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a new data fitting method based on optimization that includes energy terms aimed at enforcing
artifact free interpolation. We demonstrate that our method achieves high visual quality with a
small storage cost and an efficient rendering algorithm.
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Abstract

We propose a real-time method for rendering rigid objects with
complex view-dependent effects under distant all-frequency light-
ing. Existing precomputed light transport approaches can render
rich global illumination effects, but high-frequency view-dependent
effects such as sharp highlights remain a challenge. We introduce
a new representation of the light transport operator based on sums
of Gaussians. The nonlinear parameters of our representation en-
able 1) arbitrary bandwidth because scale is encoded as a direct
parameter, and 2) high-quality interpolation across view and mesh
triangles because we interpolate the mean direction of the Gaus-
sians, thereby preventing linear cross-fading artifacts. However,
fitting the precomputed light transport data to this new represen-
tation requires solving a nonlinear regression problem that is more
involved than traditional linear and nonlinear (truncation) approxi-
mation techniques. We present a new data fitting method based on
optimization that includes energy terms aimed at enforcing artifact-
free interpolation. We demonstrate that our method achieves high
visual quality with a small storage cost and an efficient rendering
algorithm.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and frame buffer operations; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Color, Shading, Shadowing and Texture

Keywords: Precomputed Radiance Transfer, Reflectance Field,
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1 Introduction

The quality of real-time rendering can be dramatically improved
by precomputing the interaction of an object with light. This how-
ever raises a formidable challenge, the storage and re-use of data
over a six-dimensional domain: two dimensions for each of light-
ing (assumed to be at infinity), view direction, and surface posi-
tion. Current methods address this issue with compromises be-
tween bandwidth (or sharpness) of the illumination effects, storage
costs, and rendering time. In this paper we focus on spatially vary-
ing view-dependent effects, such as glossy reflections, since view-
independent effects like shadows can be handled with known tech-
niques [Ng et al. 2003; Sloan et al. 2003]. View-dependent effects
are harder to address because they involve variation over the full
6D domain, and highlights can vary quickly over space and view

Figure 1: A bird model with spatially varying material properties.
The material transforms from a diffuse yellow material at the feet to
a highly specular green material at the head. The tessellation of the
model is low (∼12K vertices), nevertheless the reflections contain
high frequencies due to our novel interpolation scheme.

direction, which may result in cross-fading artifacts when linear in-
terpolation is used between views or mesh vertices. We introduce a
method that affords arbitrary bandwidth for view-dependent effects
with a compact storage and real-time performance, at the cost of a
more involved preprocess.

Precomputed light transport techniques compute a pixel color
at render-time based on a precomputed approximation of the light
transport operator, which evaluates the contribution of all lighting
directions for a given spatial location on a mesh and a given view
direction. Typically, the transport operator is represented by linear-
basis functions such as spherical harmonics or wavelets, and the
number of coefficients directly constrains the sharpness of the ef-
fects that can be handled. Compression techniques such as the non-
linear truncation of linear basis [Ng et al. 2003] or the use of sep-
arable approximations [Liu et al. 2004; Wang et al. 2004] improve
on both storage and computation, but the number of coefficients re-
quired to handle high-frequency effects remains large and the ren-
dering cost is directly proportional.

In our work, we address these issues and present a technique
that can achieve high-quality view-dependent lighting effects with
a small storage cost. We do not consider the view-independent
component of light transport because it can be handled by well-
known techniques [Ng et al. 2003; Sloan et al. 2003]. Our con-
tribution lies in specular effects, where we represent the view-
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dependent component of the transport operator using sums of Gaus-
sian functions defined on the sphere of directions corresponding to
the environment lighting. The spherical Gaussians are parameter-
ized by a RGB color, mean direction, and variance. The nonlin-
ear effect of the variance parameter allows for arbitrary scaling of
the kernels, thereby affording all-frequency effects. The nonlinear
effect of the mean direction parameter permits smooth interpola-
tion across space (mesh triangles) and view direction, and prevents
cross-fading artifacts, in the spirit of Phong interpolation. We typ-
ically use a small number of Gaussians, between one and three.
Finally, the representation can be easily evaluated at runtime us-
ing a mip-mapped prefiltered environment map where each level
corresponds to a Gaussian variance. However, the price to pay is
a more involved preprocess, since nonlinear function fitting is not
as straightforward as linear projection or basis truncation. To ad-
dress this challenge, we introduce an optimization technique that
achieves a good approximation as well as high-quality interpolation
over view directions and mesh triangles. In the end, the per-pixel
interpolation of the Gaussian direction and variance is critical to
achieve high visual quality.

