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Abstract

Making machines that can understand musical structure has long been one of the holy grails
of audio processing separating overlapping sounds has been another. Here we present a simple
framework initialy used for the first task, which has come to make itself very useful for source
separation. We show that the same type of reasoning that allows one to find teh building el-
ements of a musical audio stream can also be used to find and extract elements contained in
auditory scenes. We relate this work with recent developments in sparse representations and
dimensionality reduction and show its application in a variety of situations.
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From Learning Music to Learning to Separate

Paris Smaragdis
Mitsubishi Electric Research Laboratories, 201 Broadway,Cambridge MA 02139, USA, e-mail:paris@merl.com

Making machines that can understand musical structure has long been one of the holy grails of audio
processing, separating overlapping sounds has been another. Here we present a simple framework initialy
used for the first task, which has come to make itself very useful for source separation. We show that
the same type of reasoning that allows one to find the buildingelements of a musical audio stream can
also be used to find and extract elements contained in auditory scenes. We relate this work with recent
developments in sparse representations and dimensionality reduction and show its application in a variety
of situations.

1 Introduction

Research in musical signal analysis and source separa-
tion has historically been technically and philosophically
unrelated. Musical signal analysis often involves try-
ing to estimate how traditional musical constructs can
explain a musical signal, whereas source separation has
been a field using varied approaches to separate sounds.
Although most often connections between these two ar-
eas are not drawn, recent research has been exposing a
converging trend. Source separation as a field entered a
major phase with the advent of sparse coding and repre-
sentations. This was a natural evolution from the earlier
ICA work (excellently surveyed in [5]) which introduced
some of the first successful statistical models for source
separation. Using the same statistical models researchers
soon found out that representing signals in different ways
and still applying source separation-like algorithms ex-
citing results would ensue. Particularly so in sensory per-
ception research we saw the automatic discovery of be-
havior we find in our sensory systems by just using sparse
coding ([6] for vision, [7] for audition). As research in
sparse coding blossomed it also found applications in the
field of music where we saw the use of sparse coding to
perform music transcription ([3], [4]). Although there has
been excitement about the intuitive features that one can
find in musical signals using sparse coding, the connec-
tion to source separation has been somewhat neglected.

In this paper we present a new sparse coding algorithm
which we originally developed for music analysis but also
came to be very applicable for source separation. For
the remainder of this paper we go through some of the
research steps we have taken which lead us from musical
analysis to source separation and come back full circle to
an application for musical signals.

2 Learning Musical Elements

The first thing a music student learns is that music is
composed out of some basic elements. To the trained
ear a musical piece is not treated as one long continuous
sound, but rather a mixture of notes, chords, and other
well known musical constructs. Although a considerable
effort in research has been expended in making comput-
ers detect these constructs it still remains an elusive pro-
cess. Partly this is because the mathematical definition
of a note, that a computer would require, can be a hard
thing to express. In this paper we approach the problem
of learning music from a somewhat evolutionary perspec-
tive. We will not explicitly require that our system looks
for notes, but rather we will let it find by itself what is
the best way to formalize music. Surprisingly enough we
will see that notes are indeed discovered as an optimal
way of representing music.

As in most audio analysis systems we will start from a
spectrogram representation. We will view the magnitude
of the spectrogram as a probability distribution of acous-
tic energy in the time-frequency plane. Viewing it as such
allows us to use it to perform latent variable analysis on it
using the Probabilistic Latent Semantic Analysis (PLSA)
algorithm [1]. Denoting the magnitude spectrogram by
S(f, t) for each frequencyf and timet we define the
PLSA decompositions as1:

S(f, t) =

c∑

i=1

piWi(f)Hi(t) (1)

The objective is for a givenc to find the appropriate dis-
tributionsW , p andH that satisfy the equality as best as
possible. Before we continue on describing how this can
be done, let us consider what these variables represent.
We can considerS(f, t) to be a 2-dimensional distribu-

