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Abstract
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Abstract— A simple and novel method is presented to ap-
proximate the distribution of the sum of independent, but
not necessarily identical, lognormal random variables, bythe
lognormal distribution. It is shown that matching a short Gauss-
Hermite approximation of the moment generating function of
the lognormal sum with that of the lognormal distribution leads
to an accurate lognormal sum approximation. The advantage of
the proposed method over the ones in the literature, such as
the Fenton-Wilkinson method, Schwartz-Yeh method, and the
recently proposed Beaulieu-Xie method, is that it providesthe
parametric flexibility to handle the inevitable trade-off t hat needs
to be made in approximating different regions of the probability
distribution function. The accuracy is verified using extensive
simulations based on a cellular layout.

I. I NTRODUCTION

The lognormal distribution arises in several wireless systems
such as cellular mobile communication systems [1, Chp. 3] and
ultra wide band transmission [2]. For example, it models the
attenuation due to shadowing in wireless channels. Therefore,
one often encounters the sum of lognormal random variables
(RV) in analyzing wireless system performance. Given the
importance of the lognormal sum distribution, considerable
efforts have been devoted to analyze its statistical properties.
While exact closed-form expressions for the lognormal sum
probability density function (pdf) are unknown, several ana-
lytical approximation methods exist in the literature [3]–[8].

The methods proposed in the literature can be classified into
two broad categories. The methods by Fenton-Wilkinson [3],
Schwartz-Yeh [4], and Beaulieu-Xie [6] approximate the log-
normal sum by a single lognormal RV, and provide different
recipes for determining the parameters of the lognormal pdf.
The proven permanence of the lognormal pdf when the number
of summands approaches infinity lends credence to these meth-
ods [5], [9]. The methods by Farley [1], [4], Ben Slimane [7],
and Schleher [8] instead compute a compound distribution or
specify it implicitly. For example, the first two methods derive
strict lower bounds of the cumulative distribution function
(CDF), while the last one partitions the lognormal RV’s range
into three segments, with each segment being approximated
by a different lognormal RV.

Beaulieuet al. [6], [10] have studied in detail the accu-
racy of several of the above methods, and shown that each
method has its own advantages and disadvantages; none is
unquestionably better than the others. Farley’s method and,
more generally, the formulae derived in [7] are strict bounds
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that can be quite loose for certain typical parameters. The
methods also differ considerably in their complexity. Onlythe
Fenton-Wilkinson method offers closed-form solution for the
underlying parameters of the approximating lognormal pdf.

Motivated by the interpretation of the moment generating
function (MGF) as a weighted integral of the pdf, we present
a flexible lognormal sum approximation method that matches
the approximation of the MGF of the lognormal sum with that
of a single lognormal RV to derive the latter’s parameters.
As elaborated later, the weight function can be adjusted to
emphasize the accuracy in approximating different portions
of the lognormal sum pdf. Moreover, the MGF of the sum
of independent RVs can be easily calculated from the MGFs
of the individual RVs. The proposed method uses an ap-
proximate Gauss-Hermite expansion of the lognormal MGF,
and circumvents the requirement for very precise numerical
computations. It is not recursive; it is numerically stableand
accurate; and it offers considerable flexibility compared to
previous approaches.

As mentioned, the MGF and the characteristic function
(CF) possess the desirable property that the MGF (CF) of a
sum of independent RVs is the product of the MGFs (CFs)
of the individual RVs [11].1 This property of the CF has
also been exploited by Barakat [5] and Beaulieu-Xie [6] to
numerically evaluate the lognormal sum pdf. However, their
methods require very accurate numerical computation of the
characteristic function because of the oscillatory property of
the Fourier integrand as well as the slow decay rate of the
lognormal pdf tail [6].