The three major contributions of this work are:

• We introduce a nonlinear representation for light transport
based on a sum of Gaussians that is compact and leads to a
fast integration with the lighting at render time.

• Our representation affords high-quality interpolation across
mesh location and view direction, which facilitates rendering
from arbitrary viewpoints and requires only sparse sampling.

• We present an optimization approach to fitting Gaussian func-
tion approximations to precomputed light transport data. In
particular, we include energy terms to favor artifact-free inter-
polation.

2 Background

2.1 Related Work

Our work draws from a number of areas in computer graphics:
scene relighting, environment mapping and prefiltering methods,
radiance transfer methods, and acquisition techniques. Our work is
also related to the nonlinear Lafortune BRDF model [1997], and it
requires a similar nonlinear regression.

Scene Relighting allows the user to relight a fixed scene. Con-
ceptually, scene relighting algorithms precompute a separate global
illumination solution per light source. Linear combination of these
results provides limited dynamic effects. Early work [Dorsey et al.
1991] adjusts intensities of a fixed set of sources and is not intended
to fit general lighting environments. Nimeroff et al. [1994] and Teo
et al. [1997] generalize to more flexible emitters but are still lim-
ited to a fixed view. Dobashi et al. [1995] use the spherical har-
monics basis and transfer vector fields over surfaces to allow view-
point change but restrict lighting changes to the directional intensity
distribution of an existing set of non-area light sources in diffuse
scenes. Debevec et al. [2000] relight faces using a directional light
basis.

The concept of relighting has also been used for texture maps.
Malzbender et al. [2001] precompute a higher-dimensional texture,
called a polynomial texture map, which allows real-time interreflec-
tion effects as well as shadowing. A similar approach using a steer-
able basis for directional lighting is used in [Ashikhmin and Shirley
2002]. None of these methods can deal with high-frequency reflec-
tions and offer only restricted view-dependent effects.

Environment Map Prefiltering techniques proposed by Greene
[1986] observed that an environment map prefiltered by a BRDF

could be used to simulate diffuse and glossy reflections. The orig-
inal environment mapping work [Blinn and Newell 1976] can also
be cast as prefiltering, by considering specular reflection as a con-
volution of the environment map with an impulse function. There
has been a large amount of related research using prefiltered envi-
ronment maps [Kautz 2004; McAllister et al. 2002], however none
of these methods handle shadowing or indirect lighting. McAllis-
ter et al. [2002] store spatially varying parameters of a Lafortune
BRDF model in texture maps and use prefiltered environment maps
to evaluate per-texel shading. Due to limitations of contemporary
hardware (e.g., NVIDIA GeForce 4) they were unable to demon-
strate a hardware implementation of rendering with environment
lighting.

Reflectance Prefiltering was pioneered by Fournier [1992]. He
uses nonlinear optimization to approximate distributions of micro-
facet normals at multiple resolutions using a sum of cosine lobes.
Recently, Tan et al. [2005] proposed a method for multiresolution
reflectance filtering using a Gaussian Mixture Model. They use
the well known EM algorithm [Dempster et al. 1977] to estimate
model parameters. While their target application is different, their
work has several similarities to our method. One similarity is the
need for correspondences between interpolated Gaussians. How-
ever, they modify the EM algorithm to include priors which favor
correspondences, while we have chosen to use an optimization ap-
proach because it provides us flexibility to directly incorporate vari-
ous coherence terms. The use of EM in our context is an interesting
avenue of future work.

Precomputed Radiance Transport methods permit the relight-
ing of an object using full spherical incident lighting. Sloan et al.
[2002] use the spherical harmonics basis to represent how an ob-
ject casts shadows and interreflections onto itself, called precom-
puted radiance transfer. This work is limited to diffuse reflectors
or to surfaces with Phong-like glossy reflections. Improvements
have been presented to incorporate more complex BRDFs [Kautz
et al. 2002; Lehtinen and Kautz 2003], but the use of the spherical
harmonics basis limits these approaches to low-frequency incident
lighting. Even with compression [Sloan et al. 2003] the lighting
cannot be high-frequency.

