
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Self-configuring, Lightweight Sensor
Networks for Ubiquitous Computing

Christopher R. Wren and Srinivasa G. Rao

TR2003-24 October 2003

Abstract

We show that it is possible to extract geometric descriptions of the spaces ob-
served by sensor networks, even if the network consists of sensors that are of
very limited ability: such as motion detectors. By using statistical techniques
and relying only on the unconstrained patterns generated by the occupants of
the building we show how to recover information about sensor geometry. This
is important to the ubiquitous computing community since ubiquitous sen-
sors and the context that the provide will only become a reality if the sensors
are cheap, low-power, and self-configuring.
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1 Introduction

The occupants of a building generate patterns as they move from place to
place, stand at a corner talking, or loiter by the coffee machine. A cheap net-
work of sensors can sense these patterns and provide useful information to
all of the context sensitive systems in a building, but what makes such a net-
work cheap? As the sensing and computational elements become cheaper to
manufacture, the cost of such a network is quickly becoming dominated by
installation, configuration and maintenance costs.

This paper explores some of the possibilities that exist for such networks
to auto-calibrate, given only the unconstrained movements of those being
observed. Furthermore, we strive to adopt an approach that will limit compu-
tational overhead. That means that the algorithms should not require recog-
nition, tracking, or any but the absolute simplest of perceptual mechanisms.
In fact, we will assume for the rest of this paper that our sensors are simple
motion detectors. We also assume that the system will consist solely of sen-
sors embedded in the environment, and not any component that navigates
or is carried through the environment.

2 Related Work

Many ubiquitous context projects start from the assumption that the human
inhabiting the space will be an active participant in calibrating the system[5],
or that the system will accomplish calibration by utilizing an active element
that can explore the environment[3]. For many applications, the level of de-
tail desired about the building geometry does not warrant this level of labor
cost or system complexity.

Lee, Romano, and Stein present a method for calibrating a overlapping
security cameras using observed motion in the scene[4]. However their ap-
proach requires high-resolution sensors and far-field viewing, so that the mov-
ing objects will be small relative to the size of the desired calibration error. In
our situation, we wish to employ only very0low-resolution sensors and in the
office environment, the moving elements of the scene are large relative to the
sensor field of view. Their approach also requires a brute-force search of all
possible feature correspondence hypotheses to find correct matches, while
our algorithm does avoids the requirement for knowledge of absolute corre-
spondence by relying on statistical inference.

Caspi and Irani present a compelling algorithm to calibrate non-overlapping
video streams[1]. the spirit of this work is very similar in that it attempts to re-
cover geometric information about possibly non-overlapping sensors by ex-
ploiting temporal information. However, the Caspi approach requires signif-
icant common motion between the sensors that is usually only observed by
pairs of cameras attached to rigid frames. In the office setting the sensors
are assumed to be attached to the stable infrastructure, and will not observe
these kinds of motions.
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3 Our Sensor Network

We have covered 175m2 of office space with 17 ceiling-mounted sensors and
collected motion event data. The sensors report motion events in their active
area at 7.5Hz. They adapt to novel, but perfectly stationary objects, and other
changes in the environment, on a 20 second time-scale.

The area covered consists of the high-traffic core of our building: the ele-
vator lobby, reception lobby, restroom entrances, and connecting hallways.

In fact, for this experimental setup, the sensors are cheap, IEEE-1394, board
cameras. They are mounted in the ceiling, pointed straight down at the floor
with 75 degree angle lenses. The imagery from the cameras is processed by an
adaptive background subtraction algorithm[6] built on top of the Open Com-
puter Vision Library[2]. Obviously this is not the cheapest way to implement
motion detectors, but it does provide the maximum flexibility for experimen-
tal design.

Motion events are reported as a threshold on the ratio of the foreground
area to background area. The cameras capture 160x120 pixel images at 7.5Hz.
The cameras view an area of approximately 12m2, so each pixel observes roughly
6cm2, or 1 square inch, on the floor. On the most heavily loaded machine,
with 7 cameras, the perceptual process consumes 25% of a 1GHz Pentium III
Processor.

4 The Experimental Setup
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Figure 1: The Hand-calibrated Geometry: Left: The relative layout of the cam-
era frames in the global coordinate system of the floor. Right: The calibration
widgets.

Since the sensors are cameras, it was possible to use well-known tech-
niques to recover the geometry of the cameras relative to the space observed.
This provides us with ground-truth about the positions and viewing areas of
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the sensors that we can use to validate our experimental results. Figure 1-left
illustrated the measured geometry of the sensors.

Huge calibration grids printed on a poster printer were used in the esti-
mation process. These calibration grids can be seen in Figure 1-right. Despite
their large size, it was still necessary to bridge some camera frames through
multiple intermediate frames to reach the global coordinate frame. This al-
lows numerical error to accumulate and that leads to errors in the geometry
of the ground-truth. However, the ground-truth does a good job of capturing
the relative structure of the sensor network, and this is what we will be trying
to recover .

5 Method

Since we treat the cameras simply as motion detectors, the underlying rep-
resentation of the data will be the event list: Ej,t. An entry in the event list is
active, Ej,t = 1, if there was a motion event at time t in sensor j. These events
indicate merely the presence of some kind of motion anywhere in the field of
view, but no indication of the number of people, the direction of motion, or
any other such secondary information.

