
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Iterative Decoding Using Replicas

Juntan Zhang, Yige Wang, Marc Fossorier, Jonathan S. Yedidia

TR2005-090 August 2005

Abstract

Replica shuffled versions of iterative decoders of low-density parity-check codes and turbo codes
are presented in this paper. The proposed schemes can converge faster than standard and plain
shuffled approaches. Two methods, density evolution and EXIT charts, are used to analyze the
performance of the proposed algorithms. Both theoretical analysis and simulations show that
the new schedules offer good trade-offs with respect to performance, complexity, latency and
connectivity.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2005
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Publication History:–

1. First printing, TR-2005-090, August 2005

Iterative Decoding Using Replicas

Juntan Zhang, Yige Wang, and Marc Fossorier
Department of Electrical Engineering

University of Hawaii at Manoa, Honolulu, HI 96822
juntan,yige,marc@spectra.eng.hawaii.edu

Jonathan S. Yedidia
Mitsubishi Electric Research Laboratories

201 Broadway, Cambridge, MA 02139
yedidia@merl.com

Abstract

Replica shuffled versions of iterative decoders of low-density parity-check codes
and turbo codes are presented in this paper. The proposed schemes can converge
faster than the standard and plain shuffled approaches. Two methods, density
evolution and EXIT charts, are used to analyze the performance of the proposed
algorithms. Both theoretical analysis and simulations show that the new sched-
ules offer good trade-offs with respect to performance, complexity, latency and
connectivity.

1 Introduction

Iterative decoding has received significant attention recently, mostly due to its near-
Shannon-limit error performance for the decoding of low-density parity-check (LDPC)
codes [1, 2] and turbo codes [3]. It uses a symbol-by-symbol soft-in/soft-out decoding
algorithm like maximum a posteriori probability (MAP) decoding [4] and processes the
received symbols recursively to improve the reliability of each symbol based on constraints
that specify the code. In the first iteration, the decoder only uses the channel output as
input, and generates a soft output for each symbol. Subsequently, the output reliability
measures of the decoded symbols at the end of each decoding iteration are used as inputs
for the next iteration. The decoding iteration process continues until a certain stopping
condition is satisfied. Then hard decisions are made based on the output reliability
measures of decoded symbols from the last decoding iteration.

In order to take advantage of the more reliable extrinsic messages available within one
iteration, a shuffled turbo decoding method has been proposed in [5]. The shuffled turbo
decoding algorithm converges faster and needs approximately the same computational
complexity as standard parallel turbo decoding. Schemes using the shuffled principle
were also proposed for decoding LDPC codes and have been shown to converge faster
than the corresponding standard decoding [6]−[8]. The aim of this work is to develop
replica shuffled versions of the standard iterative decoding algorithms for LDPC codes
and turbo codes. By using replica subdecoders, this method provides a faster convergence
than plain shuffled decoding at the expense of higher complexity. In [9], parallelism within
one iteration is achieved by proper interleaver design for the turbo decoder architecture.
In this work, iterations themselves are parallelized and consequently, the two approaches

1

can be combined. The new approach is analyzed by density evolution [10] and EXIT
charts [11]−[13]. Both methods show that shuffled belief propagation (BP) converges
about twice as fast as the standard BP and replica shuffled BP converges faster than
the plain shuffled BP. The convergence speed of the replica shuffled BP is determined by
the number of subdecoders and the information updating schemes. For turbo decoding,
replica shuffled turbo decoding converges faster than both plain shuffled turbo decoding
and standard parallel turbo decoding. It is worth mentioning that the proposed schemes
are sequential in nature. Therefore they are mainly interesting when the structure of
a code makes it difficult to implement the decoding in hardware in a fully parallel way
(e.g., long LDPC codes, LDPC codes with relatively dense connectivity such as finite
geometry LDPC codes or turbo codes).

2 Iterative decoding of LDPC codes

In general, LDPC codes can be categorized into regular LDPC codes and irregular LDPC
codes. Both can be represented by a bipartite graph with N variable nodes on the left
and M check nodes on the right. This bipartite graph can be specified by the sequences
(λ1, λ2, · · · , λdv) and (ρ1, ρ2, · · · , ρdc), where λi(ρi) represents the fraction of edges with
left (right) degree i, and dv and dc are the maximum variable degree and check degree,
respectively.

2.1 Algorithms

Following the definitions in [14], deterministic schedulings can be implemented either
based on horizontal [15, 16] or vertical partitioning [6, 7] of the parity check matrix.
In [15, 16] a horizontal partitioning was proposed to serialize the decoding of LDPC codes
and in the process, speed-up of the convergence was achieved. The algorithms of [6, 7]
directly intend to speed up BP or its simplified versions by combining the bit node and
check node processings in their scheduling. In this work, we consider replica approaches
based on a vertical partitioning to speed up the decoding. The similar replica principle
can be applied to the horizontal partitioning in a straightforward way and similar gains
are observed for both partitioning schedules.

2.1.1 Standard BP decoding of LDPC codes

Suppose a regular binary (N, K)(dv, dc) LDPC code C of length N and dimension K
is used for error control over an AWGN channel with zero mean and power spectral
density N0/2. Assume BPSK signaling with unit energy, which maps a codeword c =
(c1, c2, . . . , cN) into a transmitted sequence x = (x1, x2, . . . , xN), according to xn = 1 −
2cn, for n = 1, 2, . . . , N . If c = [cn] is a codeword in C and x = [xn] is the corresponding
transmitted sequence, then the received sequence is x+n = y = [yn], with yn = xn +nn,
where for 1 ≤ n ≤ N , nn’s are statistically independent Gaussian random variables
N (0, N0/2)′s with zero mean and variance N0/2. Let H = [Hmn] be the parity check
matrix which defines the LDPC code. We denote the set of bits that participate in check
m by N (m) = {n : Hmn = 1} and the set of checks in which bit n participates as M(n)

2

= {m : Hmn = 1}. We also denote N (m)\n as the set N (m) with bit n excluded, and
M(n)\m as the set M(n) with check m excluded. We define the following notations
associated with the ith iteration:

• Uch,n: The log-likelihood ratio (LLR) of bit n which is derived from the channel
output yn. In BP decoding, we initially set Uch,n = 4

N0
yn.

• U
(i)
mn: The LLR of bit n which is sent from the check node m to bit node n.

• V
(i)
mn: The LLR of bit n which is sent from the bit node n to check node m.

• V
(i)
n : The a posteriori LLR of bit n.

The standard BP algorithm is carried out as follows [2]:

Initialization: Set i = 1, and the maximum number of iteration to IMax. For each m,n,
set V

(0)
mn = Uch,n.

Step 1: (i) Horizontal Step, for 1 ≤ n ≤ N and each m ∈M(n), process:

U (i)
mn = 2 tanh−1

 ∏

n′∈N (m)\n
tanh

V
(i−1)
mn′

2

 . (1)

(ii) Vertical Step, for 1 ≤ n ≤ N and each m ∈M(n), process:

V (i)
mn = Uch,n +

∑

m′∈M(n)\m
U

(i)
m′n (2)

V (i)
n = Uch,n +

∑

m∈M(n)

U (i)
mn.

Step 2: Hard decision and stopping criterion test:

(i) Create ĉ(i) = [ĉ
(i)
n] such that ĉ

(i)
n = 1 if V

(i)
n < 0, and ĉ

(i)
n = 0 if V

(i)
n ≥ 0.

(ii) If Hĉ(i) = 0 or IMax is reached, stop the decoding iteration and go to Step 3.
Otherwise set i := i + 1 and go to Step 1.

Step 3: Output ĉ(i) as the decoded codeword.

2.1.2 Plain shuffled BP decoding of LDPC codes

In general, for both check-to-bit messages and bit-to-check messages, the more inde-
pendent information is used to update the messages, the more reliable they become.
Iteration-i of the standard two-step implementation of the BP algorithm uses all values
V

(i−1)
mn′ computed at the previous iteration in (1). However certain values V

(i)
mn′ could al-

ready be computed based on a partial computation of the values U
(i)
mn obtained from (2),

3

and then be used instead of V
(i−1)
mn′ in (1) to compute the remaining values U

(i)
mn. This

suggests a shuffling of the horizontal and vertical steps of standard BP decoding. This
is referred to as shuffled BP decoding.