Ng et al. [2003] use nonlinear approximation (truncation) of
wavelets as basis functions instead of spherical harmonics. With as
few as 100 coefficients, they are able to incorporate high-frequency
lighting effects (for diffuse surfaces or static views only). The
significant coefficients are selected based on the incident lighting,
which prevents the use of highly glossy surfaces. Arbitrary BRDFs
can be incorporated using a method to evaluate triple product inte-
grals [Ng et al. 2004], but is limited to direct lighting only. Arbi-
trary BRDFs and wavelets can be combined using separable BRDF
approximations [Liu et al. 2004; Wang et al. 2004]. These tech-
niques are limited to a small number of fixed BRDFs because pre-
computation is done on a per-BRDF basis (multiple BRDFS also
incur additional memory consumption and storage costs). Further-
more, high-frequency BRDFs can only be represented using pro-
hibitively many terms in the separable approximation [Liu et al.
2004].

The closest PRT technique to our work was proposed by Sloan
et al. for local deformations [2005]. They represent the local effect
of light transport using a weighted sum of rotated zonal harmon-
ics. This nonlinear approximation to the transport is fitted using
a greedy method combined with a local BFGS optimization step
[Press et al. 1992]. Interestingly, the main goal of their work is
the ability to efficiently rotate the representation in order to han-
dle geometric deformation, albeit in the domain of low frequency
lighting and transport. In contrast, we focus on the representation of
arbitrary-frequency view-dependent effects. The arbitrary rotation
of zonal harmonics is similar to the encoding of the mean direction
of Gaussians in our method. Although this arbitrary rotation pro-

2



To appear in the proceedings of the 2006 Symposium in Interactive 3D Graphics

vides the possibility for similar interpolation gains, they do not take
advantage of this in their work. Our approach also encodes scale
as a nonlinear parameter, while zonal harmonics represent differ-
ent frequencies using a linear sum of basis functions. To further
emphasize their restriction to low frequencies, we point out that
their lighting-transport integration is computed in the spherical har-
monic basis, which has been shown [Ng et al. 2003] to require large
numbers of coefficients to represent all-frequency lighting content.
Fundamentally they are limited to the same class of low frequency
transport functions as spherical harmonics.

The visual quality of all of the above techniques depend heavily
on the tessellation of the model; high frequency effects require a
fine tessellation or cross-fading artifacts are visible. Our method
prevents this through nonlinear interpolation of transport functions
instead of using linear blending.

Acquisition Methods deal with similar data, but instead of pre-
computing transport information, they infer it from real scenes.
These approaches are related to our work because a number of them
use nonlinear function approximation. We focus on such methods
and omit techniques that deal with the inverse problem. The initial
environment matting technique [Zongker et al. 1999] describes the
observation in each pixel using a single 2D box function. This leads
to a compact nonlinear representation based on the box coordinates
and weight. This algorithm works well for specular and refractive
objects. Higher quality is achieved by replacing the box functions
with oriented 2D Gaussian kernels [Chuang et al. 2000].

The above methods assume a fixed viewpoint, i.e., their light
transport representations are tied to a 2D plane. A hybrid method
[Matusik et al. 2002] combines a forward method [Debevec et al.
2000] for low-frequency components and high-quality environment
matting [Chuang et al. 2000] for high frequency reflections and re-
fractions. Data is sampled from multiple viewpoints and combined
with 3D geometry. Only one Gaussian is used for each type of
allowed transport (i.e., reflection and refraction), which is interpo-
lated for in-between views. Rendering with this representation is
done in software and does not achieve interactive rates.

2.2 Review of Light Transport

Under the assumption that our object is not emissive, it is com-
mon to view light transport as a linear integral operator [Sloan et al.
2002; Ng et al. 2003]. The light that arrives at our eye is a linear
transformation of the distant incident lighting. This operator T ,
which we call the light transport operator, encodes the effects of the
material properties and light transport interactions between differ-
ent patches of the object. Thus we can describe the exit radiance
Lo(x,ωo) at a point x (on the object) along the outgoing (viewing)
direction ωo as the result of applying our integral operator T on
the (distant) incident lighting Li:

Lo(x,ωo) = (T Li)(x,ωo) =
∫

S
Tx,ωo(ωi)Li(ωi)dωi, (1)

where Tx,ωo is the integration kernel of T , also sometimes called
the transport function. For fixed x and ωo, Tx,ωo is a 2D function pa-
rameterized over the sphere S of incoming directions. It describes,
for each direction ωi, the contribution of Li(ωi) to the total reflected
radiance leaving x along ωo. Substituting for the integration kernel
we can derive the familiar reflectance equation for direct lighting.
With

Tx,ωo(ωi) = fr(ωi,ωo)Vx(ωi)(nx ·ωi), (2)

where ωi is the incoming direction, nx is the surface normal at x,
Vx is a binary visibility function, fr is the bidirectional reflectance
distribution function (BRDF), we get:

Lo(x,ωo) =
∫

Ω
fr(ωi,ωo)Vx(ωi)(nx ·ωi) Li(ωi)dωi . (3)

Figure 2: This close-up of a sphere shows that the highlights contain
detail finer than the tessellation of the sphere would allow without
our per-pixel Gaussian interpolation.

However, the integration kernel Tx,ωo is not limited to direct illumi-
nation, and can describe many other complex transport effects such
as interreflections, refraction, self-occlusion, caustics, subsurface
scattering, and other indirect lighting.

Unfortunately, direct evaluation of T Li (Equation 1) is infeasi-
ble (even assuming distant lighting, light transport is 6D) and fun-
damentally all previous PRT work is concerned with approximating
and compressing some slice of the light transport operator. The rest
of this paper describes new methods for computing and approximat-
ing the integration kernels Tx,ωo , as well as efficiently integrating
Equation 1.

3 Method

As previously noted, the key issue common to all PRT techniques
is the representation of the light transport operator. There are
several criteria used to judge the quality of any proposed repre-
sentation: rendered visual quality, compactness, efficient integra-
tion/evaluation, angular and spatial frequency bandwidth. Our new
representation is based on Gaussian function approximations. We
first introduce the representation for a given sample on the mesh
and a given view direction. We next show how this representation
affords high-quality interpolation between views and spatial loca-
tions. We discuss the challenges raised by the estimation of the
model parameters and outline our optimization approach. Finally,
we show how evaluation at render time reduces to a texture lookup
in a prefiltered environment map.

3.1 Light Transport Representation

We use a nonlinear model to represent the light transport integration
kernel Tx,ωo . In contrast to linear approximation, where all data is
approximated by a projection onto a fixed set of basis functions
(e.g., fifth-order spherical harmonics), the parameters of our model
have a nonlinear effect on the approximation. This is a significant
departure from the previous work based on nonlinear approxima-
tion [Ng et al. 2003]; that starts with a linear basis (e.g., Haar
wavelets), and truncates small coefficients to zero. We approximate
Tx,ωo as a a sum of N weighted isotropic Gaussians:

T̃x,ωo(ωi) =
N

∑
k

wkG(ωi; µk,σk), (4)

where G is a 2D spherical Gaussian centered around µk with stan-
dard deviation σk and weight wk .

Our choice of a nonlinear model such as Gaussians is motivated
by three main properties: arbitrary frequency, accurate approxima-
tion with only small number of coefficients, and high visual quality
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of the interpolation between Gaussians. In return, they require non-
linear regression for the estimation of the parameters, as described
in Section 4. Nonlinear models such as Gaussian functions have
the potential to better fit data with a small number of coefficients
when their functional form is well-adapted to the problem at hand.
In our case, we have chosen Gaussians because they are smooth,
have a compact set of parameters, have arbitrary bandwidth, and
approximate rendering data such as BRDFs well. The nonlinear
effect of the variance σk parameter allows for direct encoding of
scale, thereby affording arbitrary bandwidth. The nonlinear effect
of the mean direction µk permits better interpolation and prevents
cross-fading artifacts (see Figure 2). However, when using mul-
tiple Gaussians, good correspondences are needed for artifact-free
interpolation. We discuss our solution below.

3.2 Sparse Representation & Interpolation

We have described how Gaussian functions can approximate the
2D light transport integration kernel Tx,ωo at a given point x for a
given view direction ωo. Conveniently, it also enables a sparse rep-
resentation in the remaining four dimensions for space and view
direction. Key to this is the fact that interpolation of the Gaussian
parameters closely matches the behavior of integration kernels. In
particular, the nonlinear parameters µk and σk preserve the qualita-
tive shape of the kernel across interpolation which leads to a good
visual reproduction of highlights. The quality gained compared to
the linear interpolation of the highlights is similar to the difference
between Gouraud and Phong shading.