Our low-cost perceptual engine will be co-occurrence statistics: Ci,j,δ. The
co-occurrence is the count of events that co-occur at a given temporal offset:

Ci,j,δ =
inf∑
t=0

Ei,tEj,t+δ

where δ ≥ 0, and Ei,t is a boolean value. For a given temporal offset, it is
useful to manipulate the i× j co-occurrences between all sensors, for a given
time offset, as a matrix. For a given pair of sensors, it is also useful to consider
the family of co-occurrences parameterized by the temporal offset. Taken
together, the Ci,j,δ, for all possible δ are equivalent to the cross-correlation
of the event lists for sensors i and j. However, the entire cross-correlation
is not useful, and is very memory-intensive to compute, so we will only ever
consider relatively small values δ: in particular, values that represent time-
scales that are relevant to human behavior.

We will be comparing this structure to a similar data derived from the
ground-truth calibration data. Figure 2-left shows a binary map showing which
cameras the ground truth indicates as overlapping. Figure 2-right shows the
minimum distance between view areas for each camera. Overlapping cam-
eras have a distance of zero. For cameras that do not overlap, the value is the
minimum distance between the camera view polygons.

6 Discussion

We can demonstrate two things from this data: co-occurrence matrices that
reveal the structure of the sensor overlap and structure in peak offsets in the
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Figure 2: The Hand Calibration Data. Left: The overlap map for the sensors.
The white blocks indicate two cameras that overlap. Right: The relative dis-
tance between the cameras. Overlapping cameras are white, darker blocks
indicate more separation.

co-occurrence matrices that reflect the relative distances between sensors.
The Ci,j,0 co-occurrence matrix shows us the sensors that exhibit syn-

chronized events. Since sensors always instantaneously co-occur with them-
selves, we see the highest values on the diagonal. However, off-diagonal el-
ements with high values indicate sensors that overlap: they are often see-
ing the same event. Given that there are an unrestricted number of people
moving around the space, we expect noise from coincidental events, but Fig-
ure 3-right shows that this noise is low compared to the signal. For this sensor
network, we get 97% of the 136 non-trivial overlap decisions correct. Further-
more, all the false-negatives (3 of the 4 total errors) are actually mistakes in
the ground-truth: two situations where un-modeled walls block views from
sensors that would otherwise overlap, and one case where the geometry pre-
dicts a tenuous overlap that is obscured by un-modeled radial distortion in
the lens of the sensor. Leaving out these errors gives us a 99% accuracy.

It is possible to see in Figure 4 that Ci,j,0 is not a good estimate of the inter-
sensor distance in general. This is because it has no data about sensors that
do not overlap. Unfortunately simply increasing δ does not help. Examples of
these matrices can be found in Figure 5. We’ll discuss what these structures
represent below.

Figure 6 shows us a possible direction to recover inter-sensor distance
for non-overlapping sensors. The plots depict, from top to bottom the co-
occurrence between one particular camera and a set of cameras in order of
increasing distance from the first camera. We can see that there is a strong
peak that occurs at the minimum time it takes a significant fraction of the
population to transit from the first camera to the second.

The windowed cross-correlation represented by Ci,j,δ over all δ and a given
pair of sensors provides a way to estimate the average trip time between the
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Figure 3: The ground truth overlap (left) compared to the statistical transition
probability matrix (right).

Figure 4: The ground truth distance map (left) compared to the statistical
transition probability matrix (right).

two sensors. The time offset corresponding to the first major peak for a set of
cameras provides an estimate of the average trip time between the sensors.
We can use these pairwise constraints to form an estimate of the relative ge-
ometry of the whole network.

If people only ever transit uninterrupted between the sensors, then we
could simply take the maximum of the cross-correlation, as in audio localiza-
tion. However, we can’t discount the possibility that the majority of individ-
uals might stop to perform a task on their way through the space. This could
cause a dominant peak to the right of the peak that truly corresponds to the
uninterrupted transit time. The only way for a significant distraction to occur
left of the true peak would be for a majority of transits to occur faster than the
average transit time. It’s hard to imagine how this would occur unless indi-
viduals were routinely running between sensors at a rate significantly faster
than the mean walking speed observed elsewhere in the system.
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Figure 5: The co-occurrence maps for different intervals of time: left: 1s–3.5s,
center: 3.5s–10s, right: 10s–27s

7 Results

These results are shown in Figure 7. On the left is the recovered geometry
from the ground-truth distance constraints. On the right is the recovered ge-
ometry from the estimated inter-node transit times.

For our dataset, discounting the global scale ambiguity, we obtain an av-
erage error of 2.2m with only 4 hours of data. If we only consider a sub-set
of the sensors that do not overlap, we obtain a slightly higher average error
of 2.4m. Our sensors monitor 3.7m × 4.9m rectangles, so both of the figures
represent sub-pixel accuracies.

8 Conclusion

We have shown that it is possible to extract descriptions of the spatial arrange-
ment of a sensor network with very little computation, very poor sensors, and
limited constraints on the behavior of the people inhabiting the space. This is
important to the ubiquitous computing community since ubiquitous sensors
will only become a reality if they are cheap, low-power, and self-configuring.
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Figure 6: Plots of co-occurrence rate between a fixed camera and the cameras
along a contiguous, hand-selected path through the space.
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Figure 7: The matrices of relative distances (top) and corresponding two di-
mensional layout inferred from those matrices (bottom). The ground truth
distance map (left) compared to the peak-delay map (right). Distances in me-
ters.
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