
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Converting DCT Coefficients to H.264/AVC Transform
Coefficients

Jun Xin, Anthony Vetro, Huifang Sun

TR2004-058 June 2004

Abstract
Many video coding schemes, including MPEG-2, use a Discrete Cosine Transform (DCT).
The recently completed video coding standard, H.264/AVC, uses an integer transform, which
will be referred to as HT in this paper. We propose an ecient method to convert DCT coef-
ficients to HT coefficients entirely in the transform domain. We show that the conversion is
essentially a 2D transform. We derive the transform kernel matrix; provide a fast algorithm
and an integer approximation of the transform. We show that the proposed transform do-
main conversion outperforms the conventional pixel domain approach. It is expected to have
applications in transform domain video transcoding.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2004
201 Broadway, Cambridge, Massachusetts 02139

Publication History:

1. First printing, TR-2004-058, June 2004

Converting DCT Coefficients to H.264/AVC
Transform Coefficients

Jun Xin, Anthony Vetro, and Huifang Sun

Mitsubishi Electric Research Laboratories, Cambridge MA 02139, USA
jxin,avetro,hsun@merl.com

Abstract. Many video coding schemes, including MPEG-2, use a Dis-
crete Cosine Transform (DCT). The recently completed video coding
standard, H.264/AVC, uses an integer transform, which will be referred
to as HT in this paper. We propose an efficient method to convert DCT
coefficients to HT coefficients entirely in the transform domain. We show
that the conversion is essentially a 2D transform. We derive the transform
kernel matrix, provide a fast algorithm and an integer approximation of
the transform. We show that the proposed transform domain conversion
outperforms the conventional pixel domain approach. It is expected to
have applications in transform domain video transcoding.

Keywords —Transform domain video transcoding, video transcoding,
H.264/AVC, MPEG-2.

1 Introduction

The transform used in many video coding schemes, including MPEG-2 [1],
MPEG-1, and H.263 etc., is a Discrete Cosine Transform (DCT). The recently
completed video coding standard, H.264/AVC [2], uses a low-complexity integer
transform, hereinafter referred to as HT.

One important step in the transcoding of video from MPEG-2 format to
H.264/AVC format is to convert the coefficients from the DCT domain to the
HT domain, i.e. DCT-to-HT conversion. Fig. 1 shows the DCT-to-HT conversion
in the context of intra-frame video transcoding.

Fig. 2 shows a pixel domain implementation of the DCT-to-HT conversion.
The input is an 8×8 block (X) of DCT coefficients. An inverse DCT (IDCT) is
applied to X to recover an 8×8 pixel block (x). The 8×8 pixel block is divided
evenly into four 4×4 blocks (x1, x2, x3, x4). Each of the four blocks is passed to
a corresponding HT to generate four 4×4 blocks of transform coefficients (Y1,
Y2, Y3, Y4). The four blocks of transform coefficients are combined to form a
single 8×8 block (Y). This is repeated for all blocks of the video.

It is desired to perform the transcoding entirely in the compressed or trans-
form domain, then reconstructing the image pixels is avoided. Transform domain
transcoding could be more efficient than the pixel domain transcoding because
complete decoding and reencoding are not required [3]. Therefore, there is a

2

Quantization
Entropy

coding

DCT-to-HT

conversion

Inverse

quantization

Entropy

decoding

Fig. 1. Intra transcoding

Inverse

DCT

HT

HT

HT

HT

X

Y
1

Y
3
Y
4

Y
2

x
1

x
3
x
4

x
2

x

Y
1

Y
2

Y
3

Y
4

Fig. 2. Pixel domain HT-to-DCT conversion

need to have an efficient method to perform the DCT-to-HT conversion in the
transform domain.

The paper is organized as follows. The proposed transform domain DCT-
to-HT conversion is presented in Section 2. Section 3 and Section 4 discuss the
fast algorithm and the integer approximation for the conversion respectively.
Simulation results are given in Section 5. Section 6 concludes this paper.

2 DCT-to-HT Conversion

Fig. 3 shows our proposed transform domain DCT-to-HT conversion. In this
paper, this conversion shall be called S-transform. It may be applied to the input
DCT coefficients (X) of an input video in the MPEG-2 format to produce output
HT coefficients (Y) of an output video in the AVC format. The S-transform is
characterized by a transform kernel matrix, S, which is an 8×8 matrix:

Y = SXST (1)

where ST is the transpose of S. We shall derive S in the following.
The HT of x1, x2, x3 and x4 are Y1, Y2, Y3, and Y4 respectively (Fig. 2), i.e.