In practice, we compute and approximate the transport functions
T̃x,v j only at mesh vertices x and only for a set of 92 fixed viewing
directions V = {v j}, obtained through subdivision of an icosahe-
dron. Transport functions for other views or positions are not rep-
resented explicitly; instead, we interpolate them from nearby sam-
ples.

3.3 Model Estimation

Our model requires nonlinear parameter estimation for the variance,
weight, and mean of the Gaussians for each view direction and spa-
tial location. We introduce an optimization technique that mini-
mizes the L2 error with the data, and also includes energy terms to
improve correspondences between Gaussian parameters of neigh-
boring views and mesh vertices. Our nonlinear parameter estima-
tion is described in Section 4.

3.4 Method Overview

An overview of our method can be found in Figure 3. During the
preprocessing step, we simulate light transport. We then fit our
Gaussian model using a new optimization approach described in
Section 4. We store Gaussian parameters for each vertex and view
direction.

At runtime, rendering is straightforward. The approximated and
interpolated transport function T̃x,v is integrated against the light-
ing, using a small number of texture accesses. This is efficient be-
cause the integration between the lighting and Gaussians at vari-
ous locations and scales can be precomputed and stored in a mip-
mapped environment map.

4 Precomputation

Our precomputation proceeds in two steps: we first compute light-
transport data for all views and mesh vertices, and we next fit our
Gaussian parameters using an optimization approach. The first step

Figure 3: An overview of our method. We estimate the transport
function for each view and vertex and approximate it with a sum
of Gaussians. At runtime we interpolate the parameters from the
three closest precomputed views to the current view and perform a
simple lookup in a Gaussian-prefiltered environment map.

is not specific to our technique and any rendering approach could
be used. Our contribution lies in the fitting of these data.

4.1 Light Transport Data

We compute Tx,ωo for each view ωo and for each vertex x of the
model. In practice, we decompose Tx,ωo as a sum of three terms,
direct glossy, indirect glossy, and diffuse:

Tx,ωo = T G
x,ωo

+T IG
x,ωo

+T D
x,ωo

. (5)

The diffuse component T D
x,ωo

can include direct and indirect diffuse
light transport. We do not discuss diffuse transport as it is a view-
independent effect and we handle it using techniques that operate
in the reduced 4D domain [Sloan et al. 2002; Ng et al. 2003]. For
high-quality data, we use an appropriate precomputation method
for each component (a common approach in path tracing implemen-
tations [Jensen 2001]). The direct glossy and diffuse components
are evaluated for each texel of a cubemap in a fragment shader. An
indirect glossy component is computed by BRDF importance sam-
pled path tracing along each direction v∈V onto point x. We record
the path of each photon until it is absorbed or reflected off to infin-
ity, where it is stored in the corresponding cubemap texel. Each
of these processes produces a set of tabulated transport operators
Tx,ωo , sampled over the texels of a cubemap. These cubemaps are
the input to the next stage of precomputation, and the core of our
technique: nonlinear Gaussian parameter estimation by optimiza-
tion.

4.2 Approximating Light Transport

The main goal of our nonlinear optimization is to find the Gaussian
parameters that best fit the light transport data. In addition, when
using multiple Gaussians to encode the same component, we must
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ensure good correspondences across views and mesh vertices. In
particular, note that from a data fitting perspective, any permutation
of N Gaussians yields the same error. With this goal, we introduce
additional energy terms that favor correspondence.

In practice, we concurrently fit the Gaussians across all views
ωo,v for a given vertex x using nonlinear optimization [Coleman
and Li 1996] minimizing the following objective function:

min
µωo,v

k ,σ ωo,v
k ,w

ωo,v
k

∑
v

αD+βM + γV +δS, (6)

where k = 1 . . .N is one of the Gaussians, v is one of the 92 views,
and µk, σk, and wk are the Gaussian parameters to be optimized.
D is a data-fitting term, and the following terms favor correspon-
dences for the mean and variance across views, and finally across
spatial locations, as we describe below.