In the shuffled BP algorithm, the initialization, stopping criterion test and output
steps remain the same as in the standard BP algorithm. The only difference between the
two algorithms lies in the updating procedure. Step 1 of the shuffled BP algorithm is
modified as: for 1 ≤ n ≤ N and each m ∈M(n), process the horizontal step and vertical
step jointly, with (1) modified as [5]:

U (i)
mn = 2 tanh−1

(∏

n′∈N (m)\n

n′<n

tanh
V

(i)
mn′

2

∏

n′∈N (m)\n

n′>n

tanh
V

(i−1)
mn′

2

)
. (3)

Note that (3) has a similar form as the forward-backward algorithm of [4].

2.1.3 Replica shuffled BP decoding of LDPC codes

Shuffled BP decoding is a bit-based sequential approach and the method described in
Section 2.1.2 is based on a natural increasing order, i.e, the messages at bit nodes are
updated according to the order n = 1, 2, . . . , N . The larger the value of n, the more
independent pieces of information are used to update the messages at bit n and the more
reliable these messages become. Therefore, as the index n increases, the reliability of
the bit decisions increases and the corresponding error rate decreases. Indeed, the same
reasoning applies if shuffled BP decoding is performed in reverse order; hence if shuffled
BP decoding is employed using a bit order starting with bit N and ending with bit 1,
the error rate increases with the index n. As illustration, Figure 1 depicts the number
of bit errors using standard and shuffled BP decodings (with increasing and decreasing
order) for the (273,191) PG-LDPC code [17] at the SNR of 3.0 dB and after the second
iteration. A total of 10000 random blocks were decoded. From Figure 1, we observe that
in plain shuffled BP decoding, the later a bit is processed, the more reliable it is. If more
decoders are used, they can exchange their most reliable messages (bit-to-check beliefs
associated with bits corresponding to the lower part of shuffled decoding curve) with one
another and achieve faster convergence. Based on this observation, replica shuffled BP
decoding is developed next.

In replica shuffled BP decoding, several shuffled subdecoders based on different up-
dating orders operate simultaneously and cooperatively. After each iteration, each sub-
decoder receives more reliable messages from and sends more reliable messages to other
subdecoders. Based on these more reliable messages, all replica subdecoders begin the
next iteration. Hence replica decoding can be viewed as a way to parallelize iterations.

For two replicas, let
−→
D and

←−
D denote the subdecoders with natural increasing and de-

creasing updating orders, respectively. Let
−→
U

(i)
mn and

−→
V

(i)
mn be the variables associated

with
−→
D at iteration i. The variables associated with

←−
D are defined in a similar way. The

replica shuffled BP decoding with two replica subdecoders is carried out as follows:

Initialization: Set i = 1, and the maximum number of iteration to IMax. For each

m,n, set
−→
V

(0)
mn =

←−
V

(0)
mn = Uch,n.

4

Step 1: Each replica subdecoder processes the following two steps simultaneously. For
1 ≤ n ≤ N and each m ∈M(n), process

(i) Horizontal Step

−→
U (i)

mn = 2 tanh−1

(∏

n′∈N (m)\n

n′<n

tanh

−→
V

(i)
mn′

2

∏

n′∈N (m)\n

n′>n

tanh

−→
V

(i−1)
mn′

2

)

←−
U (i)

mn = 2 tanh−1

(∏

n′∈N (m)\n

n′>n

tanh

←−
V

(i)
mn′

2

∏

n′∈N (m)\n

n′<n

tanh

←−
V

(i−1)
mn′

2

)

(ii) Vertical Step

−→
V (i)

mn = Uch,n +
∑

m′∈M(n)\m

−→
U

(i)
m′n

←−
V (i)

mn = Uch,n +
∑

m′∈M(n)\m

←−
U

(i)
m′n

Step 2: Set
−→
V

(i)
mn =

←−
V

(i)
mn for 1 ≤ n ≤ N/2 and

←−
V

(i)
mn =

−→
V

(i)
mn for N/2 < n ≤ N .

Step 3: Hard decision and stopping criterion test:

(i) Create ĉ(i) = [ĉ
(i)
n] such that for 1 ≤ n ≤ N/2, ĉ

(i)
n = 1 if Uch,n+

∑
m∈M(n)

←−
U

(i)
mn <

0, and ĉ
(i)
n = 0 otherwise; for N/2 < n ≤ N , ĉ

(i)
n = 1 if Uch,n+

∑
m∈M(n)

−→
U

(i)
mn <

0, and ĉ
(i)
n = 0 otherwise.

(ii) If Hĉ(i) = 0 or IMax is reached, stop the decoding iteration and go to Step 4.
Otherwise set i := i + 1 and go to Step 1.

Step 4: Output ĉ(i) as the decoded codeword.

With respect to Figure 1, note that Step 2 is equivalent to keep the lower parts of
the two shuffled BP curves.

Another possible implementation is that these two subdecoders exchange more re-
liable messages synchronously with each other during the decoding process. Define
R(n) = {n′|n ≤ n′ ≤ N − n}, and R(n) = {n′|1 ≤ n′ ≤ N,n′ /∈ R(n)}, for 1 ≤ n ≤ N .
In synchronous scheme, the updating and exchanging procedures operate simultaneously
as follows:

Step 1: For 1 ≤ n ≤ N and each m ∈M(n), for p = N − n and each q ∈M(p), two
replica subdecoders process the following two steps simultaneously

5

(i) Horizontal Step

U (i)
mn = 2 tanh−1

(∏

n′∈N (m)\n

n′∈R(n)

tanh
V

(i)
mn′

2

∏

n′∈N (m)\n

n′∈R(n)

tanh
V

(i−1)
mn′

2

)

U (i)
qp = 2 tanh−1

(∏

p′∈N (q)\p

p′∈R(N−p)

tanh
V

(i)
qp′

2

∏

p′∈N (q)\p

p′∈R(N−p)

tanh
V

(i−1)
qp′

2

)
.

(ii) Vertical Step

V (i)
mn = Uch,n +

∑

m′∈M(n)\m
U

(i)
m′n

V (i)
qp = Uch,p +

∑

q′∈M(p)\q
U

(i)
q′p.

Notice that in this case the two replica subdecoders use the same set of bit-to-check LLR
values. It is also straightforward to extend the replica shuffled BP decoding to the cases
in which more than two replica subdecoders are used.

2.1.4 Group replica shuffled BP decoding of LDPC codes

To take advantage of as many newly delivered messages as possible and therefore to
achieve the best performance, a fully serial replica shuffled BP is necessary. However,
this scheme is not attractive for hardware implementation due to its serial nature. A
totally parallel implementation is not realistic either for large code lengths, or codes with
highly connected graph.

In [5], a method called “group shuffled” BP was presented. In group shuffled BP, the
bits of a codeword are processed in groups in a semi-parallel manner. The groups are pro-
cessed serially while the bits within a group are processed in parallel. This approach can
be extended in a straightforward way to the design of group replica shuffled BP decoders.
Assume the N bits of a codeword are divided into G groups and each group contains
N
G

= B bits (assuming N mod G = 0 for simplicity). Step 1 of the non-synchronous group
replica shuffled BP algorithm is carried out as follows:

Step 1: For 1 ≤ g ≤ G, each replica subdecoder processes jointly the following two
steps

(i) Horizontal step: for (g− 1) ·B + 1 ≤ n ≤ g ·B and each m ∈M(n), process:

−→
U (i)

mn = 2 tanh−1

(∏

n′∈N (m)\n

n′≤(g−1)·B

tanh

−→
V

(i)
mn′

2

∏

n′∈N (m)\n

n′≥(g−1)·B+1

tanh

−→
V

(i−1)
mn′

2

)

6

←−
U (i)

mn = 2 tanh−1

(∏

n′∈N (m)\n

n′≥(G−g+1)·B+1

tanh

←−
V

(i)
mn′

2

∏

n′∈N (m)\n

n′≤(G−g+1)·B

tanh

←−
V

(i−1)
mn′

2

)

(ii) Vertical Step: for (g − 1) ·B + 1 ≤ n ≤ g ·B and each m ∈M(n), process:

−→
V (i)

mn = Uch,n +
∑

m′∈M(n)\m

−→
U

(i)
m′n

←−
V (i)

mn = Uch,n +
∑

m′∈M(n)\m

←−
U

(i)
m′n

Synchronous group replica shuffled decoding is defined in a similar way.