Y1 = Hx1H
T

Y2 = Hx2H
T

Y3 = Hx3H
T

Y4 = Hx4H
T

(2)

3

S-Transform

(Y = S×X×ST)
X

Y
1

Y
3
Y
4

Y
2

Y
1

Y
2

Y
3

Y
4

Fig. 3. Transform domain DCT-to-HT conversion

where H is the transform kernel matrix of HT: H =




1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1




If K =
(

H 0
0 H

)
, then we can rewrite (2) into a single equation

Y = K × x×KT (3)

where x is the IDCT of X. Let T8 be the transform kernel matrix of DCT, we
have x = TT

8 XT8. It then follows that

Y = K × TT
8 ×X × T8 ×KT (4)

Comparing (4) with (1), we have

S = K × TT
8 (5)

Therefore, the direct DCT-to-HT transform is given by (1) and its transform
kernel matrix S, is

S =




a b 0 −c 0 d 0 −e
0 f g h 0 −i −j k
0 −l 0 m a n 0 −o
0 p j −q 0 r g s
a −b 0 c 0 −d 0 e
0 f −g h 0 −i j k
0 l 0 −m a −n 0 o
0 p −j −q 0 r −g s




(6)

where the values a . . . s are (rounded off to four decimal places)

a = 1.4142, b = 1.2815, c = 0.45, d = 0.3007, e = 0.2549,
f = 0.9236, g = 2.2304, h = 1.7799, i = 0.8638, j = 0.1585,
k = 0.4824, l = 0.1056, m = 0.7259, n = 1.0864, o = 0.5308,
p = 0.1169, q = 0.0922, r = 1.0379, s = 1.975.

4

3 Fast DCT-to-HT Conversion

The sparseness and symmetry of the S-transform kernel matrix S can be ex-
ploited to perform fast computation of the transform.

As suggested by (1), the 2D S-transform is separable. Therefore, it can be
achieved through 1D transforms, i.e., column transforms followed by row trans-
forms. Hence, we shall describe only the computation of the 1D transform.

Let z be an 8-point column vector, and a vector Z be the 1D transform of z.
The following steps provide a method to determine Z efficiently from z, which
is also shown in Fig. 4 as a flow-graph.

m1 = a× z[1]
m2 = b× z[2]− c× z[4] + d× z[6]− e× z[8]
m3 = g × z[3]− j × z[7]
m4 = f × z[2] + h× z[4]− i× z[6] + k × z[8]
m5 = a× z[5]
m6 = −l × z[2] + m× z[4] + n× z[6]− o× z[8]
m7 = j × z[3] + g × z[7]
m8 = p× z[2]− q × z[4] + r × z[6]− s× z[8]

Z[1] = m1 + m2
Z[2] = m3 + m4
Z[3] = m5 + m6
Z[4] = m7 + m8
Z[5] = m1−m2
Z[6] = m4−m3
Z[7] = m5−m6
Z[8] = m8−m7

The method needs 22 multiplications and 22 additions. It follows that the 2D
S-transform needs 352 (=16×22) multiplications and 352 additions, for a total
of 704 operations.

The pixel domain implementation, as illustrated in Fig. 2, includes one IDCT
and four HT operations. Chen’s fast IDCT implementation [4], referred to herein
as the reference IDCT, needs 256 (=16×16) multiplications and 416 (=16×26)
additions. Each HT needs 16 (=2×8) shifts and 64 (=8×8) additions [5]. The
four HT then need 64 shifts and 256 additions. It follows that the overall com-
putational requirement of the pixel domain processing is 256 multiplications, 64
shifts and 672 additions, for a total of 992 operations.

Thus, the fast S-transform saves about 30% of the operations when compared
to the pixel domain implementation. In addition, the S-transform can be imple-
mented in just two stages, whereas the conventional pixel domain processing
using the reference IDCT requires six stages, where the reference IDCT needs
four and the HT needs two.