Data Term. The data term is designed to minimize the L2 error
between the transport data and our Gaussian approximation:

D ≡
S

∑
∥∥∥∥∥
[

N

∑
k=1

wkG(ωi; µωo,v

k ,σωo,v

k )

]
−Tx,ωo,v(ωi)

∥∥∥∥∥
2

. (7)

Alignment of Means. Because we want to interpolate Gaus-
sians across views, we add a mean alignment term to encourage cor-
responding Gaussians in neighboring views have consistent means:

M ≡
N

∑
k=1

∥∥∥∥∥
[

1
R ∑

r(v)
µωo,r(v)

k

]
−µωo,v

k

∥∥∥∥∥
2

, (8)

where r(v) are the neighboring views of v. This term guides the
mean for view v toward the average mean of the neighboring views.
This term is necessary to fill in data for occluded views (i.e., views
with zero transport due to visibility, or views just below the hori-
zon) in order to provide smooth interpolation at nearby views with
nonzero transport functions.

Alignment of Standard Deviation. This term is similar to the
one above; encouraging the standard deviation of the Gaussian in
view v to be similar to the average standard deviation in neighboring
views:

V ≡
N

∑
k=1

∥∥∥∥∥
[

1
R ∑

r(v)
σωo,r(v)

k

]
−σωo,v

k

∥∥∥∥∥
2

. (9)

Spatial Term. The spatial term ensures that the Gaussians of the
current vertex (for all views) have good corresponding Gaussians at
(already processed) neighboring vertices. This term aims to make
the relative arrangement of spatial neighbors consistent:

S ≡
N−1

∑
k1=1

N

∑
k2=k1

∑
s(x)

max
(
(−〈µωo,v

x,k1
−µωo,v

x,k2
,µωo,v

s(x),k1
−µωo,v

s(x),k2
〉)3,0

)
,

(10)
where x is the current vertex and s(x) are the neighboring vertices
that have already been processed. The relative arrangement is cal-
culated by taking difference vectors between the Gaussian means
µ for all pairs of the N Gaussians of a given view and vertex. The
dot product between the difference vectors of neighboring vertices
is positive when the relative arrangement is consistent, and negative
when it is flipped.

Optimizing for the Gaussian parameters of all views and all ver-
tices at the same time is impossible due to the very large number
of variables. Instead, we only concurrently fit the parameters of a
single vertex (all views). To make sure that spatial consistency is

(a) (b) (c)

Figure 4: Decomposition of a rendered frame (a) into the glossy
component (b) and the diffuse component (c).

attained nonetheless, we proceed as follows. We start with a sin-
gle vertex and optimize all its Gaussian parameters. After all its
parameters have been optimized, we process a neighboring vertex
using the above spatial consistency term. We continue processing
neighboring vertices until all vertices have been processed (which
essentially “flood-fills” the mesh).

Tan et al. [2005] solve a similar problem for multiresolution re-
flectance data using the EM algorithm. EM is an iterative, non-
linear optimization routine effective for estimating parameters of a
Gaussian Mixture Model. By incorporating prior constraints, they
estimate model parameters as well as resolve correspondences be-
tween Gaussian parameters at neighboring texels. In contrast, we
chose an optimization approach because of the flexibility to directly
control the objective function. In the future, we hope to adapt the
EM algorithm for our purpose.

5 Rendering

Rendering an object involves integrating the lighting Li(ωi) with
the (interpolated) transport functions T̃x,v(ωi), see Equation 1. This
integration has to be repeated for every visible point x:

Lo(x,ωo) =
∫

S

(
N

∑
k

wkG(ωi; µk,σk)

)
Li(ωi)dωi . (11)

We use well-known techniques to evaluate the integral in Equa-
tion 11 with simple lookups to Gaussian-prefiltered environment
maps [McAllister et al. 2002].

The interpolation of the transport function is performed using
barycentric interpolation of the Gaussian parameters. The nonlin-
ear effect of these parameters enables high-quality rendering. At
each of the three closest spatial samples x1,2,3 (triangle vertices),
we lookup the Gaussians for the three closest directions v1,2,3. Cor-
responding Gaussians (see Section 4.2) at each vertex xl are inter-
polated using the barycentric weights [Tan et al. 2005]. The result-
ing Gaussians at each x1,2,3 are then interpolated to yield the actual
function T̃x,v at position x. It is trivial to rotate the incident light-
ing Li, because the mean parameters µk are represented in a global
coordinate frame. To rotate the lighting by Rθ , we apply the in-
verse rotation RT

θ to µk, and use the resulting direction to index the
lighting cubemap.