2.2 Analysis by density evolution

2.2.1 Density evolution of shuffled BP

Density evolution [10] is an effective numerical method to analyze the performance of
message passing iterative decoding algorithms based on graph. It has been shown that
for a given message-passing decoding, if the channel and the decoder satisfy the symme-
try conditions [10], then the decoding bit error rate is independent of the transmitted
sequence. The process of density evolution therefore can be greatly simplified by assum-
ing the all-zero sequence is transmitted. It is straightforward to verify that shuffled and
replica shuffled BP decoder satisfy the symmetry condition, so that the all-zero trans-
mitted codeword assumption is valid. In density evolution of shuffled and replica shuffled
BP, a cycle-free structure of the LDPC code graph is assumed as in [10]. In this case, the
incoming messages to any bit or check node are independent, which also simplifies the
derivation of the probability density functions (pdf’s) of the outgoing messages. Next we
present density evolution for shuffled and replica shuffled BP decoding. Density evolution
results for serial BP decoding of LDPC codes can also be found in [8].

In shuffled and replica shuffled BP decoding, the pdf’s of outgoing and incoming
messages of bit nodes depend on the bit index number n. Let f

(i)
Un

(u) and f
(i)
Vn

(v) be the
pdf’s of the incoming and outgoing messages of bit node n at iteration i, respectively.
In standard BP, infinite codeword length is assumed while in shuffled BP we consider a
large enough codeword length N and assume the cycle-free condition still holds.

For the bit node processor of shuffled BP, the density evolution is the same as that
of standard BP, so that for n = 1, 2, . . . , N ,

f
(i)
Vn

= F−1

(
F(fUch

) ·
(
F(f

(i)
Un

)
)dc−1

)
(4)

where F denotes the Fourier transform operator.

As observed from (3), U
(i)
n depends on both V

(i)
n′ for n′ < n and V

(i−1)
n′ for n′ > n. To

avoid a brute force calculation of all possible combinatorial formats of V
(i)
n′ and V

(i−1)
n′ ,

7

we let the average pdf of the newly delivered incoming messages to check nodes adjacent
to bit node n at iteration i be

f
(i)

V n′<n
(v) =

1

n− 1

n−1∑

n′=1

f
(i)
Vn′

(v). (5)

Similarly, we let the average pdf of the incoming messages from bit nodes {bn′|n′ > n}
to check nodes adjacent to bit node n be

f
(i−1)

V n′>n
(v) =

1

N − n

N∑

n′=n+1

f
(i−1)
Vn′

(v). (6)

The check node processing can be implemented in a recursive way [18]. Define a core
operation as

Ψ(V1, V2) = 2 tanh−1

(
tanh

(
V1

2

)
tanh

(
V2

2

))
. (7)

Then (1) can be calculated by applying (7) recursively as

U = Ψ(. . . Ψ(Ψ(V1, V2), V3), . . . , Vdc−1). (8)

If the incoming messages are i.i.d. random variables with pdf fV (v), the pdf of the
outgoing message can be efficiently computed as [18]

fU = Ψdc−1fV . (9)

Let us consider plain shuffled BP with natural increasing ordering. For a belief message
incoming to bit node n, the incoming messages to the check node adjacent to bit node n
have in total (

N − 1

dc − 1

)
(10)

possible formats. For each j = 0, 1, . . . , dc − 1, there are
(

n− 1

j

)
·
(

N − n

dc − 1− j

)
(11)

possible formats which contain j newly delivered bit-to-check messages at the current
iteration and dc − 1 − j bit-to-check messages delivered at the previous iteration. The
average pdf incoming to bit node n at iteration i becomes

f
(i)
Un

=
dc−1∑
j=0

(
n−1

j

) · (N−n
dc−1−j

)
(

N−1
dc−1

) ·Ψjf
(i)

V n′<n
·Ψdc−1−jf

(i−1)

V n′>n
. (12)

Theorem 3.2.2 in [8] also provides a recursion for density evolution of a serial schedule.
In [8], the variable nodes are divided into mv sets of equal size. Based on the assumption
that no two variable nodes in a set are connected to the same check node, density evolution
is simplified and only mv recursions are needed. In our method, every variable node is
processed and the average pdf’s are computed based on a combinatorial analysis, thus no
specific assumption of the graphical structure is required. Although our approach needs
more calculations, it is independent of the code structure.

8

2.2.2 Density evolution of replica shuffled BP

It is straightforward to extend these updating rules of pdf’s for shuffled BP to replica
shuffled BP. For instance, in non-synchronous replica shuffled BP with two subdecoders,
the updating rule of the pdf’s of the outgoing belief messages from bit nodes is the same
as that in plain shuffled BP, while the pdf’s of incoming belief messages to bit nodes are
modified as

f
(i)
VN+1−n

← f
(i)
Vn

(13)

for N/2 ≤ n ≤ N . Density evolution of synchronous replica shuffled BP operates in the
same way while updating pdf’s of incoming belief messages to bit nodes synchronously,
i.e.,

f
(i−1)
VN+1−n

← f
(i)
Vn

(14)

for 1 ≤ n ≤ N/2, and

f
(i)
VN+1−n

← f
(i)
Vn

(15)

for N/2 < n ≤ N . The density evolution of replica shuffled BP with more than two
subdecoders can be obtained in a similar way.

The extension of density evolution of shuffled and replica shuffled BP for decoding
irregular LDPC codes is also straightforward. Consider an irregular LDPC code with

degree distributions λ(x) =
dv∑

l=1

λlx
l−1 and ρ(x) =

dc∑

l=1

ρlx
l−1. Consider plain shuffled

BP decoding in natural increasing order. From (12), at iteration i, the pdf of incoming
messages to bit node n from a check node with degree l is

f
(i)
Un,l

=
l−1∑
j=0

(
n−1

j

) · (N−n
l−1−j

)
(

N−1
l−1

) ·Ψjf
(i)

V n′<n
·Ψl−1−jf

(i−1)

V n′>n
. (16)

Since the pdf’s of the outgoing messages of check nodes with different degree are distinct,
the expectation of these pdf’s is the overall pdf of the messages incoming to bit node n

f
(i)
Un

=
dc∑

l=1

ρl

l−1∑
j=0

(
n−1

j

) · (N−n
l−1−j

)
(

N−1
l−1

) ·Ψjf
(i)

V n′<n
·Ψl−1−jf

(i−1)

V n′>n
.

Similarly, the pdf of outgoing messages from bit node n at iteration i becomes

f
(i)
Vn

=
dv∑

l=1

λlF−1

(
F(fUch

) ·
(
F(f

(i)
Un

)
)l−1

)
. (17)

2.2.3 Simulation results

Figure 2 depicts the bit error rate (BER) as a function of the numbers of decoding
iterations predicted by density evolution with standard BP, shuffled BP, replica shuffled
BP with two and four subdecoders (synchronous exchanging) methods, for decoding
rate-1/2 (3, 6) regular LDPC codes with Eb/No = 1.111 dB. We observe that shuffled
BP converges about twice as fast as the standard BP decoding while replica shuffled

9

BP converges faster than plain shuffled BP. As expected, we observe that the larger the
number of subdecoders in replica shuffled BP, the faster the convergence of decoding.

Figure 3 depicts the BER versus the number of iterations predicted by density evo-
lution with replica shuffled BP decoder of two subdecoders using non-synchronous and
synchronous exchanging schemes, for a (3, 6) regular LDPC code. We observe that replica
shuffled BP under the synchronous exchanging scheme converges faster than under the
non-synchronous exchanging schedule. It is also worth mentioning that the synchronous
scheme requires less memory than the non-synchronous scheme, but more frequent mem-
ory access.

Figure 4 depicts the BER as a function of the numbers of decoding iterations pre-
dicted by density evolution with standard BP, shuffled BP, replica shuffled BP with
two and four subdecoders (synchronous exchanging) methods, for decoding a rate-1/2
irregular LDPC code over an AWGN channel with Eb/No = 0.409dB. The check and
bit nodes distributions of this code are ρ(x) = 0.63676x6 + 0.36324x7 and λ(x) =
0.25105x + 0.30938x2 + 0.00104x3 + 0.43853x9, respectively [19]. We observe a similar
behavior as in the case of regular LDPC codes.