5

z[1]

z[2]

z[3]

z[4]

z[5]

z[6]

z[7]

z[8]

Z[1]

Z[5]

Z[2]

Z[6]

Z[3]

Z[7]

Z[4]

Z[8]

a

b

-c

d

-e

g

-j

a

f

h

-i

k

-l

m

n

-o p-q
r
s

-1

-1

-1

-1

j

g

Fig. 4. Fast algorithm for the transform domain DCT-to-HT conversion

4 Integer Approximation of DCT-to-HT Conversion

Floating-point operations are generally more expensive to implement than in-
teger operations. Therefore, we also provide an integer approximation of the
S-transform.

We multiple S by an integer that is a power of two, and use the integer trans-
form kernel matrix to perform the transform using an integer-arithmetic. Then,
the resulting coefficients are scaled down by proper shifting. In video transcod-
ing applications, the shifting operations can be absorbed in the quantization.
Therefore, no additional operations are required to use integer arithmetic.

The larger the integer we select, the better accuracy we may achieve. In
many applications, the number is limited by the microprocessor on which the
transcoding is performed. We describe how to choose the number such that the
computation can be performed using a 32-bit arithmetic, which is within the
capability of most microprocessors.

For the case of the DCT-to-HT conversion, the DCT coefficients lie in the
range of -2048 to 2047. This is a dynamic range of 4096, and needs 12 bits to
represent. The maximum sum of absolute values in any row of S is 6.44, so the
maximum dynamic range gain for the 2D S-transform is 6.442 = 41.47, which
means log2(41.47) = 5.4 extra bits. Therefore, 17.4 bits are needed to represent
the final S-transform results. To be able to use the 32-bit arithmetic, the scaling
factor must be smaller than the square root of 232−17.4, i.e. 157.4. The maximum
integer satisfying this condition while being a power of two is 128.

Therefore, the integer transform kernel matrix is SI = round{128 × S}.
Similar to S, SI has the form (6), but with the values a through s changed to

6

the following integers:

a = 181, b = 164, c = 58, d = 38, e = 33,
f = 118, g = 285, h = 228, i = 111, j = 20,
k = 62, l = 14, m = 93, n = 139, o = 68,
p = 15, q = 12, r = 133, s = 253.

The fast algorithm derived in Sect. 3 for the S-transform can be applied to the
above transform since SI and S have the same symmetric property.

5 Simulation Results

5.1 Simulation Conditions

Fig. 5 shows the simulation setting. An 8×8 block, x, is DCT-transformed, quan-
tized (Q1) and inverse-quantized (IQ1). The reconstructed DCT coefficients, X,
are sent to three processing systems. Each of the three systems map X into the
HT-domain, which are then reconstructed through quantization (Q2), inverse-
quantization (IQ2), and inverse-transform (HT−1). The DCT-to-HT converstion
schemes used are: the real-arithmetic S-transform (S), the integer-arithmetic S-
transform (S̃), and the reference IDCT-HT (IDCT followed by HT). The pixel-
blocks reconstructed from the three systems are denoted as xS , xS̃ and xr re-
spectively. We use PSNR to measure the distortion between the source and the
reconstructed pixel-blocks.

In the simulations, x is generated using a stationary Gaussian random pro-
cess, with zero mean and standard deviation σ. If u is the distance between
two pixels in x, their correlation coefficient is ρu. We calculate the parameters
for 200 frames of the following sequences: Akiyo, Stefan, Container and Mo-
bile&Calender. We choose (ρ, σ) to be (0.99, 10) and (0.90, 30) to cover these
typical sequences. We use Q1=2, 4, 6, 8, and Q2 from 10 to 295. We take the
average of 10000 runs for each experiment.

5.2 Integer S-transform vs. Real S-transform

Fig. 6 shows the PSNR difference between using the intger and the real S-
transform. It is observed that the PSNR loss resulted from the integer approx-
imation decreases with increasing Q2 and/or Q1, which is expected since the
increasing quantization error makes the approximation error less significant. In
addition, when Q2 is low, the PSNR differences vary with Q1, and appear to be
signal dependent. It is interesting to note that for some values of Q1 and Q2,
the integer arithmetic achieves a positive PSNR gain. Nevertheless, the PSNR
difference is small, with the maximum difference around 0.03dB.

