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Abstract

Interleaving is a process to rearrange code symbols so as to spread bursts of errors over
multiple codewords that can be corrected by random error-correction codes. By converting
burst errors into random-like errors, interleaving thus becomes an effective means to combat
errors. In this paper, we focus on how to obtain effective interleaving schemes for 2D arrays,
namely, how to spread the arbitrary error burst such that they are separated as far as possible.
To achieve this, the theoretical bound for optimal 2D interleaving on arbitrary sized 2D array
is analyzed. Based on it, a novel sphere tiling based method is proposed to achieve this bound.
We first present this method for a specified square array, then we extend to arbitrary sized
2D array. The validity of the proposed method is proven by showing gains in multimedia
transmission.

ITRE

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright (© Mitsubishi Electric Research Laboratories, Inc., 2003
201 Broadway, Cambridge, Massachusetts 02139






otherwise stated.
Definition 2.1: L'-distance in ZM, Let z,3' € ZM, z =
(21,%2,-..,2p), ' = (2,2},...,2h). Then we define

d(z,z")

1

|z — ="l

lz1 — @) + |22 — @] + - + |22 — Zhe|-

Two elements
d(z,z'y=1.

Inan M-D array, an element x has a total of 2M neighbors.
In 2-D arrays, these neighbors are given by {(z1 £1,22) and
(z1,22 = 1). In 3-D arrays, the neighbors of (21,22,23) are
given by (z; £1, 20, 23), (21,22 =1, 23), and (&1, 22,23 £ 1).

Definition 2.2: Let C be an M-D code of my xmgx---x
mas over Z,. A codeword of C is an M-D array of m; X
Ma X - -+ X Mg, with each element of the M-D array assigned
with a code symbol.

Note that Z, denotes the ring with elements 0,1,...,g—1.
When g is prime, Z, becomes the Galois field GF(q).

Definition 2.3: In M-D arrays, a burst B is a connected
subset of the given M-D array in which any element has at
least one neighbor contained in B. The size of B is defined
as the number of elements in B.

Interleaving generally means mixing up code symbols so
that each element in an error burst can be spread into differ-
ent codewords (with respect to one random error-correction
codes). Therefore, if any two eclements within a distinct
codeword in the 2-D interteaved array are separated as far
as possible from one another in the de-interleaved array, then
a big error burst can be corrected.

Let A be an M.D array of m; x mg X +-+- X mp and
z = (z1,%2,...,TM) € AWith0 < z; <my, 1 <i < M. We
re-index each element z of A as S with k& = k(z) uniquely
determined by z. For example, in 2-D, we can have k = 21 +
myz2; and in 3-D, we can use k = 11 4+ M2 + mimaZs.
After having 1-D re-indexing, we consider a division of A
into L blocks with each block containing K = N/L elements
where N =my X ma X «-- X muys.

Definition 2.4: All elements belonging to the same block
are referred to as K -equivalent. That is, Sk & Sy if and only
if [k/K]=|l/K].

According to Definition 2.4, we see that Sg; and Syy
are 2-equivalent while Sa;, Saz41, a0d S3p.2 are 3-equivalent.
It is obvious that any Kj-equivalent elements are also K-
equivalent if Ko is a multiple of K;. Let each block represent
a distinct codeword with length K, then all elements within
the same codeword are K-equivalent. Hence, the objective of
effective interleaving is transferred to the problem of maxi-
mizing the minimum distance between any two K-equivalent
clements.

Definition 2.5: Let A be an interleaved array of mxm. The
interleaving distance of A is defined as the shortest distance
between any m-equivalent elements in A.

Definition 2.6: An m x m interleaving array A is called an
optimal interleaving array if the interleaving distance of A
attains the maximum, that is, there is no m X m array that has
a larger interleaving distance than that of A.

z and 7' are called neighbors if and only if
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Example 2.1: Tn 2 2 x 2 array, the maximum possible
distance between any two elements is bounded by 2. The
following array in Fig. 1 is clearly an optimal interleaving
array with maximum interleaving distance 2 between the 2-
equivalent elements Sy and Sy, and S> and Sj.

Se | Sa

53 | 84

Fig. 1. A 2 X 2 optimal interleaving array.

Example 2.2: The first 5 x 5 array in Fig. 2 has interleaving
distance 2 while the second and the third 5 x 5 arrays in Fig. 2
each has an interleaving distance of 3. The first is clearly
not optimaliy interleaved. It will be clear from Theorem 3.1
below that both the seccond and the third arrays in Fig. 2 are
optimally interleaved.