Barakat numerically computed the CF of the lognormal
distribution using Taylor series expansion, and then applied the
inverse Fourier transform to the product of lognormal CFs to
determine the lognormal sum pdf. Also, no effort was made to
find the analytical expressions of the approximate distribution.
A similar approach was also suggested by Anderson [12].
Beaulieu-Xie’s elegant and conceptually simple method first
numerically evaluates the lognormal sum CDF, to a high de-
gree of accuracy, at several points, using a modified Clenshaw-
Curtis method. The composite CDF is obtained by numeri-
cally calculating the inverse Fourier transform, and is plotted
on ‘lognormal paper’. The parameters of the approximating
lognormal distribution, which is a straight line on lognormal
paper, are determined by minimizing the maximum error in a
given interval.

The paper is organized as follows: Section II reviews
the lognormal sum approximation methods in the literature

1While the CF can be considered a special case of the MGF, we choose to
treat the two as separate to keep the discussion clear.



and investigates the reasons behind their observed behaviors.
Section III motivates and defines the method proposed in this
paper. Numerical examples based on a cellular layout are used
in Section IV to validate the proposed method and to compare
it with other methods. The conclusions follow in Section V.

II. COMPARISON OFVARIOUS LOGNORMAL SUM

APPROXIMATION METHODS

Let X1, . . . , XK be K independent, but not necessarily
identical, lognormal RVs with pdfs,p

Xi
(x), for 1 ≤ i ≤ K.

Then eachXi can be written as100.1Yi such thatYi is a
Gaussian random variable with mean,µ

Yi
dB, and standard

deviation,σ
Yi

dB, i.e., Yi ∼ N (µ
Yi

, σ2
Yi

).
General closed-form expressions for the pdf or CDF of

the lognormal sum
∑K

i=1 Xi are not available. However, the
lognormal sum can be well approximated by a new lognormal
RV X = 100.1Y , where Y is a Gaussian RV with mean
µ

Y
and varianceσ2

Y
. Thus, the problem is now equivalent

to determining the lognormal momentsµ
Y

andσ2
Y

given the
statistics of the lognormal RVsXi, for i = 1, . . . , K.

The Fenton-Wilkinson (F-W) method computesµ
Y

andσ2
Y

by exactly matching the first and second central moments of
X with that of

∑K

i=1 Xi:

∫
∞

0

xp
X

(x)dx =
K∑

i=1

∫
∞

0

xp
Xi

(x)dx, (1a)

∫
∞

0

(x − µ
X

)2p
X

(x)dx =
K∑

i=1

∫
∞

0

(x − µ
Xi

)2p
Xi

(x)dx, (1b)

whereµ
X

andµ
Xi

are the means ofX andXi, respectively.
If the K lognormal RVs are identically distributed, then the
approximating lognormal momentsµ

Y
and σ

Y
can even be

expressed in closed-form. While the F-W method accurately
models thetail portion (large values ofX) of the lognormal
sum pdf, it is quite inaccurate near thehead portion (small
values ofX) of the sum pdf, especially for large values of
σ

Yi
[10]. The mean square error inµ

Y
andσ

Y
increases with

a decrease in the spread of the mean values or an increase in
the spread of the standard deviations of the summands [13].
Also, in modeling the behavior of10 log10

(∑K

i=1 Xi

)
the

method breaks down whenσ
Yi

> 4 dB [1].
The Schwartz-Yeh (S-Y) method instead matches the mo-

ments in the log-domain,i.e., it equates the first and second
central moments oflog10 X with those oflog10(

∑K

i=1 Xi):
∫

∞

0

(log10 x) p
X

(x)dx =

∫
∞

0

(log10 x) p
(
P

K
i=1

Xi)
(x)dx, (2a)

∫
∞

0

(10 log10x−µ
Y
)
2
p

X
(x)dx=

∫
∞

0

(
10 log10x−µ

Ŷ

)2
p
(
P

K
i=1

Xi)
(x)dx, (2b)

where µ
Y

and µ
Ŷ

are the mean values ofY = 10 log10 X

and Ŷ = 10 log10

(∑K

i=1 Xi

)
, respectively. While the match

is exact forK = 2, an iterative technique needs to be used for
K > 2. The parametersµ

Y
andσ

Y
are evaluated numerically.