Figure 5 depicts the BER versus the decrease in BER predicted by density evolution
with standard BP and replica shuffled BP with four subdecoders, for decoding the above
irregular LDPC code at the SNR 0.409dB. We observe that at a given probability of
error, the decrease of the probability of error with replica shuffled BP is always larger
than that of standard BP, which illustrates the faster convergence property of replica
shuffled BP from another perspective. We also observe that density evolution of replica
shuffled BP with four subdecoders has three fixed points, which is the same as that of
standard BP. We observe a similar behavior for plain shuffled BP and replica shuffled BP
with two subdecoders.

2.3 Analysis by EXIT chart

EXIT chart [11]-[13] is another effective technique to study the convergence behavior of
iterative decoding. It is easy to visualize, to program and it is a good complement to
density evolution. Both the variable node and check node EXIT curves can be computed
in closed form [20] for the standard BP decoding. Let IU be the average mutual infor-
mation between the bits on the edges of the graph and the a priori (extrinsic) LLRs of
the variable (check) nodes. Similarly let IV be that between the bits on the edges of the
graph and the extrinsic (a priori) LLRs of the variable (check) nodes. Then the EXIT
functions of a degree−dv variable node and a degree−dc check node are respectively

IV,STD

(
IU , dv,

Eb

N0

,R

)
= J

(√
(dv − 1)[J−1(IU)]2 + σ2

ch

)
(18)

IU,STD (IV , dc) ≈ 1− J
(√

dc − 1 · J−1(1− IV)
)

(19)

where σ2
ch = 8R · Eb

N0
and the functions J(·) and J−1(·) are given in the Appendix of [20].

10

2.3.1 EXIT chart of plain shuffled BP

In order to find a closed form for the shuffled BP decoding, the following ideal model
is constructed for a regular LDPC code. Suppose the variable nodes can be divided
into dc sets and those in the ith set only connect to the ith edge of the check nodes.
For example, this kind of structure can be approximately obtained when the progressive
edge-growth (PEG) method [21] is used to construct the code. Since all the edges of
the variable nodes in the same set connect to different check nodes, they can not benefit
from one another. However they can equally make use of the updated information of
the previous edges. The processing of each check node also becomes identical. Let the
mutual information between the bits on any edge connected to a check node and their
corresponding a priori LLRs be equal to the average input mutual information IV . Let
I′Vi

be the updated mutual information between the bit on the ith edge of the same check
node and its a priori LLRs. Denote IUi

as the mutual information between the bit on the
ith edge of this check node and its extrinsic LLRs. Then the EXIT function for a check
node of a (dv, dc) regular LDPC code decoded with shuffled BP decoding is

IU,SHF (IV , dc) =
1

dc

dc∑
i=1

IUi
(20)

IUi
= IU,STD

(
(dc − i)IV +

∑i−1
k=1 I′Vk

dc − 1
, dc

)
(21)

I′Vi
= IV,STD

(
IUi

, dv,
Eb

N0

,R

)
. (22)

Since the input mutual information of the variable nodes in different sets are different,
denote them as IU1 , . . . , IUdc

, respectively. Then the average input mutual information of

all the variable nodes is IUav =
∑dc

i=1 IUi
/dc and the average output mutual information

is IVav =
∑dc

i=1 IV,STD(IUi
, dv,

Eb

N0
,R)/dc. The EXIT function for a variable node in the

shuffled BP decoding is given by

IV,SHF

(
IUav , dv,

Eb

N0

,R

)
= IVav . (23)

Next, we compare IV,STD and IV,SHF . Let J1(σ
2) = J(σ) and IUi

= J1(σ
2
i). Since J1(σ

2)
is approximately linear with σ2 when σ2 is within a small range, we obtain in that case
IUav =

∑dc

i=1 IUi
/dc =

∑dc

i=1 J1(σ
2
i)/dc ≈ J1(

1
dc

∑dc

i=1 σ2
i). Therefore, it follows

IV,STD

(
IUav , dv,

Eb

N0

,R

)
= J1

(
(dv − 1)J−1

1 (IUav) + σ2
ch

)

≈ J1

(
(dv − 1)

(
1

dc

dc∑
i=1

σ2
i

)
+ σ2

ch

)

= J1

(
1

dc

dc∑
i=1

(
(dv − 1)σ2

i + σ2
ch

)
)

11

≈ 1

dc

dc∑
i=1

J1

(
(dv − 1)σ2

i + σ2
ch

)

=
1

dc

dc∑
i=1

IV,STD

(
IUi

, dv,
Eb

N0

,R

)

= IV,SHF

(
IUav , dv,

Eb

N0

,R

)
.

From simulations, we observe that the variances σ2
i of the a priori inputs to different

variable nodes at one iteration vary within a small range. Hence the EXIT function
for a variable node in shuffled BP decoding is almost the same as that in standard BP
decoding.

2.3.2 EXIT chart of replica shuffled BP

It is straightforward to extend this method to replica shuffled BP. Using a similar ap-
proach, we can prove that the EXIT function for a variable node in replica shuffled BP
decoding is also almost the same as that in standard BP decoding. Since in the non-
synchronous scheme, subdecoders only exchange information at the end of each iteration,
the EXIT function for a check node in replica shuffled BP with two subdecoders and the
non-synchronous updating can be written as

IU,REP2,NS (IV , dc) =
1

dc

dc∑

i=dc/2

2IUi
(even dc) (24)

IU,REP2,NS (IV , dc) =
1

dc

dc∑

i=ddc/2e+1

2IUi
+ IUddc/2e

 (odd dc). (25)

The EXIT function for a check node in replica shuffled BP with more than two subde-
coders can be obtained in a similar way.

In the synchronous scheme, subdecoders exchange information immediately. Suppose
D subdecoders are used. Then we can divide each of the dc sets of the ideal model into
D subsets. Each subdecoder processes the variable nodes in a distinct subset of the
same set at the same time. After all the variable nodes have been processed once, the
subdecoders go back to the first set and process a subset different from those they have
already processed. Then the replica shuffled BP can be regarded as applying the shuffled
BP D times. Therefore the EXIT function for a check node in the synchronous scheme
with D subdecoders is given by

IU,REPD,S (IV , dc) = IU,SHF (IVD
, dc) (26)

IVi = IV,SHF

(
IU,SHF

(
IVi−1 , dc

)
, dv,

Eb

N0

,R

)
i = 2, 3, . . . ,D (27)

12

with IV1 = IV .

While these derivations allow to model the convergence of each method, the following
theorem shows that the threshold value remains the same for all methods.

Theorem 1. Based on EXIT chart analysis, the threshold of a code decoded by BP is
not improved by shuffled BP or replica shuffled BP.

Proof. Let γ be the threshold in standard BP decoding. When Eb/N0≤ γ, the EXIT
curves of variable and check nodes cross each other at some point, say A. If IE =

IV,STD

(
IA, dv,

Eb

N0
,R

)
, then IA = IU,STD (IE, dc). In (20)−(22), IV = IE, IUi

≡ IA and

I′Vi
≡ IE. So IU,SHF (IE, dc) = IA. Since IUi

is constant, IV,STD = IV,SHF at point A. Then

IE = IV,SHF

(
IA, dv,

Eb

N0
,R

)
. Therefore the EXIT curves of variable and check nodes in

shuffled BP also cross each other at point A . The same result can be proved for replica
shuffled BP.

This theorem provides a formal proof of the observations made in [22]. Indeed it
is expected that the threshold derived on a tree can not be changed by modifying the
scheduling of the algorithm only.

In general the actual graph does not satisfy all the constraints of this ideal model,
but the convergence behavior of the corresponding code can still be well approximated
by the ideal model as shown next. Figure 6 compares the EXIT functions obtained from
the simulation method of [13] and the proposed closed forms. Both methods assume the
input LLRs have a Gaussian distribution. We observe that the EXIT functions of these
two methods are almost the same, which validates the EXIT functions derived in this
paper.

We also verified by EXIT chart that the non-synchronous scheduling converges slower
than the synchronous one, as shown in Figure 3. Figure 7 depicts the EXIT charts of
five decoding methods. We observe that replica shuffled BP with four subdecoders using
the synchronous scheme converges much faster than the other methods. Figure 8 depicts
EXIT curves superimposed to constant-BER curves [28, Chapter 9]. For the same BER,
the iteration number of standard BP is twice that of shuffled BP and 8 times that of
replica shuffled BP with four subdecoders and synchronous updating.