So (S5 |S10]S15]S20 S0 |Ss |S10|515|52
821181 |Se [S11{516 816|821 (81 |Ss |S1a
S17(S22 (82 [S7 |Su2 87 [S12|S17|S22(S2
S13 (815|523 (S |58 S23 (83 |Ss |Siz|Sis
Sy |S14|S10 [S24|5s Sya [S10|Sz4 [Se |So
(@ ®

So |Ss [S10(S15]S20

S11(816{S21|S1 |Ss

S22 |S2 |S7 [S12[S1v

Sa |S13|S18{823|Ss

S16S24|S4 [Se |S14

(c)

Fig. 2. Examples of 5x 5 interleaving arrays. The array in (a) has interleaving
distance 2 and is pot optimally interleaved. Both amays in (b) and (c) arc
optimally interleaved with maximum interleaving distance 3.

III. THEORETICAL ANALYSIS

In order to find an optimal interleaving array, it is necessary
to know the maximum (or at least an upper bound) of the
possible interleaving distances for a given 2-D (or M-D) array.
Assuming there is a 2-D (or M-D) array with interleaving
distance d, then a set of equal sized spheres (with diameter d)
can be built centered at each equivalent element without over-
lapping. In this section, we will present a thorough study of
these 2-D spheres and the corresponding bound of interleaving
distance.

The 2-D sphere S, 4 was first studied in [8] for d odd. The
idea was then extended to the case of d even in [4}. The 2-D



sphere Sz 4 with diameter d under the L' distance in Z2 can
be defined as follows.

Definition 3.1: 2-D Spheres. Let d be a positive integer.
Then we define for d odd

Saa={z € Z°: |m| +|za| < df2};
and for d even

Saa={z € Z%:|z;s ~ 1/2| + |z2| < d/2}.
Some typical 2-D spheres are shown in Fig. 3.

Lemma 3.1: Sa 4 defines a 2-D sphere with diameter d
{centered at (0,0) if d is odd, and at (0,0) and (1,0} if 4
is even). For any € 82 4, ¥ € 53 4, it holds d(z,y) < d; and
for any z ¢ S, 4, there exists y € Sa 4 such that d{z,y) > d.

It is clear that the sphere S 4 can be embedded ina d x d
square array. Further, we note that for d odd, the 2-D sphere
82,4 defined above is symmetric with respect to the center
(0, 0). For d even, S, 4 is centered at {0, 0) and (1, 0) and is no
long symmetric with respect to (0, 0), instead it has 2 long axis
along the x; direction. Geometrically, S 4 can be constructed
recursively by appending all neighbors of Sa 4o, starting with
a single element (0,0) if d is odd, or two neighboring elements
(0,0) and (1,0) if d is even.

Counting the elements in S 4, one can show that

Lemma 3.2: The 2-D sphere S24 contains (&% + 1)/2
elements if d is odd, and d2 /2 elements if d is even. In other
words, we have forall d > 1,

|S2,4] = [d?/2] ={ gf/; N2

if d is odd
if d is even

Theorem 3.1: The maximal interleaving distance in an m x
m array is bounded by d = |v2m|.

Proof: We assume m > 2 as the case form = 1
or m = 2 is trivial. Then we have v/2m < m, and hence
d = {v2m] < m—1. Consider a sphere Sy 4,; with diameter
d -+ 1 that is embedded in the m X m array. Suppose on the
contrary there exists an interleaving for the m x m array with
an interleaving distance > d + 1. Since the distance between
any elements in S g4, is always less than d+ 1 (see Lemma
3.1), each element in So 441 has to belong to a different
codeword. Therefore, |S2 44.1] < m. Using Lemma 3.2, we
obtain, (d + 1)2/2 < |S2.a41] < m, that is, d+ 1 < v2m.
This contradiets d = |v/2m) > v2m — 1. u

IV. SPHERE TILING BASED 2-D INTERLEAVING METHOD

By using the 2-D spheres to tile a 2-D array, the size of
the array should be a multiple of the size of the 2-D sphere.
To generate an interleaving array that satisfies the above upper
bound, one needs to find a way to tile the 2-D spheres such that
no overlapping and space exist in the m xm array. Due to these
restrictions, it can be conjectured that the distance between two
co-positional elements of two neighbering spheres should be
the bound d. In the following, we will propose some tiling
methods. We first use two examples to show the principle.
Then we generalize them by using mathematical analysis. The
validity is proved afterwards.
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Fig. 3. Typical 2-D sphere with size 2, 5, 8, 13, 18,
s | s |
s s |
E s |
S s
| |s | s
(@) [1.3]

Fig. 4.  Tiling of size 5 sphere: (a) Tiling by translation (xr + 2,y +
1) (mod m). (b} Tiling by transtation (z + 1,y + 2) (mod m).