1In this formulation we avoid the usage of probabilistic notation to
describe PLSA, and rather use notation more familiar in the field of
acoustics. Although the PLSA formulation presented here looks differ-
ent from other sources, it is computationally the same.
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Figure 1: Input spectrogram of a piano note sequence.
The particular passage contains eight note events com-
posed out of five district notes, the sequence is:do-re-mi-
fa-re-mi-do-sol

tion, if c = 1 thenW1 andH1 will be the marginal distri-
butions ofS. If c > 1 then we are essentially describing a
weighted mixture of marginal products that approximate
S. The termspi are the weights of each marginal pair
product. In terms of spectrogram terminology eachWi

would represent a spectrum and each correspondingHi

a time envelope. So essentially this decomposition will
describe a spectrogram as a set of spectraWi modulated
in time by a set of corresponding energy envelopesHi.

The way we can determineWi, Hi andpi is by using the
Expectation Maximization (EM) method [2]. Their esti-
mation involves two steps, the expectation step in which
we find the ‘contribution’ toS of eachWi andHi, and
the maximization step where we use these contributions
to extract new estimates ofWi andHi. Successive itera-
tions lead to a solution. More specifically in our case the
expectation step contributions are defined as:

Gi(f, t) = Wi(f)Hi(t) (2)

And the refined estimates for eachWi and Hi are ex-
tracted from the inputS weighted by the corresponding
contribution in the maximization step:

Wi(f) =
∑

∀t

Gi(f, t)S(f, t)∑

i

Gi(f, t)
(3)

Hi(t) =
∑

∀f

Gi(f, t)S(f, t)∑

i

Gi(f, t)
(4)

Finally we need to normalize allWi andHi to sum to
unity so that we ensure that they are true distributions. To
do so we also need to derivepi:
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Figure 2: PLSA results after analyzing the data in fig-
ure 1. The left panel shows eachWi, and the right panel
eachHi. Note that eachWi corresponds to a harmonic
series template which describes each note in the input,
and Hi is the corresponding note’s energy envelope in
time. The correspondence from component number to
note is: Component 1 =sol, Component 2 =fa, Compo-
nent 3 =mi, Component 4 =re, Component 5 =do. The
order of components is arbitrary, here they are plotted in
frequency order.

pi =
∑

∀f

Wi(f) =
∑

∀t

Hi(t) (5)

And subsequently use it to normalizeWi andHi:

Wi(f)←
Wi(f)

pi

(6)

Hi(t)←
Hi(t)

pi

(7)

We then repeat the entire process starting from equation 2
with the newly obtainedWi andHi and keep doing so
until we observe negligible changes in them.

An additional step from standard PLSA is taken which to
raise the elements of eachWi to a powerτ ≤ 1. In the
first iterations we setτ to a value around0.8 and we pro-
gressively increase it so that by the end of trainingτ = 1.
This is a simple way to enforce that most energy from
S will be distributed toWi instead ofHi. The motiva-
tion for this will become clear later on as we examine the
nature ofWi andHi (Hi will effectively correspond to
weights positioning eachWi to perform an approxima-
tion, by forcing theWi to be ‘busier’ we impose more
coding sparsity).

Now in order to see how these variables relate to musical
spectra let us consider an example of piano music. The
spectrogram of the chosen signal is shown in figure 1.
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Figure 3: The extracted spectral distributions from a
speech signal. Note how the distributions model vari-
ous phonemes, most of them being harmonic represent-
ing vowels and a couple being high frequency wideband
representing consonants.

Those versed in the art of spectrogram reading can make
out the fact that there are eight note events, those who ex-
cel in it can tell that there are five unique notes three of
them being repeated twice. More specifically the note se-
quence we recorded isdo-re-mi-fa-re-mi-do-sol, the first
8 noted from Bach’s Invention I in C Major (BWV 772).
We will apply PLSA on this spectrogram and see how the
results correlate to our knowledge of the input. We do so
with c = 5 and derive theWi andHi shown in figure 2

By observation of the results we note some interesting
facts. EachWi corresponds to a (colored) harmonic se-
quence of a unique piano note, and each corresponding
Hi shows how much energy this note had at any time.
The variablespi are the priors of the notes, essentially
telling us how much each note is present. This is an inter-
esting outcome since we have ended up extracting high-
level musical information from a simple probabilistic fac-
torization concept. Obviously the above experiment is a
simple small scale example, for more elaborate musical
transcription examples and insight the reader is referred
to [3] (although the computational approach in that paper
is different it is actually yielding qualitatively the same
results as PLSA).