6 Results and Implementation

In this sections we describe our implementation and evaluate our
results from a numerical, visual, and performance perspective.
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Figure 5: Visual and error analysis of three typical transport functions and their approximations. Top row of each subfigure shows from
left to right: unapproximated data, Gaussian approximation using 10 Gaussian lobes, nonlinear wavelet approximation using the 70 largest
coefficients, and 10th order Spherical Harmonic approximation. Graphs shows percentage L2 error as a function of number of Gaussians and
the equivalent number of wavelet and spherical harmonic coefficients.

6.1 Precomputation

As noted earlier, it is necessary to compute the transport function
at each vertex and for a set of fixed view directions, specified in a
global coordinate frame. In practice we used 92 viewing directions,
with on average 46 directions falling in the upper hemisphere of any
given vertex. The view directions are defined in a global coordinate
frame to simplify angular interpolation.

We decompose the transport operator into a diffuse (view-
independent) component and a glossy (view-dependent) component
(see Figure 4). For all the images appearing in this paper, as well as
the accompanying video we represent the diffuse component using
fifth-order linear spherical harmonics, however any other suitable
technique could easily be used [Ng et al. 2003; Sloan et al. 2003].

We optimize the objective function described in Equation 6 and
Section 4.2. In practice we use the MATLAB optimization toolbox
routine fmincon. As nonlinear optimization is a compute intensive
procedure, we used a cluster of 20 machines to distribute the work.
Typical precomputation times ranged from one to three hours. It
may be possible to significantly accelerate precomputation times
by leveraging the sparseness of typical view-dependent transport
data.

A single Gaussian is stored as seven floating point numbers:
three for RGB weights, three for the mean, and one for the vari-
ance (see Equation 4). Although only approximately 46 of the 92
view directions are in the upper hemisphere of the surface normal,
Gaussian parameters are computed and stored for all 92 view di-
rections to allow smooth interpolation near the horizon boundary.
The weights wk of views falling below the hemisphere are set to
zero. The total storage for a model with M vertices and a N term
Gaussian approximation is 92×7×M×N floating point numbers.
For example, a model with 10K vertices using a one-term Gaus-
sian approximation requires 25MB to store. Note that this is far
from an optimal encoding of Gaussians, but it was chosen to sim-
plify rendering. Clustering techniques [Sloan et al. 2003] and better
encoding of zero-weighted Gaussians could further reduce storage
costs.

6.2 Rendering

Rendering is simple, with the majority of the computation occur-
ring in vertex and fragment shaders. In practice, we have imple-
mented the interpolation across view in a vertex shader, and the
interpolation across triangles in a pixel shader. The integral of the
interpolated Gaussians with the environment map is a simple mip-

map look up to a prefiltered environment cubemap. The per-pixel
interpolation of the Gaussian direction and variance is critical to
achieve high visual quality. The CPU is only used to locate the data
for the three nearest views of each vertex and pack it into vertex
buffer objects to be sent to the GPU. In fact, even this stage could
be accomplished on the GPU by adding several texture lookups to
the vertex shaders. The main bottleneck of our implementation is
the data transfer from the CPU to the GPU. Despite the unopti-
mized rendering code the glossy component can achieve frame rates
of greater than 60Hz for modestly sized models (10–30K vertices)
and the combined spherical harmonics and glossy component can
be rendered at 30–40Hz. It takes approximately two seconds to pre-
convolve all levels of a 512×512×6 (at the finest level) cubemap
mip-map in software. Using a smaller input cubemap, or further
optimization (e.g., GPU or SSE implementations) may be able to
provide unconstrained per-frame dynamic lighting. We currently
support arbitrary rotations of the input lighting in real-time.

6.3 Error Analysis and Comparisons

We demonstrate the expressive power of our model by calculat-
ing the relative L2 error of approximated transport functions using
our Gaussian representations, nonlinear Haar wavelet approxima-
tion [Ng et al. 2003] and spherical harmonics(SH). We choose not
to compare directly with zonal harmonics (ZH) [Sloan et al. 2005],
as ZH are a subset of SH. One might argue that the nonlinear fitting
of ZH used by Sloan et al. [2005] may add more expressive power
to ZH, however, it should be noted that ZH are band-limited in the
same way as SH. Thus, high frequencies require higher-order ZH,
which is prohibitively expensive during rendering.