The S-Y method is more involved than the F-W method
because the expectation of the logarithm sum cannot be
directly written in terms of the expectations of the individual
RVs. It is inaccurate near the tail portion of the pdf and can
significantly underestimate small values of the CDF [10].

Interpreting the moments as weighted integrals of the pdf,
both the F-W method and the S-Y method can be generalized
by the following system of equations form = 1 and2:
∫

∞

0

wm(x)p
X

(x)dx =

∫
∞

0

wm(x)p
(
P

K
i=1

Xi)
(x)dx. (3)

The F-W method uses the weight functionsw1(x) = x and
w2(x) = (x − µ

X
)2, both of which monotonically increase

with x. Thus, errors in the tail portion of the sum pdf are
penalized more. This explains why the F-W method tracks
the tail portion well. On the other hand, the S-Y method
employs the weight functionsw1(x) = log10 x andw2(x) =
(log10 x − µ

Y
)
2. Due to the singularity oflog10 x at x = 0,

mismatches near the origin are severely penalized by both
these weight functions. Compared to the F-W method, the S-Y
method gives less weight to the pdf tail. For these reasons, it
does a better job tracking the head portion of the pdf. However,
both the F-W and the S-Y methods use fixed weight functions
and offer no way of overcoming their respective shortcomings.

Similarly, Schleher’s cumulants matching method [8] ac-
cords a polynomially increasing penalty to the approximation
error in the tail portion of the pdf. This is because the first
three cumulants are, in effect, the first three central moments
of an RV. By plotting the x-axis in dB scale on lognormal
paper, the Beaulieu-Xie method also accords a higher priority
to the tail portion.

III. L OGNORMAL SUM APPROXIMATION USING

GAUSS-HERMITE EXPANSION OFMGF

A. Motivation

The moment generating function (MGF) of an RVX is
defined as

Ψ
X

(s) =

∫
∞

0

exp(−sx)p
X

(x)dx, (Re(s) ≥ 0). (4)

The simplicity of the F-W method arises from the fact that
the mean and variance of a sum of independent RVs can be
written directly as the sum of the mean and variance of the
individual RVs. The MGF of the sum of independent RVs also
possesses this desirable property that it can be written directly
in terms of the MGFs of the individual RVs as follows:

Ψ
(
P

K
i=1

Xi)
(s) =

K∏

i=1

Ψ
Xi

(s), (Re(s) ≥ 0). (5)

From (3) and (4), the MGF can also be interpreted as a
weighted integral of the pdf,p

X
(x), with the weight func-

tion being a monotonically decreasing exponential function,
exp(−sx), in x. Varying s adjusts, as required, the weights
allocated to the head and tail portions of the sum pdf. Figure1
compares, in log scale, the absolute values of the various
weight functions discussed above.



Based on the discussion above, we can see that the MGF
posses two desirable properties. First, the MGF is a weighted
integral of the pdf with a weight function that is adjustable.
Second, the MGF of the sum pdf can be easily expressed
as the product of the MGFs of the individual RVs. These
two properties make the MGF a preferable candidate for the
lognormal sum approximation problem. We therefore propose
the following method based on matching the MGF of the
lognormal distribution.

