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This paper supercedes previous technical reports on engagement in human-robot interaction.
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1 Introduction

When individuals interact with one another face-to-face, they use gestures and
conversation to begin their interaction, to maintain and accomplish things
during the interaction, and to end the interaction. Engagement is the pro-
cess by which interactors start, maintain and end their perceived connection
to each other during an interaction. It combines verbal communication and
non-verbal behaviors, all of which support the perception of connectedness
between interactors. While the verbal channel provides detailed and rich se-
mantic information as well as social connection, the non-verbal channel can
be used to provide information about what has been understood so far, what
the interactors are each (or together) attending to, evidence of their waning
connectedness, and evidence of their desire to disengage.

Evidence for the significance of engagement becomes apparent in situations
where engagement behaviors conflict, such as when the dialogue behavior in-
dicates that the interactors are engaged (via turn taking, conveying intentions
and the like), but when one or more of the interactors looks away for long
periods to free space or objects that have nothing to do with the dialogue.
This paper explores the idea that engagement is as central to human-robot
interaction as it is for human-human interaction. 1

Engagement is not well understood in the human-human context, in part be-
cause it has not been identified as a basic behavior. Instead, behaviors such
as looking and gaze, turn taking and other conversational matters have been
studied separately, but only in the sociological and psychological communities
as part of general communication studies. In artificial intelligence, much of
the focus has been on language understanding and production, rather than
gestures or on the fundamental problems of how to get started and stay con-
nected, and the role of gesture in connecting. Only with the advent of embod-
ied conversational (screen-based) agents and better vision technology have is-
sues about gesture begun to come forward (see Traum and Rickel (2002) and
Nakano et al. (2003) for examples of screen-based embodied conversational
agents where these issues are relevant).

1 The use of the term “engagement” was inspired by a talk given by Alan Bierman
at User Modelling 1999. Bierman (personal communication, 2002) said “The point
is that when people talk, they maintain conscientious psychological connection with
each other and each will not let the other person go. When one is finished speaking,
there is an acceptable pause and then the other must return something. We have
this set of unspoken rules that we all know unconsciously but we all use in every
interaction. If there is an unacceptable pause, an unacceptable gaze into space, an
unacceptable gesture, the cooperating person will change strategy and try to re-
establish contact. Machines do none of the above, and it will be a whole research
area when people get around to working on it.”
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The methodology applied in this work has been to study human-human inter-
action and then to apply the results to human-robot interaction, with a focus
on hosting activities. Hosting activities are a class of collaborative activity in
which an agent provides guidance in the form of information, entertainment,
education or other services in the user’s environment. The agent may also
request that the user undertake actions to support its fulfillment of those ser-
vices. Hosting is an example of what is often called “situated”or “embedded”
activities, because it depends on the surrounding environment as well as the
participants involved. We model hosting activities using the collaboration and
conversation models of Grosz and Sidner (1986), Grosz and Kraus (1996), and
Lochbaum (1998). Collaboration is distinguished from those interactions in
which the agents cooperate but do not share goals.

In this work we define interaction as an encounter between two or more in-
dividuals during which at least one of the individuals has a purpose for en-
countering the others. Interactions often include conversation although it is
possible to have an interaction where nothing is communicated verbally. Col-
laborative interactions are those in which the participating individuals come
to have shared goals and intend to carry out activities to attain these shared
goals. This work is directed at interactions between only two individuals.

Our hypothesis for this work concerned the effects of engagement gestures
during collaborative interactions. In particular, we expect that a robot using
appropriate looking gestures and one that had no such gestures would differ-
entially affect how the human judged the interaction experience. We further
predicted that the human would respond with corresponding looking gestures
whenever the robot looked at and away from the human partner in appropriate
ways. The first part of this paper investigates the nature of looking gestures in
human-human interactions. The paper then explains how we built a robot to
approximate the human behavior for engagement in conversation. Finally, the
paper reports on an experiment wherein a human partner either interacts with
a robot with looking gestures or one without them. A part of that experiment
involved determining measures to use to evaluate the behavior of the human
interactor.

2 Human-human engagement: results of video analysis

This section presents our work on human-human engagement. First we re-
view the findings of previous research that offer insight into the purpose of
undertaking the current work.

Head gestures (head movement and eye movement) have been of interest to
social scientists studying human interaction since the 1960s. Argyle and Cook
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(1976) documented the function of gaze as an overall social signal, to attend
to arousing stimulus, and to express interpersonal attitudes, and as part of
controlling the synchronization of speech. They also noted that failure to at-
tend to another person via gaze is evidence of lack of interest and attention.
Other researchers have offered evidence of the role of gaze in coordinating talk
between speakers and hearers, in particular, how gestures direct gaze to the
face and why gestures might direct it away from the face (Kendon (1967);
Duncan (1972); Heath (1986); Goodwin (1986) among others). Kendon’s ob-
servations (1967) that the participant taking over the turn in a conversation
tends to gaze away from the previous speaker has been widely cited in the
natural language dialogue community. Interestingly, Kendon thought this be-
havior might be due to the processing load of organizing what was about to
be said, rather than a way to signal that the new speaker was undertaking to
speak. More recent research argues that the information structure of the turn
taker’s utterances governs the gaze away from the other participants (Cassell
et al. (1999)).

Other work has focused on head movement alone (Kendon (1970); McClave
(2000)) and its role in conversation. Kendon looked at head movements in
turn taking and how they were used to signal change of turn, while McClave
provided a large collection of observations of head movement that details the
use of head shakes and sweeps for inclusion, intensification or uncertainty
about phrases in utterances, change of head position to provide direct quotes,
to provide images of characters and to place characters in physical space during
speaking, and head nods as backchannels and as encouragement for listener
response. 2

While these previous works provide important insights as well as methodolo-
gies for how to observe people in conversation, they did not intend to explore
the qualitative nature of head movement, nor did they attempt to provide
general categories into which such behaviors could be placed. The research
reported in this paper has been undertaken with the belief that regularities of
behavior in head movement can be observed and understood. This work does
not consider gaze because it has been studied more recently in AI models for
turn taking (Thorisson (1997); Cassell et al. (1999)) and because the opera-
tion of gaze as a whole for an individual speaker and for an individual listener
is still an area in need of much research. Nor is this work an attempt to add
to the current theories about looking and turn taking. Rather this work is
focused on attending to the face of the speaker, and harks back to Argyle and
Cook’s (1976) ideas about looking (in their studies, just gazing) as evidence of

2 Yngve (1970) first observed the use of nods as backchannels, which are gestures
and phrases such as “uh-huh, mm-hm, yeh, yes” that hearers offer during conver-
sation. There is disagreement about whether the backchannel is used by the hearer
to take a turn or to avoiding doing so.
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interest. Of most relevance to gaze, looking and turn taking is Nakano et al’s
recent work on grounding, which reports on the use of the hearer’s gaze and
the lack of negative feedback to determine whether the speaker’s turn has been
grounded by the hearer. As will be clear in the next section, our observations
of looking behavior complement the empirical findings of that work.