3 Learning General Sound Ele-
ments, and Using them for Sepa-
ration

The PLSA components that we derived as notes in the
preceding section need not be as coarse parts of the sig-
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Figure 4: The extracted spectral distributions from an am-
bient street noise signal. Note how the spectral distribu-
tions are more wideband and less structured as compared
to the speech distributions in figure 3 since they are mod-
eling a spectrogram of a noisier nature.

nal. Instead of requesting a number of components com-
parable to the number of notes, we could request a num-
ber much larger which would result into components that
describe finer elements of the input, such as note attacks,
noise transients, harmonic segments etc. Perhaps a part
where this is better understood is speech. Consider the
previous experiments but this time using speech instead
of piano sounds as an input. The phrases we used were
taken from the TIMIT database and comprised about
30sec of audio. The extractedWi are shown in figure 3.

Observing the basesWi we can see that some appear as
harmonic series which correspond to vowels, and a cou-
ple appear as noise bands which correspond to conso-
nants. In effect we discover the components that describe
speech, just as we did before with music. Only this time
the building elements of this domain are phonemes and
not notes. We can repeat the same experiment for other
types of sounds as well and we often obtain basic build-
ing blocks that fit very well to semantic descriptions we
would use.

The fact that this procedure comes up with the building
blocks of each type of sound it is presented, allows us to
use it for separation tasks. Let us consider the case of the
above speech data amidst ambient noise. The equivalent
Wi from an ambient noise signal are shown in figure 4.
Note how the two sets differ and encapsulate the nature
of the signals they represent. The speech spectral distri-
butions are predominantly harmonic as speech tends to
be, whereas the ambient noise spectral distributions are
more wideband and noisy, better describing their type of
sound. Had we been confronted with a situation where
there was a mixture of speech and ambient noise, it is safe
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to assume that the mixture spectrogram will contain some
mix of both the noise and the speech spectral distribu-
tions, each describing the presence of each sound type in
the signal. This means that if we know these spectral dis-
tributions beforehand we can try to reconstruct the now
unknown mixture using them. This also means that the
subset of spectral distributions that describes the speech
would most likely account for the speech part of the mix-
ture, whereas the spectral distributions that describe the
ambient noise will do so for the noise. We can therefore
create selective reconstructions of the mixture using one
spectral basis subset at a time to extract individual sound
classes. We proceed with validating this suspicion.

In order to do this we need to train on models of the
two sound types in advance. We have already done this
and have derived the relevant spectral distributions for
both speech and noise as shown in figures 3 and 4. We
call these two sets of spectral distribution setsW (s) and
W (n). We now obtain a spectrogram of a mixture of these
two sound types. The mixture we used contained sounds
that are similar in nature to what we have trained on, but
not the same. We perform PLSA on this as well only
this time we consolidateW (s) andW (n) into a setWi

containing both and use that as a fixed value during EM
training, thereby only estimatingHi andpi. Wi, Hi and
pi will have twice as many entries as they would have had
during training for the individual sounds since they cor-
respond to twice as many spectral distributions. Half of
the elements ofHi andpi will correspond toW (s) and
the other half toW (n). We can now try to resynthesize
the mixture spectrogram using only the distributions cor-
responding to one sound type. To do so we perform:

Ŝspeech(f, t) =

c∑

∀i from W (s)

piWi(f)Hi(t) (8)

Ŝnoise(f, t) =

c∑

∀i from W (n)

piWi(f)Hi(t) (9)

In order to go back to the time domain we invert the spec-
trogramsŜspeech and Ŝnoise using the phase from the
original mixture spectrogram. In effect what this proce-
dure does is modulate the energy of every frequency to in
the original spectrogram to look like the type of data that
the selected spectral bases described. The original mix-
ture spectrogram and̂Sspeech are shown in figure 5. One
can see speech with noise in the left panel, and the ex-
tracted speech spectrogram (Ŝspeech) in the right panel
(due to its not particularly informative visual structure
Ŝnoise is not shown). Listening to the resulting sounds
also verifies that indeed we can perform separation this
way.
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Figure 5: A speech plus noise spectrogram is shown in
the left panel and the extracted speech spectrogram in the
right panel. Note how the noise has been significantly
suppressed and most of the extracted signal is described
by a formant structure (which is what the speech spectral
distributions have adapted to).