B. MGF-based Lognormal Sum Approximation

While no general closed-form expression for the lognormal
MGF is available, it can be readily expressed by a series ex-
pansion based on Gauss-Hermite integration.2 We restrict the
development to real values ofs as it still provides considerable
flexibility in adjusting the weighted integrals. The MGF of a
lognormal RVX can be written as

Ψ
X

(s) =

∫
∞

0

ξ exp(−sx)

xσ
Y

√
2π

exp

[
− (ξ loge x − µ

Y
)2

2σ2
Y

]
dx, (6a)

=

N∑

n=1

wn√
π

exp

[
−s exp

(√
2σ

Y
an+µ

Y

ξ

)]
+ R

N
, (6b)

whereµ
Y

andσ
Y

are the mean and standard deviation of the
Gaussian RVY = 10 log10 X . Eqn. (6b) is the Gauss-Hermite
series expansion of the MGF function,N is the Hermite
integration order,ξ = 10/ loge 10 is a scaling constant, and
RN is a remainder term. The weights,wi, and the abscissas,
ai, are tabulated in [14, Tbl. 25.10] forN ≤ 20. From (6b),
we can define the Gauss-Hermite representation of the MGF,
Ψ̂

X
, by removingR

N
as follows:

Ψ̂
X

(s; µ, σ) =
N∑

n=1

wn√
π

exp

[
−s exp

(√
2σan + µ

ξ

)]
. (7)

Figure 2 shows the impact ofN on the accuracy of the
Gauss-Hermite representation of the MGF. We have found that
the lognormal MGF,Ψ

X
(F ), can be accurately approximated

by its Gauss-Hermite expansion̂Ψ
X

(s; µ, σ) with N = 12.
The lognormal sum

∑K

i=1 Xi can now be approximated by
a lognormal RVX = 100.1Y , whereY ∼ N (µ

Y
, σ2

Y
), by

matching the MGF ofX with the MGF of
∑K

i=1 Xi at two
different values ofs: s1 ands2. This sets up a system of two
independent equations to calculateµ

Y
andσ2

Y
, as follows:

N∑

n=1

wn√
π

exp

[
−sm exp

(√
2σ

Y
an + µ

Y

ξ

)]

=

K∏

i=1

Ψ̂
X

(sm; µ
Yi

, σ
Yi

), for m = 1 and2. (8)

Note that the right hand side of the above two equations is a
constant number. These non-linear equations inµ

Y
andσ

Y
can

be readily solved numerically using standard functions such as
fsolve in Matlab andNSolve in Mathematica.

2A formula for the MGF, in the form of an infinite series, was derived by
Naus [15] for the special case of the sum of two independent and identically
distributed lognormal RVs.
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The values ofµ
Y

and σ
Y

can be accurately determined
using N = 12. We have found that evenN = 6 is
often sufficient. This is because the form of (8) makes the
desired parameters insensitive to MGF approximation errors.
The number of terms is small compared to the 20 to 40
terms required to achieve numerical accuracy in the S-Y
method [16]. Furthermore, unlike the S-Y method, no iteration
in K is required – the right hand side of (8) only needs to be
computed twice (ats1 ands2) for any K.

Most importantly, as highlighted before, the penalty for
pdf mismatch can be adjusted by choosings appropriately.
Increasings penalizes more the errors in approximating the
head portion of the sum pdf, while reducings penalizes
errors in the tail portion. For example, when the lognormal
sum arises because various signal components add up and
the main performance metric is the signal outage probability,
the tail of the CDF needs to be computed accurately. On
the other hand, the head portion of the sum pdf needs to be
calculated accurately in outage probability calculationswhen
the lognormal sum appears in the denominator term only, for



example, as the sum of the powers of co-channel interferers.
The proposed method can handle both of these applications by
using different pairs(s1, s2). Guidelines for choosing(s1, s2)
are developed in the following section.

IV. N UMERICAL EXAMPLES

Given the importance of co-channel interference (CCI) in
cellular systems, we consider the downlink of a representative
hexagonal cellular layout with one and two rings of interfering
base stations (BS) to compare the performance of the proposed
method with other methods. Due to pathloss, the mean values
of the CCI from the second-tier interferers differ considerably
from those of the first-tier interferers.

