in all three of these char-
acteristics. On the other hand, the new GPC matrices also have new auxiliary bits, and
because there is no evidence from the channel to determine the value of these bits, their
uncertainty might cause performance to deteriorate. Which tendency will dominate is
not a priori clear, and as we shall see, seems in fact to depend surprisingly on details of
the decoding scenario.



3 Description of the Algorithm

We now give a detailed description of the particular algorithm we used to transform GPC
matrices. We assume that we are given an M by N input GPC matrix H, and our goal
is to construct an M’ by N’ output GPC matrix H'. To illustrate our algorithm, we will
use as the input a parity check matrix for the (7,4) Hamming code already mentioned
previously but which we repeat here:

1110100
H=|0111010]. (4)
0011101

The basic idea behind the algorithm is to re-write constraints involving large numbers
of bits by using auxiliary bits that encode the parity of sets of bits. Using this “divide-
and-conquer” approach, we try to minimize the number of bits involved in each constraint
by re-writing the constraints in terms of sets of bits that are as large as possible. We
also try to use as many redundant constraints as possible.

3.1 Forming Sets of Bits

The first step of our algorithm is to form sets of the N input variable bits. To be
completely precise, we form three sets of bits, which we call constraint sets, intersection
sets, and single bit sets.

The constraint sets and single bit sets are formed trivially. The M constraint sets
simply contain the variable bits involved in each constraint (row) of H. In our example,
they are {1,2,3,5}, {2,3,4,6}, and {3,4,5,7}. The N single bits sets are sets containing
a single one of the N variable bits. In our example, they are {1}, {2}, {3}, {4}, {5},
{6}, and {7}.

We form intersection sets by taking intersections of all possible pairs of the constraint
sets. If any of the intersections contain fewer than two variable bits, we discard them.
When possible, we then form new intersection sets by taking intersections of the previ-
ously created intersection sets, always discarding sets of bits that duplicate previously
created intersection sets or contain fewer than two bits. The procedure is precisely the
same as that used in forming “regions” in the cluster variation method [7, 8]. In our
example, we would obtain the intersection sets {2,3}, {3,4}, {3,5}.

There may be reasons to discard some of the intersection sets and there is certainly
no strict need to keep all of them. Any intersection sets that are kept will ultimately
correspond to new auxiliary bits for the output GPC matrix.

3.2 Organizing the Sets into a Partially Ordered Set

We next organize all the sets of variable bits retained, whether they be constraint sets,
intersection sets, or single bit sets, into a partially ordered set [9, 8] of sets. When a set
of bits S is a sub-set of another set of bits 7', we write S < T'. If S < T, and there is no
other set of bits U such that S < U < T, we say that S is a child of T and T is a parent
of S. In our example the set {1,2,3,5} is a parent of the set {2,3} and of {1}, but it is
not a parent of {2}, because {2} < {2,3} < {1,2,3,5}.

The partially ordered set of sets that we obtain in our example is illustrated in figure
1. In this diagram, sets of bits that are connected by a line are related by a parent-child
relationship.
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Figure 1: A partially ordered set of sets of variable bits.

3.3 Forming Lists of Sub-sets

For each of the constraint and intersection sets, we next list all of its sub-sets, listing
children first, and then all remaining sub-sets. Among the lists of children and sub-sets,
we always list the sets containing more bits first, but otherwise the order is arbitrary. In
our example, we would obtain the following lists:

{1,2,3,5}: children {2,3}, {3,5}, {1}, other sub-sets {2}, {3}, {5}.

{2,3,4,6}: children {2, 3}, {3,4}, {6}, other sub-sets {2}, {3}, {4}.

{3,4,5,7}: children {3,4}, {3,5}, {7}, other sub-sets {3}, {4}, {5}.

{2,3}: children {2}, {3}.

{3,4}: children {3}, {4}.

{3,5}: children {3}, {5}.

3.4 Breaking Down Sets into Unions of Sets

For each constraint set and intersection set, we next find one or more collections of non-
overlapping sub-sets that include every bit in the set, using the following procedure. For
each set S, we start with the first child on its list, and remove the bits in the child from S.
For example for the set {1, 2, 3,5}, the first child would be {2, 3}, and the bits remaining
after removing the child bits would be {1,5}. Next, we try to find the first sub-set on the
list for S that contains a sub-set of the remaining bits. In our case that would be {1}.
Again we remove those bits, and repeat until all bits are accounted for in non-overlapping
sub-sets. In our example, we would obtain {1,2,3,5} = {2,3} U {1} U {5}.

We then attempt to find additional redundant ways to break down each constraint
set, or intersection set S, by using the first child in the list for S that was not previously
involved in a union, and repeating the above procedure. In our example we would thereby
obtain {1,2,3,5} = {3,5} U {1} U {2}. We continue until every child is involved in at
least one union, and repeat for every constraint and intersection set.

3.5 Converting to a GPC matrix

We denote the values of the N variable bits of the input GPC matrix by z;, where 1 is
an index running from 1 to N. For any set of bits S, we use the notation x5 to denote
the modulo-two sum of the bits in S. For example, if 1 = 1, zo = 0, and x3 = 1, then
.’E{l’z,g} =14+0+1=0.