Figure 4 shows the example for the case of d = 3, where
S denotes top element of each sphere. Given S with position
(0, 1), its nearest co-positional element can be located in either
{1,3) or {2,2). Continue the tiling procedure and let the
position value be modulo m, the imterleaved arrays can be
obtained as Figure 4 (a) and (b) respectively.

Figure 5 shows the example for the case of d = 4. Similarly,
given S with position (0,1), its neighboring co-positional
element can be located in (1,4), (2,3), (3,0) or (3,2). The
corresponding interleaved arrays are illustrated in Figure 5 (a)
and (b) respectively. Note that the choice of (1,4) produces
the same tiling structure as that (3,2). This is also true for
(2,3) and (3,0).

After investigation, we find that if d is odd, given S; with
position (z,y), its neighboring co-positional elements S; can
be located at

{ {(x+(d+1)/2,y+(d —1)/2) (modm), or
(z+(d—-1)/2,y+ (d+1)/2) (modm).

If d is even, the neighboring co-positienal elements S; can be
located in any of the following positions

(r+df2—1,yx({d/2+1)}(modm), or
{(x+d/2+1,y=+(d/2— 1)) (modm), or
(z +d/2,y £ d/2) (mod m).
Continuing the above tiling procedure, we can see that there
will be only one co-positional element of S; in each row of the



@) )

Fig. 5. Tiling of size 8 sphere: (a) Tiling by translation (z + 1,y +
3)(modm) or (z-+3,y + 1) (mod m). (b} Tiling by translation (z+2, y+
2){modm) or (z + 3,y ~ 1) (modm).

array. Motivated by this observation, we propose the optimal
interleaving array construction methods for m equal to the size
of the 2-D sphere as the following.
Procedure 4.1: Let A be a 2-D array of m x m with m =
1824, d = |v2m]. We define, for d odd,
d  translations by ((d + 1)/2,{d — 1}/2) or
((d - 1)/2’ _(d"' 1)/2))
—d translations by ((d - 1)/2, (d +1)/2) or
((d+1)/2,~(d-1}/2)
and for d even,
d-1
d+1

b=

translations by (d/2+ 1,d/2 - 1),
translations by {d/2,d/2),

—(d —1) translations by {d/2 + 1, —(d/2 — 1}},
—(d+1) translations by (d/2, —d/2)

Then we construct an m x m interleaving array by using the
following recipe

(0,7) = (0,) and (i,5) — (i, (ib + 7) (mod m)).

By using this procedure to construct 5 x 5 and 8 x 8
interleaving arrays, the results exactly match the sphere tilings
in Figure 4 and Figure 5.

Example 4.1: Consider the case of 5 x 5 array (m = §).
Then we have m = |S24l, d = 3 and b = 3. Using the
above procedure, we obtain the 5 x 5 optimal interleaving
array in Fig. 2(c). Note that, by symmetry, the choice b =
2 = —3 (modm) also generates a 5 > 5 optimal interleaving
array in this case, see Fig. 2(b).

In the following, we will discuss the optimality of Procedure
4.1. For brevity, we will only consider the case b = d (for d
odd) and b = d — 1 (for d even), that is,

, d if d is odd
"l d—1  ifdiseven

Lemma 4.1: For d odd and m = (d? +1)/2, then b=d is
relative prime to m. For d evenand m = d%/2, then b=d—1
is relative prime to m. That is, ged(b,m) = 1.

Define

L& =bi(modm), 0<i<m.
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Then the method in Procedure 4.1 is a cyclic translation
(i,5) = (i, (& + 5} (mod m))

For the case b= d for d odd and b = d — 1 for d even, we
have the following result.
Lemma 4.2: Forall i # k, 0 <1,k <m, it holds

li -k + &~ &l =d, [i-ki+m—|&—&l>d

Theorem 4.1: The interleaving array constructed by Proce-
dure 4.1 with b = d for d odd, b = d — 1 for d even and
m = |S, 4| is an optimal interleaving array.