Figure 3 shows the cell layout with 6 first-tier interferers
and 12 second-tier interferers and the location of the mobile
station (MS) under consideration. BS 0 is the serving BS.
The ith lognormal RV,Xi, observed by the MS is given by
Xi = γ0

(
di

R

)
−η

100.1Yi , whereγ0 is the signal to noise ratio
(SNR) at the corner of the center cell,R is the cell radius,η
is the pathloss exponent,di is the distance between theith BS
and the MS, andYi is a zero-mean Gaussian RV with variance
σ. The examples that follow useγ0 = 10 dB, η = 3.7, and
assume that the MS is at a distance ofR/2 from the serving
(central) BS.3

In the examples, we plot the CDF and complementary
CDF (CCDF) and use these results to provide guidelines on
choosing robust values fors1 and s2 that work for a wide
range of system parameters. As mentioned, small values of
the CDF reveal the accuracy in tracking the head portion of
the pdf, while small values of the CCDF reveal the accuracy
in tracking the tail portion of the pdf.

Figure 4 plots the CDF of the CCI from the first-tier
interferers, which corresponds to the sum ofK = 6 non-
identical lognormal RVs, forσ = 8 dB. The CDFs of the
lognormal approximations from the proposed method, F-W
method, and the S-Y method are compared with that from a
Monte Carlo simulation, which generated106 samples. It can
be seen that the proposed method matches the head portion of
the distribution function very well when(s1, s2) = (0.2, 1.0),
and is more accurate than both the F-W and the S-Y methods.
The CCDF for the same parameters is plotted in Figure 5.
While the S-Y method diverges from the actual CCDF in
this scenario, the proposed method matches the simulation
results well for(s1, s2) = (0.001, 0.005), and is as accurate
as the F-W method. The inevitable trade-off that needs to be
made in approximating both the head and tail portions of the
pdf implies that the same(s1, s2) values cannot be used to
accurately match the head and the tail portions.

The effect of increasing the number of interferers is shown
in Figure 6, which plots the CDF of the CCI from both first-
tier and second-tier interferers,i.e., K = 18. It can be seen
from these two figures that(s1, s2) = (0.2, 1.0) provides a
good fit for various values ofσ andK for approximating the

3The pathloss factor
�

dk

R

�−η
affects only the mean ofXk, but not its

variance.
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head portion of the pdf. Similarly,(s1, s2) = (0.001, 0.005) is
suitable for approximating the tail of the pdf. These valuesof
s1 and s2 were found to be suitable for several other system
parameters, as well.

Figure 7 shows an application of this method to the problem
of computing the outage probability of an interference-limited
cellular system with 6 first-tier co-channel interferers. The
signal component and the interferers all undergo lognormal
shadow fading with a variance ofσ dB. An outage is declared
if the SIR falls below 12 dB. The outage probabilities ob-
tained analytically by employing the proposed method, with
(s1, s2) = (0.2, 1.0), are compared with results from the F-
W and S-Y methods, and from Monte Carlos simulations, for
variousσ. The simulation results were averaged over 100,000
independent trials. Excellent agreements are observed between
the the approximated analytical results and the simulation
results.
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V. CONCLUSIONS

We proposed a simple and novel method to approximate
the sum of several independent, but not necessarily identical,
lognormal random variables with a single lognormal random
variable. Motivated by an interpretation of MGF as a weighted
integral of the pdf, the method computes the approximating
distribution parameters by matching the MGF of lognormal
sum with that of the approximating RV at two real and positive
points,s1 ands2. Matching ats1 = 0.2 ands2 = 1 accurately
approximates the head portion of the lognormal sum pdf,
while matching ats1 = 0.001 and s2 = 0.005 accurately
approximates the tail portion of the pdf. This choice was
shown to be appropriate for a wide range of system parameters.

The weighted integral interpretation also explained the
observed shortcomings of some of the methods currently
available in the literature. The proposed method provides
the flexibility to handle the inevitable trade-off that needs to
be made in approximating different regions of the pdf. Its
computational complexity is similar to that of the Schwartz-
Yeh method.
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