4 Back to Music

We now come full circle and return to music to apply
what we now have done in a musical context. The prob-
lem we will now address is slightly different. We will be
trying to separate singing voice from an accompanying
piano. This time we will have an extra complication that
we will only have one of the sounds in our disposal.

This is in a sense a similar problem to the previous sep-
aration case. The learned spectral distributions from the
piano and voice to be very note-like and in effect describe
what these two instruments were playing. Therefore in
our analysis we will be learning the musical elements
of the two sounds and then selectively reconstructing the
piece using only the ‘notes’ of each one. The added com-
plication we will have in this case is that we will be doing
the analysis from a real recording which features an iso-
lated piano part in the introduction, but no isolated vocal
part from which to learn the vocal spectral distributions.

To address this peculiarity we proceed as follows. We
learn the spectral distributionsW (p) of the piano part
from the musical segment in which it is isolated. We
then move on to a passage where both piano and voice are
present. We know that the piano presence of that segment
should be adequately described by the spectral bases, but
the vocal would not. Therefore we modify the learning
procedure to implement this statement. We make some
random spectral distributions for the voiceW (v) and pre-
tend that they are adequate for describing what the piano
bases can not. We then go on to combine the two distri-
bution sets as we did before on the mixture, only this time
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instead of learning onlyHi andpi, we also learn half of
the spectral distributions (the ones that correspond to the
vocal bases, thereby leaving only the piano distributions
clamped to fixed values). Doing this is very straightfor-
ward thanks to the flexibility of the EM algorithm, we
essentially perform the learning rules described above,
but do not evaluate them for the spectral distributions that
correspond to the piano. This way we can extract a set of
vocal distributions and learn how they are combined in
the signal to form whatever the piano distributions can-
not explain. From this point we essentially perform the
same steps as before to extract the two spectrograms that
correspond to the two sounds (which are shown in fig-
ure 6). Just as before listening tests verify a satisfying
separation.

As expected visual examination of the piano and vocal
bases reveals a note-like structure for the piano and vow-
els at varying pitches for voice (due to space constraints
the bases are not shown, however they are very similar to
the piano and vocal bases presented in previous sections).

5 Conclusions

In this paper we presented a new sparse coding approach
and some of its implementations for analyzing musical
signals and also perform source separation under various
conditions. We showed how the same process that ex-
tracts musically meaningful features from music signals
can be used to extract equally important semantic rep-
resentations of other types of sounds, and how these ele-
ments can be used as a basis with which to perform source
separation between different sounds. Coming back to
music we showed how we can apply this technique in a
musical setting and also perform musical separation in a
slightly different context in which training data were not
available for all sound types.

The goal of this paper was to expose the reader to the con-
nections between research in sparse coding based feature
extraction and source separation and place it in a musical
signal processing context. The algorithm used was only
a chosen tool for sparse coding, the same results can be
also obtained using a variety of other sparse coding tech-
niques (as described in several of the referenced papers).
In fact a variety of other music related tasks can be per-
formed using this reasoning, this is still an evolving field
and new and interesting papers are continuously coming
out.

The author wishes to acknowledge the insightful help of
Bhiksha Raj of Mitsubishi Electric Research Laboratories
in formulating PLSA for audio analysis.
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Figure 6: The extracted spectrograms of the piano (left
panel) and the vocal part (right panel). Note how the pi-
ano part has more constant harmonics (since the piano has
no vibrato), as opposed to the vocal spectrogram which
exhibits more dramatic pitch fluctuations.
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