The robotic interaction research reported in this paper was inspired by work
on embodied conversation agents (ECAs). The Steve system, which provided
users a means to interact with the ECA Steve through head-mounted glasses
and associated sensors, calculated the user’s field of view to determine which
objects were in view, and used that information to generate references in
utterances (Rickel and Johnson (1999)). Other researchers (notably, Cassell
et al. (2000a,b); Johnson et al. (2000), Gratch et al. (2002)) have developed
ECAs that produce gestures in conversation, including facial gestures, hand
gestures and body movements. However, they have not tried to incorporate
recognition as well as production of these gestures, nor have they focused on
the use of these behaviors to maintain engagement in conversation.

One might also consider whether people necessarily respond to robots in the
same way as they do to screen-based agents. While this topic requires much
further analysis, work by Kidd (2003) indicates that people collaborate differ-
ently with a telepresent robot than with a physically present robot. In that
study, the same robot interacted with all participants, with the only differ-
ence being that for some participants the robot was present only by video link
(i.e., it appeared on screen to interact with a person). Participants found the
physically present robot more altruistic, more persuasive, more trustworthy,
and providing better quality of information.

For the work presented here, we videotaped interactions of two people in a
hosting situation, and transcribed portions of the video for all the utterances
and some of the gestures (head, body position, body addressing) that occurred.
We then considered one behavior in detail, namely mutual face tracking of
the participants, as evidence of their focus of interest and engagement in the
interaction. The purpose of the study was to determine how well the visitor
(V) in the hosting situation tracked the head motion of the host (H), and to
characterize the instances when V failed to track H. 3 While it is not possible
to draw conclusions about all human behavior from a single pair interaction,
even a single pair provides an important insight into the kinds of behavior
that can occur.

In this study we assumed that the listener would track the speaker almost all
the time, in order to convey engagement and use non-verbal as well as verbal

3 We say that V “tracks H’s changes in looking” if: when H looks at V, then V
looks back at H; and when H looks elsewhere, V looks toward the same part of the
environment as H looked.
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Percentage of:

Count Tracking failures Total host looks

Quick looks 11 30% 13%

Nods 14 38% 17%

Uncategorized 12 32% 15%
Table 1
Failures of a visitor (V) to track changes in host’s (H) looking during a conversation.

information for understanding. In our study the visitor is the listener in more
than 90% of the interaction (which is not the normal case in conversations). 4

To summarize, there are 82 instances where the (male) host (H) changed his
head position, as an indication of changes in looking, during a five minute con-
versational exchange with the (female) visitor (V). Seven additional changes
in looking were not counted because it was not clear to where the host turned.
Of his 82 counted changes in looking, V tracks 45 of them (55%). The remain-
ing failures to track looks (37, or 45% of all looks) can be subclassed into 3
groups: quick looks (11), nods (14), and uncategorized failures (12), as shown
in Table 1. The quick look cases are those for which V fails to track a look
that lasts for less than a second. The nod cases are those for which V nods
(e.g., as an acknowledgement of what is being said) rather than tracking H’s
look.

The quick look cases happen when V fails to notice H’s look due to some
other activity, or because the look occurs in mid-utterance and does not seem
to otherwise affect H’s utterance. In only one instance does H pause intona-
tionally and look at V. One would expect an acknowledgement of some kind
from V here, even if she doesn’t track H’s look, as is the case with nod failures.
However, H proceeds even without the expected feedback.

The nod cases can be explained because they occur when H looks at V even
though V is looking at something else. In all these instances, H closes an
intonation phase, either during his look or a few words after, to which V nods
and often articulates with “Mm-hm,” “Wow” or other phrases to indicate
that she is following her conversational partner. In grounding terms (Clark
(1996)), H is attempting to ascertain by looking at V that she is following his
utterances and actions. When V cannot look, she provides feedback by nods
and comments. She is able to do this because of linguistic (that is, prosodic)
information from H indicating that her contribution is called for.

4 The visitor says only 15 utterances other than 43 backchannels (for example,
ok, ah-hah, yes, and wow) during 5 minutes and 14 seconds of dialogue. Even the
visitor’s utterances are brief, for example, absolutely, that’s very stylish, it’s not a
problem.
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Fig. 1. Mel, the penguin robot with the IGlassware table

Of the uncategorized failures, the majority (8 instances) occur when V has
other actions or goals to undertake. In addition, all of the uncategorized fail-
ures are longer in duration than quick looks (2 seconds or more). For example,
V may be finishing a nod and not be able to track H while she’s nodding. Of
the remaining three tracking failures, each occurs for seemingly good reasons
to video observers, but the host and visitor may or may not have been aware
of these reasons at the time of occurrence. For example, one failure occurs
at the start of the hosting interaction when V is looking at the new (to her)
object that H displays and hence does not track H when he looks up at her.

Experience from this data has resulted in the principle of conversational track-
ing : a participant in a collaborative conversation tracks the other participant’s
face during the conversation in balance with the requirement to look away in
order to: (1) participate in actions relevant to the collaboration, or (2) multi-
task with activities unrelated to the current collaboration, such as scanning
the surrounding environment for interest or danger, avoiding collisions, or
performing personal activities.

3 Applying the results to robot behavior

The above results and the principle of conversational tracking have been put
to use in robot studies via two different gesture strategies, one for behavior
produced by the robot and one for interpreting user behavior. Our robot,
named Mel, is designed to resemble a penguin wearing glasses (Figure 1), and
is described in more detail in Section 4. The robot’s default behavior during
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a conversation is to attend to the user’s face, i.e., to keep its head oriented
toward the user’s face. However, when called upon to look at objects in the
environment during its conversational turn, the robot turns its head toward
objects (either to point or indicate that the object is being reintroduced to
user attention). Because the robot is not mobile and cannot see other activities
going on around it, the robot does not scan the environment. Thus the non-
task oriented lookaways observed in our studies of a human speaker are not
replicated in these strategies with the robot.