We can convert each of the above expressions for a set in terms of a union of subsets
into a parity check equation. For example, the equation {1,2,3,5} = {2,3} U {1} U {5}



is equivalent to w1235 = Ty2,3) + T1} + Ty53. We also know that for every constraint
set S, rs = 0.

We can thus re-write all the equations for sets as a union of sub-sets as an equivalent
GPC matrix, which for our example would be

1000100100
110000000 1
0001010100
0100010010

H={00001010T10 (5)
0001001001
01100007100
00110000T10
0010100001

The first seven columns of H' correspond to the original seven symbol bits, while the last
three columns correspond to the parity of the intersection sets {2, 3}, {3,4}, and {3,5}.
The first six rows are constraints derived using the three constraint sets, while the last
three are derived using the three intersection sets.

Notice that the average number of ones per row has been reduced, the average number
of ones per column has been increased, and there are no longer any four-cycles in the
corresponding factor graph.

In general, however, the procedure described so far does not guarantee that one pro-
duces a GPC matrix with no four-cycles in the corresponding factor graph. In particular,
it is possible that the same pair of sub-sets is used in the union equations for two differ-
ent sets of variable bits. We will not prove it here, but if eliminating four-cycles in the
factor graph is considered a priority, it can always be arranged by pruning rows from the
output GPC matrix. One merely needs to ensure that there remains at least one parity
check equation corresponding to each constraint set and to each intersection set, which
ensures that the output GPC matrix will still represent the same code as the original
GPC matrix.

Note that the complexity of the BP algorithm scales with the number of iterations
needed and the number of ones in the GPC matrix, so although using H' is more costly
than using H, the increase in computational expense is much less than one might naively
guess by simply looking at the sizes of the GPC matrices.

4 Empirical Results for the Golay Code

We now present some empirical results obtained applying this procedure to the (23,12)
Golay code, which should be considered a “toy” example. We began with a 23 by 23
circulant input parity check matrix H with eight ones per row and column obtained
using the parity check polynomial h(z) =1+ X + X2+ X + X* + X7+ X0+ X2 [10].
Applying the procedure described in the previous section, we obtained an output GPC
matrix H' with 495 rows and 230 columns. Each row had between three and five ones in
it.

Using standard BP decoding (all BP decoding algorithms described here ran until
a code-word was found or a fixed number of iterations were reached; the fixed number
was 300 iterations unless stated otherwise) on the BEC yielded the results shown on the
left hand side of figure 2. Using BP on the output GPC matrix worked considerably



Golay (23, 12) code on binary erasure channel. (23,12) Golay code on AWGN channel
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Figure 2: (23,12) Golay code on binary erasure channel (left) and AWGN channel (right).

better than it did on the input GPC matrix, and was nearly indistinguishable from the
performance of maximum likelihood (ML) decoding.

These results were very encouraging, but unfortunately, using H' actually gave worse
performance than using H for the AWGN channel, as shown on the right hand side of
figure 2. We also tried using a 431 by 230 GPC matrix that was obtained by modifying
the previously described algorithm in section 3.4 so that children were not selected to
participate in a redundant parity check if they had already been selected to participate
previously. This reduced the number of 4-cycles, and somewhat improved the perfor-
mance, but it was still worse than that obtained by simply using BP with the original
GPC matrix.

5 Empirical Results for a Euclidean Geometry Code

We also applied our method to an (n = 255, k = 127), two-step majority logic decodable
code based on Euclidean geometry (EG). An excellent reference to these codes is the
book by Lin and Costello [10]; in their notation, the code we studied has parameters,
m =4, s =2, and g = 1. In the geometric interpretation of this code, each symbol bit
corresponds to a point, there are 21 x 255 = 5355 lines each consisting of four points, and
there are also 5355 planes consisting of four parallel lines.

This code can be represented by a redundant parity check matrix H with M = 5355
rows, and N = 255 columns, where each row has sixteen ones corresponding to the
sixteen points in each plane. The factor graph corresponding to this parity check matrix
is infested with four-cycles because many pairs of planes intersect on lines.

When we apply our algorithm using this input GPC matrix H, we find that the
constraint sets correspond to the planes, the intersection sets correspond to the lines,
and the single bit sets correspond to the points. Each constraint set has 20 children,
which can be divided into five sets of four parallel (non-overlapping) lines.

We therefore obtain an output GPC matrix H' which has 255 symbol bits and 5355
auxiliary bits for a total N’ = 5610. There are also five parity check equations obtained
from each constraint set and one from each intersection set for a total M’ = 6 * 5355 =
32130.

The 5355 rows of H' derived from the intersection sets have five ones each, while



the other 26775 rows derived from constraint sets each have four ones. Each of the 255
columns of H' corresponding to a symbol bit has 84 ones in it, while each of the 5355
columns of H' corresponding to an auxiliary bit has 21 ones in it. There are no four-cycles
in the factor graph corresponding to H'.