Figure 5 shows relative L2 error for three examples: A small
symmetric glossy lobe, a large lobe with visibility, and a highly
anisotropic, highly specular lobe. A fair comparison of representa-
tions as different as nonlinear Gaussians and truncated Haar wavelet
is difficult. We have chosen to take into account the number of co-
efficients used in the representation. In practice, our Gaussians are
represented using seven floating point values, we therefore decided
to compare a one-Gaussian approximation with seven-coefficient
truncated Haar and SH approximations. As noted above, this is
not an optimal encoding of Gaussians. In addition, Haar encoding
might require more RGB coefficients. The situation for ZH is a bit
more complicated as they have the ability for multi-lobe approxi-
mations. However, since ZH are bandlimited, we feel it is sufficient
(in terms of accuracy of the approximation) to compare only with
SH. As such, the number of parameters was determined based on
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(a) (b)

Figure 6: Visual comparison of the effect of visibility. Image (a) is
rendered with our method. Image (b) is rendered using a prefiltering
technique without visibility. A highlight that should be occluded is
clearly visible on the tail of (b).

(a) (b)

Figure 7: Comparison of the bird model rendered with a single
Gaussian component (a), and two Gaussian components (b). There
are only minor differences in the visual appearance between the
one-component and two-component approximations. We favor the
use of a single Gaussian in practice.

a standard SH representation. Despite this generous allotment of
coefficients, it is clear from Figure 5 that the Gaussian representa-
tion is superior both in terms of L2 error and smoothness for such a
small number of coefficients.

6.4 Visual Quality

The most important aspect of any rendering technique is the quality
of the final images. The nonlinear effect of the Gaussian mean and
variance parameters allow high-quality interpolation across views
and spatial locations. The gain is similar to that of Phong interpo-
lation, but additionally we encode visibility. Figure 6 shows a vi-
sual comparison between our method and a prefiltering method that
omits visibility. Figure 2 demonstrates that fine highlight details
are captured using a sparse sampling in both the view directions
and mesh location. Figure 8 shows two example images rendered
using our technique.

In our experience, one Gaussian per transport component is usu-
ally enough to obtain high subjective quality (see Figure 7 for a
comparison). While the numerical gain is significant for subsequent
Gaussians, the visual gain is not as high, partially because the vi-
sual complexity makes it harder to assess the complex reflection
patterns. For practical purposes, we advocate the partition of light

(a) (b)

Figure 8: Rendering of the Armadillo model (a) with ∼ 50K ver-
tices and the Dane model (b) with 15K vertices. Full rendering
frame rate for Armadillo is ∼ 10Hz. Dane renders at ∼ 40Hz.
Both models are rendered using a single Gaussian lobe for the view-
dependent component, and fifth-order spherical harmonics for the
diffuse component.

transport into multiple components when possible. The coherence
terms in the optimization perform well, but we have sometimes ob-
served Gaussian flipping, especially at the end of the mesh flood
fill when neighboring vertices favor incompatible constraints. We
believe that an additional relaxation step can improve this.

7 Conclusions and Future Work

We have presented a real-time method for rendering static ob-
jects under distant all-frequency lighting, which captures view-
dependent effects at a small storage cost. Our method is based on a
nonlinear representation of light transport based on Gaussian mix-
ture models. This representation presents several advantages: it is
compact, can capture arbitrary bandwidth, and yields high-quality
interpolation. We have presented an optimization approach to fit the
Gaussian parameters to light transport data while achieving good
correspondence across view direction and mesh location. The ren-
dering phase of our technique involves simple shaders and achieves
high quality and performance.

In the future, we would like to extend our system to dynamic
scenes based on a similar representation. Furthermore, we are in-
terested in removing the restriction to distant lighting, which raises
a critical challenge to address the resulting high-dimensional space.
In addition, we want to study the applicability of the EM approach
to accelerate our parameter estimation. Further compression of the
transport is possible, perhaps using clustering or vector quantization
methods. In addition to reducing storage, we expect that compres-
sion could significantly improve rendering efficiency, and we hope
to explore this in the future.
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