A portion of the robot’s verbal behavior is coordinated with gestures as well.
The robot converses about the task and obeys a model of turn taking in
conversation. The robot always returns to face the user when it finishes its
conversational turn, even if it had been directed elsewhere. It also awaits ver-
bal responses not only to questions, but to statements and requests, to confirm
user understanding before it continues the dialogue. This behavior parallels
that of the human speaker in our studies. The robot’s collaboration and con-
versation abilities are based on the use of a tool for collaborative conversation
(Rich and Sidner (1998); Rich et al. (2001)). An example conversation for a
hosting activity is discussed in Section 4.

In interpreting human behavior, the robot does not adhere to the expecta-
tion that the user will look at the robot most of the time. Instead it expects
that the user will look around at whatever the user chooses. This expectation
results from the intuition that users might not view the robot as a typical
conversational partner. Only when the robot expects the user to view certain
objects does it respond if the user does not do so. In particular, the robot uses
verbal statements and looking gestures to direct the user’s attention to the
object. Furthermore, just as the human-human data indicates, the robot inter-
prets head nods as an indication of grounding. 5 Our models treat recognition
of user head nodding as a probabilistic classification of sensed motion data,
and the interpretation of each nod depends on the dialogue context where it
occurs. Only head nods that occur when or just before the robot awaits a
response to a statement or request (a typical grounding point) are interpreted
as acknowledgement of understanding.

The robot does not require the user to look at it when the user takes a conver-
sational turn (as is prescribed by Sacks et al. (1974)). However, as we discuss
later, such behavior is typical in a majority of the user interactions. The robot
does expect that the user will take a turn when the robot signals its end of
turn in the conversation. The robot interprets the failure to do so as an in-

5 We view grounding as a backward looking engagement behavior, one that solidifies
what is understood up to the present utterance in the interaction. Forward looking
engagement tells the participants that they continue to be connected and aware in
the interaction.
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Fig. 2. Mel demonstrates IGlassware to a visitor.

dication of disengagement, to which it responds by asking whether the user
wishes to end the interaction. This strategy is not based on our human-human
studies, since we saw no instances where failure to take up the turn occurred.

The robot also has its own strategies for initiating and terminating engage-
ment, which are not based on our human-human studies. The robot searches
out a face while offering greetings and then initiates engagement once it has
some certainty (either through user speech or close proximity) that the user
wants to engage (see the discussion in Section 4 for details on how this is
accomplished). Disengagement occurs by offering to end the interaction, fol-
lowed by standard (American) good-bye rituals (Schegeloff and Sacks (1973)),
including the robot’s looking away from the user at the close.

4 Architectures to support human-robot engagement, collabora-
tion and conversation.

Successful interaction between the human and robot requires the robot express
its own engagement, and to interpret the human’s engagement behavior. This
section reports on an architecture and its components to support engagement
in collaborative interactions.

The robot’s interaction abilities have been developed and tested using a target
task wherein the robot, acting as host, collaboratively demonstrates a hard-
ware invention, IGlassware (Dietz et al. (2002)), to a human visitor (Figure 2).
The robot is designed to resemble a penguin wearing glasses, and is station-
ary. Because the robot has only wings but no hands, it relies on the human
to perform the physical manipulations necessary for the demonstration. The
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Robot moves its head back and forth
until it locates a talking face.

Mel: Hi, I’m Mel a robotic penguin.
User: Hi.

After this point, the robot tracks the
user’s face as the user moves around
or turns his or her head.

Mel: What’s your name?
User: Sam.

Mel: Sam, I’d like to show you a demo.
OK?

User: No.

Mel: But it’s really interesting. Come
on. Try it!

User: Ok.

Mel: It would be really nice to know
what kind of progress people are mak-
ing in their dining. So Paul Dietz cre-
ated a new product called IGlassware
for this. By the way, Sam, do you know
Paul?

User: No.

Mel: Well, Paul is a member of MERL.
This demo is one of his creations.

User: Ok.

Mel: IGlassware stands for Instru-
mented glassware! Sam, right there
<robot turns head to table> is the
IGlassware cup. <robot turns head to
user>

Some users do not turn to the cup, so
the robot says:

Mel: The cup is here to my <robot turns
head to table> right <robot turns
head to user>.
User turns toward the cup.

Mel: And near it, is the table readout.
The word re-fill on the readout means
that it is empty.

User: Ok.

Mel: All right, now we’ll see how to use
the cup.

User: All right.

Mel: First you should pour enough wa-
ter from the pitcher into the glass to
fill it up. Then make sure the glass is
on the IGlassware table.

User: Ok. <User pours water>

Mel: Good, notice, the bar on the read-
out <robot turns head to readout dis-
play on table> shows that the glass is
full <robot turns back to user>.

User: Right.

Mel: Ok, pour the water back into the
pitcher.

User: Ok. <User pours water>

Mel: I’m waiting for a reading from the
table for the glass.

Mel: Good. See, it registers needing a re-
fill!

User: Yes.

Mel: Would you like me to explain how
this works?

User: Sure.

Mel: The copper in the glass <robot
turns head to readout display> trans-
mits to the readout display by induc-
tance with the surface of the table.
The readout then displays the infor-
mation coming to the table <Robot
turns head back to user>.

User: Cool.

Mel: Would you like to know how this
technology might be used in restau-
rants?

User: Yes.

Mel: The glass tells the restaurant when
the customer needs a refill. In restau-
rants drinks mean profit, so this gad-
get makes it easier for restaurants
to sell more drinks and make more
money.

User: Ok.

Mel: Well, Sam, that’s about all. Go see
Paul Dietz, for more about IGlass-
ware. So long!

User: Good-bye.

Fig. 3. Example conversation between Mel and a human user.

10



human thus must agree to collaborate for the demo to succeed. A typical in-
teraction lasts about 3.5 minutes and an example is shown in Figure 3. Robot
beat gestures, 6 head nods, and generic human gestures are not included in
the figure. If the human does not agree to participate in the demo, the robot
engages in brief, basic social “chit-chat” before closing the conversation. How
the user responds to the robot’s looks at the table are discussed in Section 5.

The robot’s hardware consists of:

• 7 servos (two 2 DOF shoulders, 2 DOF neck, 1 DOF beak)
• Stereo camera (6 DOF head tracking software of Morency et al. (2003);

Viola and Jones (2001))
• Stereo microphones (with speech detection and direction-location software)
• Far-distance microphone for speech recognition
• 3 computers: one for sensor fusion and robot motion, one for vision (6 DOF

head tracking and head-gesture recognition), one for dialogue (speech recog-
nition, dialogue modeling, speech generation and synthesis).