(255,127) EG code on binary erasure channel (255, 127) EG code on AWGN channel
T T T

0
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Figure 3: Performance for Euclidean Geometry (n = 255,k = 127) code on the BEC
(left) and AWGN channel (right).

Our results for the BEC are shown in the left hand side of figure 3. To help situate
the results, we have also plotted analytical results for the average performance of BP
decoding of (n = 256, k = 128) regular Gallager LDPC codes with 6 ones per row and
3 ones per column, as well as the average performance of ML decoding of the random
ensemble of (n = 256,k = 128) linear codes [11]. The random ensemble is obtained by
taking 128 by 256 parity check matrices where each element of the parity check matrix
is chosen to be 0 or 1 with equal probability [11].

With regard to the Gallager code, we note that we are comparing to a Gallager code
that uses the channel a similar number of times, rather than one that has a similar
decoding complexity. Although we are using a 32130 by 5610 GPC matrix for our EG
code, each block transmitted still only requires 255 bits to be sent over the channel.

We see that the results using BP decoding with H are already quite good—much better
than BP decoding of Gallager codes. This is a consequence of using highly redundant
parity check matrices with 5355 rows instead of just 128 rows. We confirm this by
comparing with BP decoding using a 255 by 255 parity check matrix-the performance
(not shown) is worse than the performance for the Gallager codes.

The performance using H' was even better, but in contrast with the results for the
Golay code, BP decoding using H' was still clearly distinguishable from ML decoding.
ML decoding results were obtained by applying Gaussian elimination on any bits that
were still un-decoded after BP decoding converged. The performance of ML decoding of
this code was about the same as the average performance of ML decoding of a random
linear code, which indicates that this code is quite good.

In contrast with the Golay code, for the EG code the performance of H' is much
better than the performance of H on the AWGN channel. On the right hand side of
figure 3, we compare the results using three different parity check matrices for the EG
code; the first is a 255 by 255 matrix, the second is H (a 21 * 255 by 255 parity check
matrix) and the third is H' (a 32130 by 5610 GPC matrix). Clearly, our method does give



an improvement in this case, and only by using H' can we out-perform regular Gallager
codes. (In these simulations, we used 50 BP iterations for the EG code, and 500 BP
iterations for the Gallager code.)

We have also plotted the results of decoding the EG code using a “box and match
algorithm” (BMA) [12], as well as a lower bound on ML decoding derived using BMA.
BMA is considerably more complex than BP decoding, and is only currently feasible for
rate % codes with n < 256. We see that we cannot hope for further improvement in
decoding performance using BP greater than about 0.8 dB at a word error rate near
10~*. We have also plotted Shannon’s sphere packing bound [13], which gives a lower
bound on the probability of word errors for any code, to give an idea of how close the
EG code is to optimal.

6 Discussion

6.1 Connection to Generalized Belief Propagation

The partially ordered sets obtained in our method are reminiscent of those used in gener-
alized belief propagation (GBP) decoding [7, 8]. For the EG code that we discussed, our
BP algorithm is in fact equivalent to a GBP algorithm with a region graph constructed
as follows (using a factor graph corresponding to a (21*255) by 255 parity check ma-
trix). For each of the single bit sets (points) or intersection sets (lines) form a region
with the corresponding variable bits in it, and connect each line region to all the cor-
responding point regions. For each constraint set (plane), make five duplicate regions
(each containing variable bits corresponding to the points in the plane and a factor node
corresponding to the parity check) for the five ways that the plane can be divided into
four parallel lines, and connect each such region to the corresponding line regions. This
unusual duplication of regions is permitted because duplicating parity check constraints
does not change the problem. Although this particular region graph and GBP algorithm
is particularly simple and efficient, other GBP algorithms may potentially give better
results, because they allow for more complicated beliefs at the intermediate regions.

6.2 Outlook

We hope that we have convinced the reader that even given a fixed code, there is an
interesting problem of finding a GPC matrix representation suitable for message-passing
decoding algorithms. We believe that classical codes of medium block-lengths are partic-
ularly interesting codes to consider, both because they are often known to be intrinsically
good codes, and because they can have usefully redundant parity check matrix represen-
tations.

Although we have presented a particular method for transforming GPC matrices to
fix ideas, we do not want to give the impression that we believe it is optimal. In fact,
there are some questionable features of our method, that may cause some of the problems
that were found in decoding the Golay code on the AWGN channel.

In particular, in the GPC matrices that we construct, auxiliary bits (which have no
evidence from the channel) usually participate in parity checks with other auxiliary bits,
rather than with symbol bits. This may induce the BP algorithm to assign incorrect
beliefs for auxiliary bits in early iterations. On the BEC, this would not be a problem,
because an auxiliary bit can never be assigned the wrong value; it can only stay erased.



We have also restricted ourselves to the standard BP algorithm, but other message-
passing algorithms may be more appropriate for the kind of GPC matrices we are consid-
ering. For example, for multi-step majority logic decodable codes, it may be that GPC
matrices and message-passing algorithms that more directly mimic multi-step majority
logic decoding algorithms [10] would out-perform the approach that we have taken.
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