Figure 9 depicts the EXIT curves of different decoding methods at the SNR 1.11
dB, which is the threshold of the (3, 6) regular LDPC code. We observe that the EXIT
curves of variable and check nodes cross each other at the same point for all the methods.
Hence they have the same threshold as expected from Theorem 1.

These results can be readily extended to irregular LDPC codes.

2.3.3 EXIT chart of group plain shuffled BP

Based on the analysis of plain shuffled BP, we deduce the following theorem.

Theorem 2. When decoding a regular LDPC code, group plain shuffled BP should have
at least dc groups in order to have at any given iteration the same performance as plain
shuffled BP based on the ideal model.

13

Simulation results presented in the next section confirm that this value is a good estimate
of the least number of groups necessary to achieve the same performance as plain shuffled
BP on real Tanner graphs. Consequently Theorem 2 indicates that the speed-up obtained
by shuffled BP over standard BP can still be achieved with a high level of parallelism
since in general dc is quite small. For completeness, we develop the remaining case next.

When the group number is less than dc, the EXIT function of group plain shuffled
BP is easily obtained if the check node degree is divisible by the group number, but it
becomes cumbersome otherwise. Let G be the number of groups. Suppose the check
node degree dc is divisible by G with SG = dc/G. Then the EXIT function of group plain
shuffled BP can be described as

IU,SHF,GRG
(IV , dc) =

1

dc

dc∑
i=1

IUi
. (28)

If i mod SG = 1, then

IUi
= IU,STD

(
(dc − i)IV +

∑i−1
k=1 I′Vk

dc − 1
, dc

)
(29)

I′Vi
= IV,STD

(
IUi

, dv,
Eb

N0

,R

)
. (30)

Otherwise,
IUi

= IUm (31)

I′Vi
= I′Vm

(32)

where m = b(i− 1)/SGc · SG + 1.

2.3.4 EXIT chart of group replica shuffled BP

The EXIT function of group replica shuffled BP with non-synchronous updating is almost
the same as that of replica shuffled BP (i.e. G = N) except that IUi

’s in (24) and (25)
are obtained from (29) and (31).

For the synchronous scheme, when G ≤ D, group replica shuffled BP can be regarded
as applying standard BP G times. Therefore the corresponding EXIT function is

IU,REPD,S,GRG
(IV , dc) = IU,STD (IVG

, dc) (33)

IVi = IV,STD

(
IU,STD

(
IVi−1 , dc

)
, dv,

Eb

N0

,R

)
i = 2, 3, . . . ,G (34)

where IV1 = IV .

When D · dc > G > D, if G is divisible by D and dc is divisible by G
D

, group replica
shuffled BP is equivalent to applying group shuffled BP with G

D
groups D times. Let

T = G
D

. Then the EXIT function becomes

IU,REPD,S,GRG
(IV , dc) = IU,SHF,GRT

(IVD
, dc) (35)

14

IVi = IV,SHF,GRT

(
IU,SHF,GRT

(
IVi−1 , dc

)
, dv,

Eb

N0

,R

)
i = 2, 3, . . . ,D (36)

where IV1 = IV .

When G ≥ D · dc, the EXIT function of group replica shuffled BP with synchronous
updating is the same as for G = N . Hence we have the following theorem.

Theorem 3. When decoding a regular LDPC code, group replica shuffled BP should have
at least D · dc groups in order to have at any given iteration the same performance as
replica shuffled BP based on the ideal model.

Figure 10 depicts the EXIT curves obtained from the simulation method of [13] and
the proposed closed forms for group shuffled BP and group replica shuffled BP with
synchronous updating. We observe that the curves obtained with these two methods
match each other well, which again validates our derived EXIT functions.

Figure 11 depicts the error performance of shuffled BP, group shuffled BP with 6
groups, replica and group replica shuffled BP with 24 groups with four subdecoders
and synchronous updating for decoding a (8000, 4000) (3, 6) regular LDPC code, whose
Tanner graph was constructed by the PEG method [21]. Since the number of the bit
nodes, 8000, cannot be divided by 6 or 24, the remaining bit nodes are assigned to the
corresponding last group. From this figure, we observe that the group methods with the
smallest group number G derived theoretically in Theorem 2 and 3 have almost the same
performance as their corresponding non-group counterparts.

2.4 Simulation results

Figure 12 depicts the word error rate (WER) of iterative decoding of a (8000, 4000)(3, 6)
LDPC code, with the standard BP, plain shuffled and group replica shuffled BP algo-
rithms, for G = 2, 4, 8, 16 and 8000, with four replica subdecoders and synchronous
updating. The maximum number of iterations IMax for plain and group replica shuffled
BP was set to 10. We observe that the WER performances of replica shuffled BP decod-
ing with four subdecoders and IMax = 10, and a group number larger or equal to four,
are approximately the same as that of standard BP with IMax = 60.

Figure 13 depicts the WER of standard and replica shuffled BP decoding of a
(16200, 7200) irregular LDPC code which was constructed in a semi-random manner
[25]. The variable node and check node degree distributions are λ(x) = 0.00006x +
0.57772x2 + 0.3111x3 + 0.11111x8 and ρ(x) = 0.00006x2 + 0.14917x3 + 0.29851x4 +
0.44777x5 + 0.10449x6, respectively. The number of replica subdecoders was four and
updating was synchronous. We observe that replica shuffled BP with IMax = 10 and
G = 16 provides a similar performance as that of standard BP with IMax = 70.

3 Iterative decoding of turbo codes

A turbo code [3] encoder is formed by the concatenation of two (or more) convolutional
encoders, and its decoder consists of two (or more) soft-in/soft-out convolutional decoders

15

which feed reliability information back and forth to each other. For simplicity, we consider
a turbo code that consists of two rate-1/n systematic convolutional codes with encoders
in feedback form. Let u = (u1, u2, . . . , uK) be an information block of length K and
c = (c1, c2, . . . , cK) be the corresponding coded sequence, where ck = (ck,1, ck,2, . . . , ck,n),
for k = 1, 2, . . . , K, is the output code block at time k. Suppose BPSK transmission over
an AWGN channel, with uk and ck,j all taking values in {+1, -1} for k = 1, 2, . . . , K
and j = 1, 2, . . . , n. Let y = (y1,y2, . . . ,yK) be the received sequence, where yk =
(yk,1, yk,2, . . . , yk,n) is the received block at time k. Let û = {û1, û2, . . . , ûK} denote
the estimate of u. Let sk denote the encoder state at time k. Following [4], define
αk(s) = p(sk = s,yk

1), γk(s
′, s) = p(sk = s, yk|sk−1 = s′), βk(s) = p(yK

k+1|sk = s), where

yb
a = (ya,ya+1, . . . ,yb), and let α

(m)
k (s), γ

(m)
k (s′, s), β

(m)
k (s) represent the corresponding

values computed by component decoder m, with m = 1, 2. Let L
(i)
em(ûk) denote the

extrinsic value of the estimated information bit ûk delivered by component decoder m at
the ith iteration [23].

3.1 Algorithms

3.1.1 Standard serial and parallel turbo decoding

The decoding approach proposed in [3] operates in serial mode, i.e., the component de-
coders take turns in generating the extrinsic values of the estimated information symbols,
and each component decoder uses the most recent extrinsic messages delivered by the
other component decoder as a priori values of the information symbols. The disadvantage
of this scheme is its decoding delay. In the parallel turbo decoding algorithm [24], both
component decoders operate in parallel at any given time. After each iteration, each
component decoder delivers its extrinsic messages to the other decoder, which uses these
messages as a priori values at the next iteration.

