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Abstract

Distance fields provide an implicit representation of shape that has advantages in many applica-
tion areas; in this overview, we focus on their use in digital design. Distance fields have been
used in Computer Aided Design since the 1970’s (e.g. for computing offset surfaces and for
generating rounds and filets). More recently, distance fields have been used for freeform design
where their dual nature of providing both a volumetric representation and a high-quality surface
representation provides a medium that has some of the properties of real clay. Modern computer
systems coupled with efficient representations and methods for processing distance fields have
made it possible to use distance fields in interactive design systems. This overview reviews pre-
vious work in distance fields, discusses the properties and advantages of distance fields that make
them suitable for digital design, and describes Adaptively Sampled Distance Fields (ADFs), a
distance field representation capable of representing detailed, high quality, and expressive shapes.
ADFs are both efficient to process and have a relatively small memory footprint.
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1. Introduction 
Distance fields provide an implicit representation of shape that 
has advantages in many application areas; in this overview, we 
focus on their use in digital design. Distance fields have been used 
in Computer Aided Design since the 1970’s (e.g., for computing 
offset surfaces and for generating rounds and filets). More 
recently, distance fields have been used for freeform design where 
their dual nature of providing both a volumetric representation 
and a high-quality surface representation provides a medium that 
has some of the properties of real clay. Modern computer systems 
coupled with efficient representations and methods for processing 
distance fields have made it possible to use distance fields in 
interactive design systems. This overview reviews previous work 
in distance fields, discusses the properties and advantages of 
distance fields that make them suitable for digital design, and 
describes Adaptively Sampled Distance Fields (ADFs), a distance 
field representation capable of representing detailed, high quality, 
and expressive shapes. ADFs are both efficient to process and 
have a relatively small memory footprint. 
 
2. Distance Fields 
An object’s distance field specifies, for any point in space, the 
distance from that point to the boundary of the object. The 
distance can be signed to distinguish between the inside and 
outside of an object (see Figure 1a). Distance fields are a specific 
example of implicit functions, which have a long history of use 
and study (e.g., see [Bloomenthal 1997]). A distance field can be 
represented by a scalar function dist(x) which maps x ∈ ℜn onto 
ℜ. Typically, the boundary Ω of an object represented by a 
distance field is located at the zero-valued iso-surface of the 
distance function, i.e., Ω is the set of all points where dist(x) = 0. 

The general form of a distance function is dist(x) = Norm(x – 
S(x)), where Norm(u) is a metric that decreases monotonically 
with ||u|| and S(x) is a point on the boundary Ω. A minimum 
distance function is such that S(x) = s*, where s* is on Ω and 
|Norm(s*)| ≤ |Norm(s)| ∀ s ∈ Ω. Such general forms of the 
distance function have uses in various applications (e.g., distance 
fields with non-vanishing gradients are used in Computer Aided 
Design and Manufacturing (CAD/CAM) by [Biswas and Shapiro 
2004]), but Euclidean distance (i.e., dist(x) = ±||x – s*||) is 
frequently used because of its utility in a number of applications 
(e.g., collision detection and surface offsetting). 
 
2.1 Properties of Distance Fields 
Distance fields have a number of useful properties. Unlike 
boundary representations, a distance field representing an object is 
defined everywhere in space and not just on the object’s surface. 
With a distance field representation, it is trivial to determine 
whether a point is inside, outside, or on the boundary of the 
represented shape; the distance function is simply evaluated at a 
query point and compared to the value of the iso-surface 
representing the boundary. The gradient of the distance field (i.e., 
(δdist(x)/δx, δdist(x)/δy, δdist(x)/δz) in 3D) yields the surface 
normal if the point x lies on the boundary Ω and the direction to 

the closest point on the surface for points off of the boundary Ω. 
Euclidean distance fields are C0 continuous everywhere in 

space and C1 continuous except at boundaries of Voronoi regions 
(see Figure 2). Discontinuities in the gradient occur near sharp 
corners and along the medial axis of the shape and can be avoided 
1) near the boundary Ω by filtering the boundary representation to 
avoid sharp corners (e.g., see [Sramek and Kaufman, 1999]) or 2) 
throughout the field by using alternatives to the Euclidean 
distance function (e.g., see [Biswas and Shapiro 2004]). 
 
2.2 Operations on Distance Fields 
Distance fields are particularly useful in design because they 
make it fast and simple to combine preexisting shapes using 
Boolean operations such as unioning, differencing, and 
intersection (see Figure 3). Such Boolean operations are used in 
Constructive Solid Geometry (CSG) to combine primitive solids 
such as spheres, cylinders, and rectangular boxes to form complex 
shapes. Boolean operations are often used in volumetric sculpting 
systems because they can be used to add or subtract material to 
the surface of an object along the swept path of a virtual sculpting 
tool.  