Our current robot is able to:

• Initiate an interaction by visually locating a potential human interlocutor
and generating appropriate greeting behaviors,

• Maintain engagement by tracking the user’s moving face and judging the
user’s engagement based on head position (to the robot, to objects necessary
for the collaboration),

• Reformulate a request upon failure of the user to respond to robot pointing,
• Point and look at objects in the environment,
• Interpret nods as backchannels and agreements in conversation (Kapoor and

Picard (2001); Morency et al. (2005)), and
• Understand limited spoken utterances and produce rich verbal spoken con-

versation, for demonstration of IGlassware, and social “chit-chat,”
• Accept appropriate spoken responses from the user and make additional

choices based on user comments,
• Disengage by verbal interaction and closing comments, and simple gestures,
• Interpret user desire to disengage (through gesture and speech evidence).

Verbal and non-verbal behavior are integrated and occur fully autonomously.

The robot’s software architecture consists of distinct sensorimotor and con-
versational subsystems. The conversational subsystem is based on the Col-
lagen(TM) collaboration and conversation model (see Rich and Sidner (1998);
Rich et al. (2001)), but enhanced to make use of strategies for engagement.

6 Beat gestures are hand or occasionally head movements that are hypothesized
to occur to mark new information in an utterance (Cassell (2000); Cassell et al.
(2001)).
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Fig. 4. Robot software architecture

The sensorimotor subsystem is a custom, dynamic, task-based blackboard
robot architecture. It performs data fusion of sound and visual information
for tracking human interlocutors in a manner similar to other systems such
as Okuno et al. (2003), but its connection to the conversational subsystem is
unique. The communication between these two subsystems is vital for man-
aging engagement in collaborative interactions with a human.

4.1 The Conversational Subsystem of the Robot

For the robot’s collaboration and conversation model, the special tutoring ca-
pabilities of Collagen(TM) were utilized. In Collagen(TM) a task, such as
demonstrating IGlassware, is specified by a hierarchical library of “recipes”,
which describe the actions that the user and agent will perform to achieve
certain goals. For tutoring, the recipes include an optional prologue and epi-
logue for each action, to allow for the behavior of tutors in which they often
describe the act being learned (the prologue), demonstrate how to do it, and
then recap the experience in some way (the epilogue).

At the heart of the IGlassware demonstration is a simple recipe for pouring
water from a pitcher into a cup, and then pouring the water from the cup
back into the pitcher. These are the physical actions the robot “teaches.” The
rest of the demonstration is comprised of explanations about what the user
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will see, uses of the IGlassware table, and so on. The interaction as a whole
is described by a recipe consisting of a greeting, the demonstration and a
closing. The demonstration is an optional step, and if not undertaken, can be
followed by an optional step for having a short chat about visiting the MERL
lab. Providing these and other more detailed recipes to Collagen(TM) makes
it possible for the robot to interpret and participate in the entire conversation
using the built-in functions provided by Collagen(TM).

Figure 5 provides a representation, called a segmented interaction history
which Collagen(TM) automatically incrementally computes during the robot
interaction. The indentation in Figure 5 reflects the hierarchical (tree) struc-
ture of the underlying recipe library. The terminal nodes of the tree are the
utterances and actions of the human and the robot, as shown in Figure 2.
The non-terminal nodes of the tree (indicated by square brackets) correspond
to the goals and subgoals of the task model. For example, the three lines in
bold denote the three first level subgoals of the top level goal in the recipe
library. Many parts of the segmented interaction history have been suppressed
in Figure 5 to save space.

The robot’s language generation is achieved in two ways. First, Collagen(TM)

automatically produces a semantic representation of what to say, which is ap-
propriate to the current conversational and task context. For example, Colla-
gen(TM) automatically decides near the beginning of the interaction to generate
an utterance whose semantics is a query for the value of an unknown param-
eter of a recipe, in this case, the parameter corresponding to the user’s name.
Collagen(TM)’s default realization for this type of utterance is “what is the
<parameter>?” as in “what is the user name?” This default is hardly a natural
way to ask a person for their name. To remedy this problem, this default can
be overriden by another part of the generation algorithm in Collagen(TM). It
applies optional hand-built application-specific templates. In this example, it
causes “what is your name?” to be generated. In addition, the robot’s beat
movements and head turns are also hand-built to occur in concert with the
utterances. Tracking the visitor’s face and nodding at the user are not hand
crafted and occur automatically in the sensorimotor system.

Engagement behavior is integrated in Collagen(TM) in two ways. First, en-
gagement is a pervasive behavior rather than part of achieving any particular
goal, decisions about engagement (beginning it, determining whether it is suc-
ceeding or failing, and when to end it) are handled in Collagen(TM)’s “agent”
module. The robot’s Collagen(TM) agent was extended to provide additional
decision-making rules for when a face is found (so that greetings can occur), to
determine when to abort the demo, how to interpret looks away on the part
of the user, and the expectations that the user will look at specific objects
during the demo.
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Got face.
[Done interacting about IGlassware.]

1 [Done greeting.]
2 [Done demonstrating IGlassware.]

Mel says “Sam, I’d like to show you a demo, Ok?”
User says “No.” (. . . )
[Done providing prologue to demonstrating IGlassware.]

[Done discussing conditions of demonstrating IGlassware.]
[Done Mel introducing IGlassware.]

Mel says “It would be really nice to know. . . .”
User says “Ok.”

[Done discussing Paul.]
[Done user looking at cup by showing.]

[Done showing how to look at cup.]
[Done user looking at cup.]

Mel says “Sam, right there is the IGlassware cup.”
Mel says “The cup is here to my right.”
User looks at cup.

[Done Mel providing epilogue to showing how to look at cup.]
[Done user looking at readout by showing.]

[Done filling and emptying the glass.]
[Done user pouring water into the cup by showing.]

[Done showing how to pour water into the cup.]
[Done user pouring water into the cup.]

[Done user pouring water back into the pitcher by showing.]
[Done showing how to pour water back into the pitcher.]

[Done user pouring water back into the pitcher.]
Mel says “Ok. pour the water back into the pitcher.”
User pours water back into the pitcher.

[Done Mel providing epilogue to showing how to pour water back.]
Mel says “Good.”
[Done discussing conditions of showing how to pour water back.]

Mel says “See, it registers needing a re-fill!”
User says “Yes.”

[Done providing epilogue to demonstrating IGlassware.]
[Done discussing conditions of demonstrating IGlassware.]

[Done explaining how IGlassware works.]
[Done explaining why the cup is useful.]

3 [Done closing by normal closing.]
Mel says “Well, Sam, that’s about all. . . .”

Fig. 5. Segmented Interaction History for Figure fig:demonstration

Second, engagement rules can introduce new goals into Collagen(TM)’s col-
laborative behavior. For example, if the engagement rules (mentioned pre-
viously) decide that the user is disengaging, a new goal may be introduced
to re-engage. Collagen(TM) will then choose among its recipes to achieve the
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goal of re-engagement. Thus the full problem solving power of the task-oriented
part of Collagen(TM) is brought to bear on goals which are introduced by the
engagement layer.