3.1.2 Plain shuffled turbo decoding

Although the parallel turbo decoding reduces the decoding delay of serial decoding by
half, the extrinsic messages are not taken advantage of as soon as they become available,
because the extrinsic messages are delivered to component decoders only after each iter-
ation is completed. The aim of the shuffled turbo decoding is to use the more reliable
extrinsic messages at each time. Let ũ = (ũ1, ũ2, . . . , ũK) be the sequence permuted by
the interleaver corresponding to the original information sequence u = (u1, u2, . . . , uK),
according to the mapping ũk = uπ(k), for k = 1, 2, . . . , K. We assume that k 6= π(k),∀k.
There is a unique corresponding reverse mapping uk = ũπ−(k), for k = 1, 2, . . . , K and
k 6= π−(k),∀k. In shuffled turbo decoding, first α’s of the two component decoders are
computed in parallel and then β’s and γ’s are calculated partially based on the most
recent updates at the current iteration. Although the two component decoders operate
simultaneously as in parallel turbo decoding scheme, the messages are updated during
each iteration based on π(k) and π−(k) [5]. Correspondingly it provides a faster decoding
convergence.

16

3.1.3 Replica shuffled turbo decoding

In the plain shuffled turbo decoding summarized in Section 3.1.2, we assume all the
component decoders compute α’s followed by β’s. Let us refer to the two component

decoders as
−→
D 1 and

−→
D 2. Another possible scheme is to operate in the reverse order,

i.e, all the component decoders compute β’s followed by α’s and we refer to them as←−
D 1 and

←−
D 2. In terms of error performance, there is no difference between these two

approaches. However, the reliabilities of the extrinsic messages associated with a certain
information bit delivered by these two shuffled turbo decoders differ. In general, the
more independent information is used, the more reliable the delivered messages become.

For the extrinsic messages delivered by component decoder
−→
D 1, which are denoted as−→

L
(i)
e1 (ûk), the larger k is, the more reliable this message is. Similarly, for the extrinsic

message
←−
L

(i)
e1 (ûk) delivered by

←−
D 1, the smaller k is, the more reliable this message is. It

is natural to expect a faster decoding convergence if these two shuffled turbo decoders
operate cooperatively instead of independently. Because in this approach two sets of
shuffled component decoders are used to decode the same sequence of information bits,
we refer to it as replica shuffled turbo decoding. In replica shuffled turbo decoding,

two plain shuffled turbo decoders (processing recursions in opposite directions)
−→
D 1 ,−→

D 2 and
←−
D 1 ,

←−
D 2 operate simultaneously and exchange more reliable extrinsic messages

during each iteration. We assume that the component decoders deliver extrinsic messages

synchronously, i.e.,
−→
T 1

k =
−→
T 2

k =
←−
T 1

k =
←−
T 2

k, where the
−→
T 1

k (
←−
T 1

k) and
−→
T 2

k (
←−
T 2

k) denote the

times at which
−→
D 1 (

←−
D 1) and

−→
D 2 (

←−
D 2) deliver the extrinsic values of the kth ((K+1−k)th)

estimated symbol of the original information sequence u and of the interleaved sequence
ũ, respectively. As a result, each value is available as soon as computed or four new
values become available at same time instant.

Let us first consider the processing of component decoder
−→
D 1 at the ith iteration.

After time
−→
T 1

k−1, the values of −→α (1)
k (s) should be updated and the values of −→γ (1)

k (s) are
needed. There are two possible cases. The first case is k > π−(k), which means the

extrinsic value
−→
L

(i)
e2 (ûk) of the information bit ûk has already been delivered by decoder−→

D 2. As in plain shuffled turbo decoding, this newly available
−→
L

(i)
e2 (ûk) is used to compute

the values −→γ (1)
k (s), −→α (1)

k (s), and
−→
L

(i)
e1 (ûk). The second case is k < π−(k), which implies

the extrinsic value
−→
L

(i)
e2 (ûk) of the information bit ûk has not been delivered yet by

−→
D 2.

Then in plain shuffled turbo decoding, the values α
(1)
k (s) and L

(i)
e1 (ûk) are updated based

on the extrinsic messages delivered at last iteration. In replica shuffled turbo decoding,
however, there are two further subcases. The first subcase is K + 1− k < π−(k), which

implies the extrinsic value
←−
L

(i)
e2 (ûk) of the information bit ûk has already been delivered by

decoder
←−
D 2. Then this newly available

←−
L

(i)
e2 (ûk), instead of

−→
L

(i−1)
e2 (ûk) is used to compute

the values −→γ (1)
k (s), −→α (1)

k (s), and
−→
L

(i)
e1 (ûk). The second subcase is K + 1 − k < π−(k),

which implies both extrinsic messages of the information bit ûk, i.e,
←−
L

(i)
e2 (ûk) and

−→
L

(i)
e2 (ûk)

are not available yet. In this subcase, the values of −→α (1)
k (s) and

−→
L

(i)
e1 (ûk) are updated

based on the extrinsic messages delivered at the (i − 1)th iteration. The recursions of

component decoders
−→
D 2,

←−
D 1 and

←−
D 2 are realized based on the same principle. After IMax

iterations, the shuffled turbo decoding algorithm outputs û = (û1, û2, . . . , ûK), where

ûk = sgn[(
−→
L

(i)
e1 (ûk) +

←−
L

(i)
e1 (ûk))/2 + (

−→
L

(i)
e2 (ûk) +

←−
L

(i)
e2 (ûk))/2 + 4

N0
yk,1], which is different

from the estimate in standard turbo decoding [3] and plain shuffled turbo decoding.

17

Figure 14 (a) and (b) illustrate the decoding processes of plain and replica shuffled
turbo decoding, respectively, with K = 8. In Figure 14 (a), when bit-1 of decoder D1

is processed, the new extrinsic information from decoder D2 is not available yet, and
the extrinsic information from the previous iteration is used as a priori information;
when bit-3 of decoder D1 is processed, the new extrinsic information from the current

iteration is used as it is already available. In Figure 14 (b), when bit-1 of decoder
−→
D 1

is processed, no new extrinsic information from decoders
−→
D 2 and

←−
D 2 is available, so the

information from the previous iteration is used; when bit-3 is processed, only the new

extrinsic information from
−→
D 2 is available, and this new value is used; when bit-7 is

processed, information from decoder
−→
D 2 is not available yet, but that from decoder

←−
D 2

is; when bit-8 is processed, new extrinsic information from both
−→
D 2 and

←−
D 2 is available,

and the most recently updated value is used. These two last cases illustrate the advantage
of using replica decoders.

It is straightforward to generalize replica shuffled turbo decoding to multiple turbo
codes which consist of more than two component codes. Also group of bits can be updated
periodically only to reduce information exchanges between replicas. Based on the above
descriptions with two replicas, the total computational complexity of the replica shuffled
turbo decoding for multiple turbo codes at each decoding iteration is about twice that
of the parallel turbo decoding.

The proposed approach can be generalized to more than two replicas of each de-
coder but in that case, termination issues have to be considered, unless the convolutional
code is in tail-biting form. Furthermore, while complete forward and backward recur-
sions have been considered, additional speed up seems achievable with the finite window
implementation proposed in [26].

3.2 Analysis by EXIT chart

In this section, we first review the results obtained in [11, 13, 28]. Both channel observa-
tions and a priori knowledge can be modeled as conditional Gaussian random variables
[11]. Denote Lo, La, and Le the LLRs of channel observations, a priori and extrinsic mes-
sages, respectively. Since we assume an AWGN channel, each received signal y = c + n
with n ∼ N (0, σ2

n). Then Lo = ln p(y|c=+1)
p(y|c=−1)

= 2
σ2

n
(c + n). It follows

Lo|c ∼ N (µo, σ
2
o) (37)

where σ2
o = 4/σ2

n and µo = cσ2
o/2. Hence the consistency condition [27] is satisfied.

Consider the a priori input A = µA · u + nA, with µA = σ2
a/2 and nA ∼ N (0, σ2

a).
Using a similar analysis, we obtain

La|u ∼ N (uσ2
a/2, σ

2
a) (38)

and the consistency condition is also satisfied. Denote Ia as the mutual information
exchanged between La and u, and Ie as that exchanged between Le and u. Since La is
conditionally Gaussian and the consistency condition is satisfied, Ia is independent of the
value of u. Therefore Ia can be written as a function of σa, say J(σa) where [11, 28]

J(σa) = 1−
∫ ∞

−∞

e−[(ξ−σ2
a/2)2/2σ2

a]

√
2πσa

log2(1 + e−ξ)dξ. (39)

18

Since we do not impose a Gaussian assumption on Le, Ie is approximated based on the
observation of N samples of Le, so that [13, 28]

Ie ≈ 1− 1

N

N∑
i=1

log2[1 + e−uiLei]. (40)

The transfer function is defined as Ie = T(Ia, Eb/N0) and for a fixed value Eb/N0, it is just
Ie = T(Ia). The transfer functions of both decoders are plotted on a single chart. Since in
turbo decoding the extrinsic messages of the first decoder serve as the a priori messages
of the second decoder, the axes are swapped for the transfer function of decoder-2.