Proof: Consider two equivalent elements P = (i, {; +
j(mod m)) and @ = (k,& + §(mod m)). Since & +
j(mod m) — (& + j(mod m)) = & — & (mod m)) and
—m < & + j (mod m) — (& + j (mod m)) < m, we have
either [§; + j (mod m) — (& + j (mod m))| = |& — & or
|€: + j (mod m) — (& + § (mod m))| =m — |& — &l. From
Lemma 4.2, we have d(P,Q) = |i — k] + |&; + j {modm) —
{tr + 7 (mod m))| > d. Theorem 4.1 now follows. [

Note that for d odd and b = d, we have b{d + 1}/2 =
{d—1)/2 (mod m) = {i1)s2 and b(d — 1)/2 = —(d +
1)/2 (mod m} = §(g_1)2. Similarly for d even and b = d—1,
we have b(d/2 + 1) = d/2 — 1 (mod m) = £;/341. Finally
we observe that by symmetry (£; — —§;), the same proof
above also shows that the interleaving array constructed by
Procedure 4.1 with b = —d for d odd and b = —(d — 1) for d
even is also an optimal interleaving array. We leave it to the
reader to check the validity of the choice b = +(d + 1) (for d
even only).

In the above, we have presented a sphere tiling based
method for constructing optimal square interleaving array. In
the following, we first present some theoretical analysis for
arbitrary size square interleaved array, then we propose a
method to generate the interleaved array that reaches the upper
bound.

Notice that the size of the 2-D sphere is not consecutive.
For most of the integer mn such as 3,4,6,7,9,10,11, - - -, there
exists no sphere with size m. Consider m x m amay. Let
d = |[V2m]. We assume m; = |S2,441| > m > mp = [So 4]
Then we have the following result.

Lemma 4.3: For any positive integer m, the maximum
interleaving distance in an m x m array is less than or equal
to d = |v2m).

Accoerding to Lemma 4.3, the upper bound of the minimum
distance is the diameter of the largest sphere with size less than
or equal to m. According to this observation, the upper bound
is2for2<m<4,3for5<m<7,4for&<m<12
eic. In the following, we propose a method to construct, for
arbitrary m, an m x m optimal interleaving array that achieves
the above sphere packing upper bound.

For arbitrary m x m square arrays, we have the following
generalization of Theorem 4.1,

Theorem 4.2: Let m be any positive integer and define

d = [V2m],

mg = |S2,4], & = bi (mod my),



So | S3 | Ss
Sy | S1 | S
Sa | Ss | Ss
Fig. 6. lliustration of 3 x 3 interleaved armray by using the algorithm in
Theorem 4.2.
5 d if d is odd,
] d-1 if d is even.

Then the following construction
(i,5) = (3, (& + ) (mod m)),

generates an optimal interleaving array with tnterleaving dis-
tance > d = L\/ZE .

Figure 6 shows an example of 3 x 3 amray generated by
using the algorithm in Theorem 4.2.

Figure 7 shows an example of 12 x 12 array that generated
by using the above algorithm. Three sets of eguivalent ele-
ments {Sq,---,511}, {Sr2,---, 583} and {S132,---,S143}
are demonstrated.

0<i,j<m.

V. SUMMARY

In this paper, we address the protection of multimedia data
by applying optimal interleaving on them, specifically, 2-D
digital data. To do so, the theoretical characteristics of M-D
interleaving is analyzed based on the concept of interleaving
distance. We first present and proved the upper bound of
the interleaving distance for 2-D array. Then a novel 2-D
interleaving method is proposed by the motivation of sphere
tiling. By using the proposed method, each element in the same
size m codeword can be spreaded into different codewords in
the m x m array. Equivalently, any error burst of size m can be
spreaded into to different code blocks in the array. Thus, the
simple error correction code which is optimal for independent
channel can be used to cotrect this kind of error bursts.
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S 5
[ 72 132
s
3] "1 73
S
74 14} "2
s )
135 73 75
136 S. Sn
) S |S
77 137 Vs
Sm Ss s?s
sm S’ S'm
Sa 80 Slm
S S
141} "o 81
82 192 10
13 T 83
Fig. 7. Illustration of 12 x 12 interleaved array by using the algorithm in
Theorem 4.2.
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