4.2 Interactions between the sensorimotor and conversational subsystems

Interactions between the sensorimotor and conversational subsystems flow in
two directions. Information about user manipulations and gestures must be
communicated in summary form as discrete events from the sensorimotor to
the conversational subsystem, so that the conversational side can accurately
model the collaboration and engagement. The conversational subsystem uses
this sensory information to determine whether the user is continuing to engage
with the robot, has responded to (indirect) requests to look at objects in the
environment, has nodded at the robot (which must be interpreted in light of
the current conversation state as either a backchannel, an agreement, or as
superfluous), is looking elsewhere in the scene, or is no longer visible (a signal
of possible disengagement).

In the other direction, high-level decisions and dialogue state must be com-
municated from the conversational to the sensorimotor subsystem, so that the
robot can gesture appropriately during robot and user utterances, and so that
sensor fusion can appropriately interpret user gestures and manipulations. For
example, the conversational subsystem tells the sensorimotor subsystem when
the robot is speaking and when it expects the human to speak, so that the
robot will look at the human during the human’s turn. The conversational
subsystem also indicates the points during robot utterances when the robot
should perform a given beat gesture (Cassell et al. (2001)) in synchrony with
new information in the utterance, or when it should look at (only by head
position, not eye movements) or point to objects (with its wing) in the envi-
ronment in coordination with spoken output. For example, the sensorimotor
subsystem knows that a GlanceAt command from the conversational subsys-
tem temporarily overrides any default face tracking behavior when the robot is
speaking. However, normal face tracking goes on in parallel with beat gestures
(since beat gestures in the robot are only done with the robot’s limbs).

Our robot cannot recognize or locate objects in the environment. In early
versions of the IGlassware demonstration experiments, we used special markers
on the cup so that the robot could find it in the environment. However, when
the user manipulated the cup, the robot was not able to track the cup quickly
enough, so we omitted this type of knowledge in more recent versions of the
demo. The robot learns about how much water is in the glass, not from visual
recognition, but through wireless data that IGlassware sends to it from the
table.
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In many circumstances, information about the dialogue state must be com-
municated from the conversational to the sensorimotor subsystem in order for
the sensorimotor subsystem to properly inform the conversational subsystem
about the environment state and any significant human actions or gestures.
For example, the sensorimotor subsystem only tries to detect the presence of
human speech when the conversational subsystem expects human speech, that
is, when the robot has a conversational partner and is itself not speaking. Sim-
ilarly, the conversational subsystem tells the sensorimotor subsystem when it
expects, based on the current purpose as specified in its dialogue model, that
the human will look at a given object in the environment. The sensorimotor
subsystem can then send an appropriate semantic event to the conversational
subsystem when the human is observed to move his/her head appropriately.
For example, if the cup and readout are in approximately the same place,
a user glance in that direction will be translated as LookAt(human,cup)
if the dialogue context expects the user to look at the cup (e.g., when the
robot says “here is the cup”), but as LookAt(human,readout) if the di-
alogue context expects the human to look at the readout, and as no event if
no particular look is expected.

The current architecture has an important limitation: The robot has control of
the conversation and directs what is discussed. This format is required because
of the unreliability of current off-the-shelf speech recognition tools. User turns
are limited to a few types of simple utterances, such as “hello, goodbye, yes,
no, okay,” and “please repeat”. While people often say more complex utter-
ances, 7 such utterances cannot be interpreted with any reliability by current
commercially available speech engines unless users train the speech engine for
their own voices. However, our robot is intended for all users without any
type of pre-training, and therefore speech and conversation control have been
limited. Future improvements in speech recognition systems will eventually
permit users to speak complex utterances in which they can express their de-
sires, goals, dissatisfactions and observations during collaborations with the
robot. The existing Collagen(TM) system can already interpret the intentions
conveyed in more complex utterances, even though no such utterances can be
expressed reliably to the robot at the present time.

Finally, it must be noted here that the behaviors that are supported in Mel
are not found in many other systems. The MACK screen-based embodied
conversation agent, which uses earlier versions of the same vision technology
used in this work, is also able to point at objects and to track the human user’s
head (Nakano et al. (2003)). However, the MACK system was tested with just
a few users and does not use the large amount of data we have collected (over

7 In our experimental studies, despite being told to limit their utterances to ones
similar to those above, some users spoke more complex utterances during their
conversations with the robot.
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more than a year) of users interacting and nodding to the robot. This data
collection was necessary to make the vision nodding algorithms reliable enough
to use in a large user study, which we are currently undertaking (see Morency
et al. (2005) for initial results on that work). A full report on our experiences
with a robot interpreting nodding must be delayed for a future paper.

5 Studies with users

A study of the effects of engagement gestures by the robot with human collab-
oration partners was conducted (see Sidner et al. (2004)). The study consisted
of two groups of users interacting with the robot to collaboratively perform a
demo of IGlassware, in a conversation similar to that described in Figure 3.
We present the study and main results as well as additional results related to
nodding. We discuss measures used in that study as well as additional mea-
sures that should be useful in gauging the naturalness of robotic interactions
during conversations with human users.

Thirty-seven participants were tested across two different conditions. Partic-
ipants were chosen from summer staff at a computer science research lab-
oratory, and individuals living in the local community who responded to a
advertisements placed in the community. Three participants had interacted
with a robot previously; none had interacted with our robot. Participants
ranged in age from 20 to roughly 50 years of age; 23 were male and 14 were
female. All participants were paid a small fee for their participation.

In the first, the mover condition, with 20 participants, the fully functional
robot conducted the demonstration of the IGlassware table, complete with
all its gestures. In the second, the talker condition, with 17 participants, the
robot gave the same demonstration in terms of verbal utterances, that is, all
its conversational verbal behavior using the speech and Collagen(TM) system
remained the same. It also used its visual system to observe the user, as in
the mover condition. However, the robot was constrained to talk by moving
only its beak in synchrony with the words it spoke. It initially located the
participant with its vision system, oriented its head to face the user, but
thereafter its head remained pointed in that direction. It performed no wing
or head movements thereafter, neither to track the user, point and look at
objects nor to perform beat gestures.

In the protocol for the study, each participant was randomly pre-assigned into
one of the two conditions. Twenty people participated in the mover condition
and 17 in the talker condition. A video camera was turned on before the
participant arrived. The participant was introduced to the robot as “Mel”
and told the stated purpose of the interaction, that is, to see a demo from
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Mel. Participants were told that they would be asked a series of questions at
the completion of the interaction.