3.2.1 Analysis of plain shuffled turbo decoding

In [28, Chapter 9], a Monte Carlo model is used to derive the EXIT chart for a given turbo
code. Its structure is shown in Figure 15, with two Gaussian random noise generator
outputs Lo and La whose distributions satisfy (37) and (38), respectively. Then Lo and
La are sent to the SISO decoder, which outputs Le. Based on (39) and (40) Ia and Ie

can be calculated. The transfer functions are obtained accordingly.

In plain shuffled turbo decoding, each decoder sends the newly updated extrinsic
messages to the other decoder immediately after updating. Hence we adopt three Gaus-
sian random noise generators in the model to compute the transfer function, as shown
in Figure 16. The first two generators are identical to those in Figure 15, while the third
one takes the interleaved sequence ũ as input. The outputs of all these generators, Lo,
La1 and La2, are sent to the plain shuffled turbo decoders, where La1 and La2 are used
as the a priori messages of decoder-1 and decoder-2, respectively. Then Le1 and Le2 are
obtained and both of them are used to calculate Ie in (40).

3.2.2 Analysis of replica shuffled turbo decoding

For replica shuffled turbo decoding, the model to compute the transfer function is depicted

in Figure 17. Since the four decoders,
−→
D1,

−→
D2,

←−
D1 and

←−
D2, exchange information

synchronously, the newly updated a priori messages of
−→
D1 and

←−
D1 are the same after each

iteration and so are those of
−→
D2 and

←−
D2. Therefore we still use three Gaussian random

noise generators, but send La1 to
−→
D1 and

←−
D1, and La2 to

−→
D2 and

←−
D2, respectively.

Since each decoder takes the extrinsic messages from two other decoders as its a priori
messages, only the most recently updated extrinsic messages serve as the a priori messages
in the next iteration. Hence it is more convenient to use the a priori LLRs for the next
iteration, say L′a1 and L′a2, to calculate Ie. Therefore in Figure 17, we have the replica

shuffled turbo decoder output L′a1 and L′a2 instead of
←−
L e1,

←−
L e2,

−→
L e1 and

−→
L e2. The

values Ia and Ie are then calculated using the same formulas as before and the transfer
functions follow.

3.3 Simulation results

Figure 18 depicts the EXIT charts of a rate-1/3 turbo code with two component codes
and interleaver size 16384, for standard parallel, plain shuffled, and replica shuffled turbo

19

decoding at the SNR 0.15dB. We observe that the replica shuffled turbo decoding con-
verges faster than both the parallel and plain shuffled turbo decoding.

Figure 19 depicts the BER of the same turbo code, with standard parallel, plain
shuffled and replica shuffled decoding. After five iterations, the replica shuffled turbo
decoder outperforms its parallel and plain counterparts by several tenths of a dB. Fur-
thermore, at the SNR value 0.15dB, the BER of replica shuffled turbo decoding after
five iterations is slightly worse than that of standard parallel turbo decoding after ten
iterations, as predicted from the EXIT charts in Figure 18.

4 Conclusion

Replica shuffled iterative methods have been proposed to decode LDPC codes and turbo
codes with reduced latency. The faster convergence property of the presented algorithms
has been verified by density evolution and EXIT charts. Both theoretical analysis and
simulation results show that replica shuffled decoding provides good tradeoffs with respect
to performance, complexity and latency. Although not explored in this work, connectivity
in the decoder realization can also benefit from the replica approach.

In general, the proposed replica approach can be viewed as several processing ele-
ments updating the same memory unit, each element corresponding to one iteration of
the underlying algorithm. The global scheduling of the memory accesses can be deter-
mined from the convergence analysis by density evolution or EXIT charts. This analysis
is also useful to design codes suitable for replica decoding.

References

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: M.I.T. Press,
1963.

[2] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”
IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

[3] C. Berrou and A. Glavieux, “Near-optimum error-correcting coding and decoding:
Turbo-codes,” IEEE Trans. Commun., vol. 44, pp. 1261-1271, Oct. 1996.

[4] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284-287,
Mar. 1974.

[5] J. Zhang and M. Fossorier, “Shuffled Belief Propagation Decoding,” IEEE Trans.
Commun., vol. 53, pp. 209-213, Feb. 2005.

[6] H. Kfir and I. Kanter, “Parallel versus sequential updating for belief propagation
decoding,” Physica A, vol. 330, pp. 259-270, 2003.

[7] J. Zhang and M. Fossorier, “Shuffled Belief Propagation Decoding,” Proc. 36th An-
nual Asilomar Conf. on Signals, Systems and Computers, CA, US, pp. 8-15, Nov.
2002.

20

[8] E. Sharon, S. Litsyn, and J. Goldberger, “An efficient message-passing schedule for
LDPC decoding,” Electrical and Electronics Engineers in Israel, 2004. Proceedings,
pp. 223-226, Sept. 2004.

[9] C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan, and M. Jézéquel, “Designing
good permutations for turbo codes: towards a single model,” Proc. 2004 IEEE Int.
Conf. Commun., Paris, France, pp. 341-345, Jun. 2004.

[10] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp.
599-618, Feb. 2001.

[11] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
codes,” IEEE Trans. Inform. Theory, vol. 49, pp. 1727-1737, Oct. 2001.

[12] M. Tüchler, S. ten Brink, and J. Hagenauer, “Measures for tracing convergence of
iterative decoding algorithms,” Proc. 4th IEEE/ITG Conf. on Source and Channel
Coding, Berlin, Germany, pp.53-60, Jan. 2002.

[13] M. Tüchler and J. Hagenauer, “EXIT charts of irregular codes,” Proc. 2002 Conf.
Information Sciences and Systems, Princeton, NJ, pp. 748-753, Mar. 2002.

[14] F. Guilloud, Generic architecture for LDPC codes decoding, Ph.D. thesis, ENST
Paris, France, 2004.

[15] E. Yeo, P. Pakzad, B. Nikolic and V. Anantharam, “High throughput low-density
parity-check decoder architectures,” Proc. 2001 IEEE Global Telecommun. Conf.,
TX, US, pp. 3019-3024, Nov. 2001.

[16] M. M. Mansour and N. R. Shanbhag, “Turbo decoder architecture for low-density
parity-check codes” Proc. 2002 IEEE Global Telecommun. Conf., pp. 1383-1388,
Nov. 2002.

[17] Y. Kou, S. Lin, and M. Fossorier, “Low density parity check codes based on finite
geometries: a rediscovery and more,” IEEE Trans. Inform. Theory, vol. 47, pp.
2711-2736, Nov. 2001.

[18] S. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of Low-
Density Parity-Check codes within 0.0045dB of the Shannon Limit,” IEEE Commun.
Lett., vol. 5, pp. 58-60, Feb. 2001.

[19] T. J. Richardson, M. A. Shokrollahi, and R.L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory,
vol. 47, pp. 619-637, Feb. 2001.

[20] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check
codes for modulation and detection,” IEEE Trans. Commun., vol. 52, pp. 670-678,
Apr. 2004.

[21] X. Hu, E. Eleftheriou, and D. Arnold, “Progressive edge-growth Tanner graphs,”
Proc. 2001 IEEE Global Telecommun. Conf., TX, US, pp. 995-1001, Nov. 2001.

21

[22] S. Tong and X. Wang, “Convergence analysis of Gallager codes under different
message-passing schedules,” IEEE Commun. Lett., vol. 9, pp. 249-251, Mar. 2005.

[23] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of block and convolutional
codes,” IEEE Trans. on Inform. theory, vol. 42, pp. 429-445, Mar. 1996.

[24] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space communications,”
JPL TDA Progress Report, pp. 66-77, May 1995.

[25] “Draft DVB-S2 Standard,” available at http://www.dvb.org.

[26] A. Viterbi, “An intuitive justification and a simplified implementation of the MAP
decoder for convolutional codes ,” IEEE J. on Select. Areas in Commun., Vol. 12,
pp. 260-264, Feb. 1998.