In practice, it may be hardly useful to have a finer re-quantization (Q2) than
the input quantization (Q1) since it is impossible to improve upon the quality
of the input coded video. The equivalent quantization step sizes in the DCT
domain and the HT domain are different due to the non-orthonormal HT. The

7

Q1DCT IQ1 S

S
~

x

Q2 IQ2 HT
-1

Q2 IQ2
S
x~

X

HTIDCT

Rounding

Q2 IQ2
xr

xS

HT
-1

HT
-1

Fig. 5. Simulation settings

equivalent quantization step size in the HT domain is about 5~6 times that in
the DCT domain for fine quantizations. Therefore, it can be observed that in the
practical use range of Q2, the quality loss is even less (around 0.01dB or less).

5.3 Integer S-transform vs. Reference IDCT-HT

Fig. 7 shows the PSNR difference between using the integer S-transform and the
reference IDCT-HT. Interestingly, the integer S-transform actually outperforms
the reference implementation. The inferior performance of the reference method
is caused by the rounding operation after the IDCT. The rounding is the stan-
dard decoding step following IDCT in order to reconstruct pixels. In addition,
the HT is an integer-transform and demands integer input. For the integer S-
transform, the rounding takes place for the result HT coefficients, but not for the
intermediate results. The improvement of the integer S-transform could be as
much as almost 0.35dB for Q1=2 and Q2=10. For practical transcoding, where
only coarser re-quantization may be useful, the PSNR gain is generally within
0.2dB. When Q2 and/or Q1 increases, the gain diminishes as the quantization
error dominates the distortion.

6 Concluding Remarks

We introduced a transform domain approach for the conversion of DCT coef-
ficients to HT coefficients. We showed that the DCT-to-HT conversion can be
implemented in the transform domain by a single transformation. We derived the
transformation kernel matrix and developed efficient algorithms for computing
the transform. We also provided an integer approximation of the transform. Our
simulation results showed that the proposed transformation achieved improved
PSNR performance over the conventional pixel domain implementation while
requiring reduced copmutational complexity.

Our developed transform domain DCT-to-HT conversion can be applied to
the transcoding of DCT-based video such as MPEG-2 to HT-based H.264/AVC
video. We are currently developing techniques for such a transcoder.

8

0 50 100 150 200 250 300
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
Int vs. Real (ρ=0.99, σ=10.0)

Q2

In
t v

s.
 R

ea
l r

el
at

iv
e

P
S

N
R

 c
ha

ng
e

(d
B

)

Q1=2
Q1=4
Q1=6
Q1=8

0 50 100 150 200 250 300
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005
Int vs. Real (ρ=0.90, σ=30.0)

Q2

In
t v

s.
 R

ea
l r

el
at

iv
e

P
S

N
R

 c
ha

ng
e

(d
B

)

Q1=2
Q1=4
Q1=6
Q1=8

(a) (b)

Fig. 6. Relative PSNR difference of integer vs. real S-transform

0 50 100 150 200 250 300
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Int vs. Reference (ρ=0.99, σ=10.0)

Q2

In
t v

s.
 R

ef
er

en
ce

 r
el

at
iv

e
P

S
N

R
 c

ha
ng

e
(d

B
)

Q1=2
Q1=4
Q1=6
Q1=8

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Int vs. Reference (ρ=0.90, σ=30.0)

Q2

In
t v

s.
 R

ef
er

en
ce

 r
el

at
iv

e
P

S
N

R
 c

ha
ng

e
(d

B
)

Q1=2
Q1=4
Q1=6
Q1=8

(a) (b)

Fig. 7. Relative PSNR difference of integer S-transform vs. reference pixel domain
conversion

References

1. ISO/IEC 13818-2: Information technology - Generic coding of moving pictures and
associated audio information: Video. Edition 2 (2000)

2. Weigand, T., Sullivan, G.J., Bjøntegaard G., Luthra A.: Overview of the H.264/AVC
video coding standard. IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7
(2003) 560-576

3. Keesman, G., Hellinghuizen, R., Hoeksema, F., Heideman, G.: Transcoding of
MPEG bitstreams. Signal Processing: Image Communication, vol. 8 (1996) 481-500

4. Chen, W.H., Smith, C.H., Fralick, S.C.: A Fast Computation Algorithm for The
Discrete Cosine Transform. IEEE Trans. Commun., vol. COM-25 (1977) 1004-1009

5. Malvar, H.S., Hallapuro, A., Karczewicz, M., Kerofsky, L.: Low-Complexity Trans-
form and Quantization in H.264/AVC. IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 7 (2003) 598-603

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2004-058.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