Then the robot was turned on, and the participant was instructed to approach
the robot. The interaction began, and the experimenter left the room. After
the demonstration, participants were given a short questionnaire that con-
tained the scales described in the Questionnaires section below. Lastly they
also reviewed the videotape with the experimenter to discuss problems they
encountered.

All participants completed the demo with the robot. Their sessions were video-
taped and followed by a questionnaire and informal debriefing. The videotape
sessions were analyzed to determine what types of behaviors occurred in the
two conditions and what behaviors provided evidence that the robot’s engage-
ment behavior approached human-human behavior.

While our work is highly exploratory, we predicted that people would prefer in-
teractions with a robot with gestures (the mover condition). We also expected
that participants in the mover condition would exhibit more interest in the
robot during the interaction. However, we did not know exactly what form
the differences would take. As our results show, our predictions are partially
correct.

5.1 Questionnaires

Questionnaire data focused on the robot’s likability, understanding of the
demonstration, reliability/dependability, appropriateness of movement and
emotional response.

Participants were provided with a post-interaction questionnaire. Question-
naires were devoted to five different factors concerning the robot:

(1) General liking of Mel (devised for experiment; 3 items). This measure
gives the participants’ overall impressions of the robot and their interac-
tions with it.

(2) Knowledge and confidence of knowledge of demo (devised for experiment;
6 items). Knowledge of the demonstration concerns task differences. It
was unlikely that there would be a difference among participants, but
such a difference would be very telling about the two conditions of interac-
tion. Confidence in the knowledge of the demonstration is a finer-grained
measure of task differences. Confidence questions asked the participant
how certain they were about their responses to the factual knowledge
questions. There could potentially be differences in this measure not seen
in the direct questions about task knowledge.
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(3) Involvement in the interaction (adapted from Lombard et al. (2000);
Lombard and Ditton (1997); 5 items). Lombard and Ditton’s notion of
engagement (different from ours) is a good measure of how involving the
experience seemed to the person interacting with the robot.

(4) Reliability of the robot (adapted from Kidd (2003), 4 items). While not
directly related to the outcome of this interaction, the perceived reliability
of the robot is a good indicator of how much the participants would be
likely to depend on the robot for information on an ongoing basis. A
higher rating of reliability means that the robot will be perceived more
positively in future interactions.

(5) Effectiveness of movements (devised for this experiment; 5 items). This
measure is used to determine the quality of the gestures and looking.

Results from these questions are presented in Table 2. A multivariate anal-
ysis of condition, gender, and condition crossed with gender (for interaction
effects) was undertaken. No difference was found between the two groups on
likability, or understanding of the demonstration, while a gender difference for
women was found on involvement response. Participants in the mover condi-
tion scored the robot more often as making appropriate gestures (significant
with F [1, 37] = 6.86, p = 0.013, p < 0.05), while participants in the talker con-
dition scored the robot more often as dependable/reliable (F [1, 37] = 13.77,
p < 0.001, high significance).

For factors where there are no difference in effects, it is evident that all par-
ticipants understood the demonstration and were confident of their response.
Knowledge was a right/wrong encoding of the answers to the questions. In
general, most participants got the answers correct (overall average = 0.94;
movers = 0.90; talkers = 0.98). Confidence was scored on a 7-point Likert
scale. Both conditions rated highly (overall average = 6.14; movers = 6.17;
talkers = 6.10). All participants also liked Mel more than they disliked him.
On a 7-point Likert scale, the overall average was 4.86. The average for the
mover condition was 4.78, while the talker condition was actually higher, at
4.96. If one participant who had difficulty with the interaction is removed,
the mover group average becomes 4.88. None of the comparative differences
between participants is significant.

The three factors with effects for the two conditions provide some insight
into the interaction with Mel. First consider the effects of gender on involve-
ment. The sense of involvement (called engagement in Lombard and Ditton’s
work) concerns being “captured” by the experience. Questions for this factor
included:

• How engaging was the interaction?
• How relaxing or exciting was the experience?
• How completely were your senses engaged?
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Tested factor Significant effects

Liking of Robot: No effects

Knowledge of the demo: No effects

Confidence of knowledge of the demo: No effects

Engagement in the interaction: Effect for female gender:
Female average: 4.84
Male average: 4.48
F [1, 30] = 3.94
p = 0.0574 (Borderline significance)

Reliability of robot: Effect for talker condition:
Mover average: 3.84
Talker average: 5.19
F [1, 37] = 13.77
p < 0.001 (High significance)

Appropriateness of movements: Effect for mover condition:
Mover average: 4.99
Talker average: 4.27
F [1, 37] = 6.86
p = 0.013 (p < 0.05: Significance)

Table 2
Summary of questionnaire results

• The experience caused real feelings and emotions for me.
• I was so involved in the interaction that I lost track of time.

While these results are certainly interesting, we only conclude that male and
female users may interact in different ways with robots that fully move. This
result mirrors work by Shinozawa et al. (2003) who found difference in gender,
not for involvement, but for likability and credibility. Kidd (2003) found gender
differences about how reliable a robot was (as opposed to an on-screen agent);
women found the robot more reliable, while men found the on-screen agent
more so.

Concerning appropriateness of movements, mover participants perceived the
robot as moving appropriately. In contrast, talkers felt Mel did not move
appropriately. However, some talker participants said that they thought the
robot moved! This effect confirms our sense that a talking head is not doing
everything that a robot should be doing in an interaction, when people and
objects are present. Mover participants’ responses indicated that they thought:

• The interaction with Mel was just like interacting with a real person.
• Mel always looked at me at the appropriate times.
• Mel did not confuse me with where and when he moved his head and wings.
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• Mel always looked at me when he was talking to me.
• Mel always looked at the table and the glass at the appropriate times.

However, it is striking that users in the talker condition found the robot more
reliable when it was just a talking head:

• I could depend on Mel to work correctly every time.
• Mel seems reliable.
• If I did the same task with Mel again, he would do it the same way.
• I could trust Mel to work whenever I need him to.

There are two possible conclusions to be drawn about reliability: (1) the
robot’s behaviors were not correctly produced in the mover condition, and/or
(2) devices such as robots with moving parts are seen as more complicated,
more likely to break and hence less reliable. Clearly, much more remains to be
done before users are perfectly comfortable with a robot.