[27] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably good low-
density parity-check codes,” Proc. 2000 IEEE Int. Symp. Inform. Theory, Sorrento,
Italy, p. 199, Jun. 2000.

[28] E. Biglieri, Coding of Wireless Channels, Springer-Verlag, preprint.

22

0 50 100 150 200 250 300
20

40

60

80

100

120

140

160

180

200

220

Bit position

N
um

be
r

of
 e

rr
or

s

standard BP
plain shuffled BP in increasing order
plain shuffled BP in decreasing order

Figure 1: Number of bit errors versus bit position in the (273,191) PG-LDPC code at
SNR 3.0 dB.

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of iterations

B
E

R

Standard BP
Plain shuffled BP
Replica shuffled BP with 2 subdecoders
Replica shuffled BP with 4 subdecoders

Figure 2: BER versus number of iterations predicted by density evolution with the
standard BP, plain shuffled BP, replica shuffled BP with two and four subdecoders (syn-
chronous scheme), for decoding a (3, 6) regular LDPC code at the SNR 1.111 dB.

23

0 20 40 60 80 100 120 140 160 180
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of iterations

B
E

R

Non−synchronous
Synchronous

Figure 3: BER versus number of iterations predicted by density evolution with replica
shuffled BP with two subdecoders under non-synchronous and synchronous updating
schemes, for decoding a (3, 6) regular LDPC code.

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of iterations

B
E

R

Standard BP
Plain shuffled BP
Replica shuffled BP with 2 subdecoders
Replica shuffled BP with 4 subdecoders

Figure 4: BER versus number of iterations predicted by density evolution with the
standard BP, plain shuffled BP, replica shuffled BP with two and four subdecoders (syn-
chronous scheme), for decoding an irregular LDPC code at the SNR 0.409 dB.

24

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

BER

D
ec

re
as

e
in

 B
E

R

Standard BP
Replica BP with 4 subdecoders

Figure 5: BER versus decrease in BER predicted by density evolution with the stan-
dard BP and replica shuffled BP with four subdecoders and synchronous updating, for
decoding an irregular LDPC code at the SNR 0.409 dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
U

I V

Shuffled BP in closed form
Replica in closed form (non−synchronous, 4 subdecoders)
Replica in closed form (synchronous, 4 subdecoders)
Replica in simulation (non−synchronous, 4 subdecoders)
Shuffled BP in simulation
Replica in simulation (synchronous, 4 subdecoders)

Figure 6: Comparison between the EXIT curves obtained from the simulation method
of [13] and the proposed closed forms for a (3, 6) regular LDPC code at the SNR 1.5 dB.

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
U

I V

VND
Plain shuffled BP (CND)
Replica, 2 subdecoders, non−synchronous (CND)
Replica, 4 subdecoders, non−synchronous (CND)
Replica, 2 subdecoders, synchronous (CND)
Replica, 4 subdecoders, synchronous (CND)

Figure 7: EXIT curves (in closed form) for shuffled BP and four types of replica shuffled
BP decodings at the SNR 1.5 dB (variable nodes (VND) and check nodes (CND)).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
U

I V

VND
Plain shuffled BP (CND)
Replica, 4 subdecoders, synchronous (CND)
Standard BP (CND)

0.0023
0.0050

0.0103

0.0263

0.0400
0.0542

0.0691

0.0847

Pe = 0.118

Standard It = 8
Shuffled It = 4
Replica It = 1

Standard It = 16
Shuffled It = 8
Replica It = 2

Figure 8: EXIT curves (in closed form) for standard BP, shuffled BP and replica shuffled
BP with four subdecoders with synchronous updating at the SNR 1.5 dB, superimposed
to constant-BER curves.

26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
U

I V

VND
Standard BP (CND)
Plain shuffled BP (CND)
Replica, 2 subdecoders, non−synchronous
Replica, 4 subdecoders, non−synchronous
Replica, 2 subdecoders, synchronous
Replica, 4 subdecoders, synchronous

Figure 9: EXIT curves (in closed form) for standard BP, shuffled BP and four types of
replica shuffled BP at the SNR 1.11 dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
U

I V

G = 2 replica in closed form
G = 4 replica in closed form
G = 8 replica in closed form
G = 2 replica in simulation
G = 4 replica in simulation
G = 8 replica in simulation
G = 2 plain shuffled in closed form
G = 2 plain shuffled in simulation

Figure 10: Comparison between the EXIT curves obtained from the simulation method
of [13] and the proposed closed forms for group shuffled BP and group replica shuffled
BP with four subdecoders and synchronous updating, for decoding a (3, 6) regular LDPC
code at the SNR 1.5 dB.

27

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

−4

10
−3

10
−2

10
−1

10
0

Plain shuffled It=10
Plain shuffled It=30
Plain shuffled It=60
Group shuffled G=6 It=10
Group shuffled G=6 It=30
Group shuffled G=6 It=60
Replica It=5
Replica It=10
Replica It=60
Group replica G=24 It=5
Group replica G=24 It=10
Group replica G=24 It=60

Figure 11: WER of shuffled BP, group shuffled BP with 6 groups, replica shuffled BP
with four subdecoders and synchronous updating and its group version with 24 groups,
for decoding a (8000, 4000) (3, 6) regular LDPC code.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0(dB)

W
E

R

Standard BP Imax=10
Standard BP Imax=60
Plain Shuffled BP Imax=10
G=2
G=4
G=8
G=16
G=8000

Figure 12: WER of a (8000, 4000)(3, 6) LDPC code with group shuffled BP algorithm,
for G = 2, 4, 8, 16, 8000 and at most 10 iterations.

28

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−4

10
−3

10
−2

10
−1

10
0

W
E

R

Eb/No(dB)

Standard BP Imax=10
Standard BP Imax=70
Replica Shuffled BP G=4, Imax=10
Replica Shuffled BP G=32, Imax=10
Replica Shuffled BP G=16200, Imax=10

Figure 13: Error performance for iterative decoding of a (16200, 7200) irregular LDPC
code.

1 4 53 62 7 8

3 2 86 15 4 7]58327146[

]87654321[
1D

2D

1 4 53 62 7 8

3 2 86 15 4 7

1 4 53 62 7 8

3 2 86 15 4 7

]12345678[

(a) Example of plain shuffled turbo decoding with K=8.

1D1D

2D
2D

k =

-
(k) =

]58327146[

]87654321[k =

-
(k) =

K+1-k =

(b) Example of replica shuffled turbo decoding with = 8.K

Figure 14: Examples for illustrating the processing of plain and replica shuffled turbo
decodings.

Encoder
u c Gaussian

random noise

generator

Lo

La
Gaussian

random noise

generator

SISO

decoder

Le

a
2

o
2

Figure 15: Monte Carlo model for computing the transfer function of a given turbo code
with conventional turbo decoding.

29

Encoder
u c Gaussian

random noise

generator

Lo

La1
Gaussian

random noise

generator

Shuffled

Turbo

decoders

Le1

a
2

o
2

Interleaver

u
~

La2
Gaussian

random noise

generator

a
2

Le2

Figure 16: Monte Carlo model for computing the transfer function of plain shuffled turbo
decoding.

Encoder
u c Gaussian

random noise

generator

Lo

La1
Gaussian

random noise

generator

Replica

shuffled

turbo

decoders

La1

a
2

o
2

Interleaver

u
~

La2
Gaussian

random noise

generator

a
2

La2

'

'

Figure 17: Monte Carlo model for computing the transfer function of replica shuffled
turbo decoding.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ia
1
, Ie

2

Ie
1, I

a 2

Standard parallel
Plain shuffled
Replica shuffled

Figure 18: EXIT charts of a 2-component turbo code with interleaver size 16384, for
standard parallel, plain shuffled, and replica shuffled turbo decoding, Eb/N0=0.15 dB.

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0(dB)

B
E

R

standard parallel 5 iterations
standard parallel 10 iterations
standard parallel 20 iterations
plain shuffled 5 iterations
plain shuffled 10 iterations
plain shuffled 20 iterations
replica shuffled 5 iterations
replica shuffled 10 iterations

Figure 19: Bit error performance of a 2-component turbo code with interleaver size 16384,
for standard parallel, plain shuffled and replica shuffled decodings.

31

	Title Page
	Title Page
	page 2

	Iterative Decoding Using Replicas
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32