5.2 Behavioral observations

What users say about their experience is only one means of determining in-
teraction behavior, so the videotaped sessions were reviewed and transcribed
for a number of features. With relatively little work in this area (see Nakano
et al. (2003) for one study on related matters with a screen-based ECA), the
choices were guided by measures that indicated interest and attention in the
interaction. These measures were:

• length of interaction time as a measure of overall interest, the
• amount of shared looking (i.e., the combination of time spent looking at each

other and looking together at objects), as a measure of how coordinated the
two conversants were,

• mutual gaze (looking at each other only) also as a measure of conversants
coordination,

• the amount of looking at the robot during the human’s turn, as a measure
of attention to the robot,

• and the amount of looking at the robot overall, also as an attentional mea-
sure.

Table 3 summarizes the results for the two conditions. First, total interaction
time in the two conditions varied significantly (row 1 in Table 3). This differ-
ence may help explain the subjective sense gathered during video viewing that
the talker participants were less interested in the robot and more interested in
doing the demonstration, and hence completed the interaction more quickly.
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Measure Mover Talker Test/Result Significance

Interaction
time

217.7 sec 183.1 sec Single factor
ANOVA:
F [1, 36] = 10.34

Significant:
p < 0.01

Shared looking 51.1% 36.1% Single factor
ANOVA:
F [1, 36] = 8.34

Significant:
p < 0.01

Mutual gaze 40.6% 36.1% Single-factor
ANOVA:
F [1, 36] = 0.74

No:
p = 0.40

Speech
directed to
robot

70.4% 73.1% Single-factor
ANOVA:
F [1, 36] = 4.13

No:
p = 0.71

Look backs,
overall

19.65 avg.
median:
18-19

12.82 avg.
median:
12

Single-factor
ANOVA:
F [1, 36] = 15.00

Highly:
p < 0.001

Table-look 1 12/19
(63%)

6/16
(37.5%)

t-tests
t(33) = 1.52

Weak:
One-tailed:
p = 0.07

Table-look 2 11/20
(55%)

9/16
(56%)

t-tests
t(34) = −1.23

No:
One-tailed:
p = 0.47

Table 3
Summary of behavior test results in human-robot interaction experiment.

While shared looking (row 2 in Table 3) was significantly greater among mover
participants, this outcome is explained by the fact that the robot in the talker
condition could never look with the human at objects in the environment.
However, it is noteworthy that in the mover condition, the human and robot
spent 51% of their time (across all participants) coordinated on looking at each
other and the demonstration objects. Mutual gaze (row 3 in Table 3) between
the robot and human was not significantly different in the two conditions.

We chose two measures for how humans attended to the robot: speech directed
to the robot during the human’s turn, and other times the human looked back
to the robot during the robot’s turn. In the social psychology literature, Argyle
(1975) notes that listeners generally looked toward the speaker as a form
of feedback that they are following the conversation (p. 162-4). So humans
looking at the robot during the robot’s turn would indicate that they are
behaving in a natural conversational manner.

The measure of speech directed to the robot during the human’s turn (row 4
in Table 3) is an average across all participants as a percentage of the total
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number of turns per participant. There is no difference in the rates. What
is surprising is that both groups of participants directed their gaze to the
robot for 70% or more of their turns. This result suggests that a conversa-
tional partner, at least one that is reasonably sophisticated in conversing, is
a compelling partner, even with little gesture ability. 8 However, the second
measure, the number of times the human looked back at the robot, are highly
significantly greater in the mover condition. Since participants spend a good
proportion of their time looking at the table and its objects (55% for movers,
62% for talkers), the fact that they interrupt their table looking to look back
to the robot is an indication of how engaged they are with it compared with
the demonstration objects. This result indicates that a gesturing robot is a
partner worthy of closer attention during the interaction.

We also found grounding effects in the interaction that we had not expected.
Participants in both conditions nodded at the robot, even though during this
study, the robot was not able to interpret nods in any way. Eleven out of
twenty participants in the mover condition nodded at the robot three or more
times during the interaction (55%) while in the talker condition, seven out
of seventeen participants (41%) did. Nods were counted only when they were
clearly evident, even though participants produced slight nods even more fre-
quently. The vast majority of these nods accompany “okay,” or “yes,” while a
few accompany a “goodbye.” There is personal variation in nodding as well.
One participant, who nodded far more frequently than all the other partic-
ipants (a total of 17 times), nodded in what appeared to be an expression
of agreement to many of the robot’s utterances. The prevalence of nodding,
even with no evidence that it is understood, indicates just how automatic this
conversational behavior is. It suggests that the conversation was enough like a
human-to-human conversation to produce this grounding effect even without
planning for this type of behavior. The frequency of nodding in these exper-
iments motivated in part the inclusion of nod understanding in the robot’s
more recent behavior repertoire (Lee et al. (2004)).

We also wanted to understand the effects of utterances where the robot turned
to the demonstration table as a deictic gesture. For the two utterances where
the robot turned to the table (Table-look 1 and 2), we coded when participants
turned in terms of the words in the utterance and the robot’s movements.
These utterances were: “Right there <robot gesture> is the IGlassware cup
and near it is the table readout,” and “The <robot gesture> copper in the
glass transmits to the readout display by inductance with the surface of the
table.” For both of these utterances, the mover robot typically (but not always)
turned its head towards and down to the table as its means of pointing at the
objects. The time in the utterance when pointing occurred is marked with

8 We did not eliminate beak movements in the talker condition since pre-testing
indicated that users found the resulting robot non-conversational.
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the label <robot gesture>. Note that the talker robot never produced such
gestures.

For the first instance, Table-look 1, (“Right there. . . ”), 12/19 mover partici-
pants (63%) turned their heads or their eye gaze during the phrase “IGlassware
cup.” For these participants, this change was just after the robot has turned its
head to the table. The remaining participants were either already looking at
the robot (4 participants), turned before it did (2 participants) or did not turn
to the table at all (1 participant); 1 participant was off-screen and hence not
codeable. In contrast, among the talker participants, only 6/16 participants
turned their head or gaze during “IGlassware cup” (37.5%). The remaining
participants were either already looking at the table before the robot spoke
(7 participants) or looked much later during the robot’s utterances (3 partic-
ipants); 1 participant was off camera and hence not codeable.

For Table-look 2, (“The copper in the glass. . . ”), 11 mover participants turned
during the phrases “in the glass transmits,” 7 of the participants at “glass.”
In all cases these changes in looking followed just after the robot’s change in
looking. The remaining mover participants were either already looking at the
table at the utterance start (3 participants), looked during the phrase “glass”
but before the robot turned (1 participant), or looked during “copper” when
the robot had turned much earlier in the conversation (1 participant). Four
participants did not hear the utterance because they had taken a different
path through the interaction. By comparison, 12 of the talker participants
turned during the utterance, but their distribution is wider: 9 turned between
“copper in the glass transmits” while 3 participants turned much later in
the utterances of the turn. Among the remaining talker participants, 2 were
already looking when the utterance began, 1 participant was distracted by
an outside intervention (and not counted), and 2 participants took a different
path through the interaction.

The results for these two utterances are too sparse to provide strong evidence.
However, they indicate that participants pay attention to when the robot
turns his head, and hence his attention, to the table. When the robot does not
move, participants turn their attention based on other factors (which appear to
include the robot’s spoken utterance, and their interest in the demonstration
table). Kendon (1990) discusses how human participants in one-on-one and in
small groups follow the head changes of others in conversation. Thus there is
evidence that participants in this study are behaving in a way that conforms
to their normal human interactions patterns.

While the results of this experiment indicate that talking encourages people to
respond to a robot, it appears that gestures encourage them even more. One
might argue that movement alone explains why people looked more often at the
robot, but the talking-only robot does have some movement—its beak moves.
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So it would seem that other gestures are the critical matter. The gestures used
in the experiment are ones appropriate to conversation. It is possible that it
is the gestures themselves, and not their appropriateness in the context of the
conversation, that are the source of this behavior. Our current experiment does
not allow us to distinguish between appropriate gestures and inappropriate
ones. However, if the robot were to move in ways that were inappropriate to
the conversation, and if human partners ignored the robot in that case, then
we would have stronger evidence for engagement gestures. We have recently
completed a set of experiments that were not intended to judge these effects,
but have produced a number of inappropriate gestures for extended parts
of an interaction. These results may tell us more about the importance of
appropriate gestures during conversation.

Developing quantitative observational measures of the effects of gesture on
human-robot interaction continues to be a challenging problem. The measures
used in this work, interaction time, shared looking, mutual gaze, looks during
human turn, looks back overall, number of times nodding occurred and in
relation to what conversation events, and observations of the effects of deictic
gestures, are all relevant to judging attention and connection between the
human and the robot in conversation. The measures all reflect patterns of
behavior that occur in human-human conversation. This work has assumed
that it is reasonable to expect to find these same behaviors occurring in human-
robot conversation, as indeed they do. However, there is need for finer-grained
measures, that would allow us to judge more about the robot’s gestures as
natural or relevant at a particular point in the conversation. Such measures
await further research.

6 Related Research

While other researchers in robotics are exploring aspects of gesture (for exam-
ple Breazeal (2001) and Ishiguro et al. (2003)), none of them have attempted
to model human-robot interaction to the degree that involves the numerous
aspects of engagement and collaborative conversation that we have set out
above. A robot developed at Carnegie Mellon University serves as a museum
guide (Burgard et al. (1998)) and navigates well while avoiding humans, but
interacts with users via a screen-based talking head with minimal engagement
abilities. Robotics researchers interested in collaboration and dialogue (e.g.,
Fong et al. (2001)) have not based their work on extensive theoretical research
on collaboration and conversation. Research on human-robot gesture similar-
ity (Ono et al. (2001)) indicates that body gestures corresponding to a joint
point of view in direction-giving affect the outcome of human gestures as well
as human understanding of directions.
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Our work is also not focused on emotive interactions, in contrast to Breazeal
Breazeal (2001) among others (e.g., Lisetti et al. (2004)).

Most similar in spirit to the work reported here is the Armar II robot (Dill-
mann et al. (2004)). Armar II is speech enabled, has some dialogue capa-
bilities, and has abilities to track gestures and people. However, the Armar
II work is focused on teaching the robot new tasks (with programming by
demonstration techniques), while our work has been focused on improving the
interaction capabilities needed to hold conversations and undertake tasks. Re-
cently, Breazeal et al. (2004) have explored teaching a robot a physical task
that can be performed collaboratively once learned.

Research on infant robots with the ability to learn mutual gaze and joint
attention (Kozima et al. (2003); Nagai et al. (2003)) offers exciting possibilities
for eventual use in more sophisticated conversational interactions.

7 Future work

Future work will improve the robot’s conversational language generation so
that nodding by humans will be elicited more easily. In particular, there is
evidence in the linguistic literature, inter alia (Clark (1996)), that human
speech tends to short intonational phrases with pauses for backchannels rather
than long full utterances that resemble sentences in written text. By producing
utterances of the short variety, we expect that people will nod more naturally
at the robot. We plan to test our hypothesis by comparing encounters with
our robot where participants are exposed to different kinds of utterances to
test how they nod in response.

The initiation of an interaction is an important engagement function. Explo-
rations are needed to determine the combinations of verbal and non-verbal
signals that are used to initially engage a human user in an interaction (see
Miyauchi et al. (2004)). Our efforts will include providing mobility to our robot
as well as extending the use of current vision algorithms to “catch the eye” of
the human user and present verbal feedback in the initiation of engagement.

Current limits on the robot’s vision make it impossible to determine the iden-
tity of the user. Thus if the user leaves and is immediately replaced by another
person, the robot cannot tell that this change has happened. Identity recogni-
tion algorithms, in variable light without color features, will soon be used, so
that the robot will be able to recognize the premature end of an interaction
when a user leaves. This capability will also allow the robot to judge when the
user might desire to disengage due to looks away from either the robot or the
objects relevant to collaboration tasks.
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Finally, we would like to understand how users change and adapt to the robot.
Because most of our users have not interacted with robots before, the novelty
of Mel plays some role in their behavior that we cannot quantify. We are
working on giving the robot several additional conversational topics, so that
users can have several conversations with Mel over time, and we can study
whether and how their behaviors change.

8 Conclusions

In this paper we have explored the concept of engagement, the process by
which individuals in an interaction start, maintain and end their perceived
connection to one another. We have reported on one aspect of engagement
among human interactors—the effects of tracking faces during an interaction.
We have reported on a humanoid robot that participates in conversational,
collaborative interactions with engagement gestures. The robot demonstrates
tracking its human partner’s face, participating in a collaborative demonstra-
tion of an invention, and making engagement decisions about its own behavior
as well as the human’s during instances where face tracking was discontinued
in order to track objects for the task. We also reported on our findings of
the effects on human participants of a robot that did and did not perform
engagement gestures.

While this work is only a first step in understanding the engagement process,
it demonstrates that engagement gestures have an effect on the behavior of
human interactors with robots that converse and collaborate. Simply said,
people direct their attention to the robot more often in interactions where
gestures are present, and they find these interactions more appropriate than
when gestures are absent. We believe that as the engagement gestural abilities
of robots become more sophisticated, human-robot interaction will become
smoother, be perceived as more reliable, and will make it possible to include
robots into the everyday lives of people.
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