When objects are represented as distance fields, Boolean 
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Figure 2. a) The signed 2D distance field of this letter ‘D’ is C0

continuous everywhere and b) C1 continuous everywhere except 
on the boundaries of Voronoi regions. 

a) b) 

a) b) 

Outside 

Boundary  

Inside 

Figure 1. a) A 2D shape and b) its 2D distance field. The shape’s 
distance field represents its boundary, its interior (tinted brown 
here for illustration) and the space in which it sits. 
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operations can be performed using simple min() and max() 
operators (see Table 1). Although the resultant fields are not 
strictly Euclidean (in particular, the combined field near sharp 
corners is non-Euclidean), the fields are often a reasonable 
approximation to the true Euclidean distance field close to the 
object boundary. 

 
Operation 
Name 

Symbolic 
Representation 

Combined Distance  

Intersection dist(A ∩ B) min(dist(A), dist(B)) 
Union dist(A ∪ B) max(dist(A), dist(B)) 
Difference dist(A – B) min(dist(A), –dist(B)) 

 
Table 1. Boolean operations can be performed on objects 
represented by distance fields using simple min() max() operators. 
The functions listed in this table assume a signed distance field 
with the object surface lying at the zero-valued iso-surface and a 
sign convention that uses positive distances for points inside the 
shape and negative distances for points outside of the shape. 
 
2.3 Advantages of Distance Fields 
Distance field have several advantages over boundary 
representations for representing and rendering shapes. First, 
distance fields represent more than just the boundary of the shape; 
they also provide a representation of the object’s interior and the 
space in which the object sits. This additional information is what 
makes it easy to perform CSG on distance fields and also provides 
important information for physical simulation (e.g., it can be used 
to detect collisions and, if a collision occurs, to determine 
penetration depth and the direction from the intersecting point to 
the closest surface point).  

Second, distance fields represent more than just a single 
boundary. By changing the iso-surface value, we can obtain an 
infinite number of offset surfaces. In contrast to boundary 
representations, surface offsetting with distance fields handles 
changes of topology robustly. This feature plays an important role 
in the utility and success of Level Set approaches (e.g., see Osher 
and Fedkiw 2002, and Sethian 1996) which use distance functions 
to represent evolving boundaries. 
 
3. Applications of Distance Fields 
Distance fields have been used in many fields including 
CAD/CAM, medical imaging and surgical simulation, modeling 
deformation and animating deformable models, level set methods, 

simulating fluid dynamics for modeling smoke and fluids, scan 
conversion or ‘voxelization’, reconstructing shape from range 
data, and robotics. See [Frisken and Perry, 2002] and [Jones et al., 
2006] for summaries of the use of distance fields in computer 
graphics and computer vision. 
 
3.1 Distance Fields in Digital Design 
Early work using distance fields for digital design was done in 
CAD/CAM for offsetting (e.g., Ricci 1973 and Breen 1991), 
tolerancing (e.g., Requicha 1983), and generating rounds and 
filets (Rockwood 1989). Freeform design using distance fields has 
been done in the context of implicit surface modeling (e.g., 
Bloomenthal and Wyville 1990, Cani Gascuel 1993) and volume 
graphics (e.g., Galyean and Hughes 1991, Wang and Kaufman 
1995, and Avila and Sobierajski 1996). These early freeform 
modeling systems typically produced ‘blobby’ models, i.e., 
organic models without sharp edges, corners, or other fine detail, 
thereby limiting the utility of such systems. More powerful 
computers coupled with the use of spatial data structures for 
reducing the memory requirements of sampled distance fields 
have recently enabled the development of systems that can 
produce higher resolution models (e.g., Sensable Technologies’ 
Freeform modeling system, Baerentzen 1998, Perry and Frisken 
2001, Museth et al. 2002, and Blanch et al. 2004). 
 
4. Representing Distance Fields 
4.1 Implicit vs. Sampled Representations 
The distance field of simple geometric shapes such as spheres, 
rectangular boxes, conics, and ellipsoids can be represented 
implicitly. For example, the distance field of a sphere centered at 
the origin can be written using the implicit expression 
distSphere(x,y,z) = R – (x2 + y2 + z2)½. Processing implicit shape 
representations (e.g., for rendering, modeling via CSG operations, 
or performing collision tests) requires evaluating the implicit 
expression at query points as needed. 

Implicit functions for more complex shapes are often very 
difficult to specify and/or too costly to evaluate, thus making an 
implicit representation of an object’s distance field impractical. 
For this reason, distance fields are often represented as sampled 
volumes, where each sample in the volume measures the distance 
from the corresponding sample point to the object. The distance 
from an arbitrary point to the object is reconstructed from local 
sampled values using an interpolation function. For example, in a 
regularly sampled rectilinear volume, tri-linear interpolation is 
often used to reconstruct the distance at an arbitrary point from 
the 8 nearest sampled values of the volume. Figure 4 illustrates 

A B A B A B 

Figure 3. Distance fields can be trivially combined and edited using Boolean operations such as union, difference, and intersection. 
These Boolean operations can be expressed as simple min() and max() operators. 

Union: A ∪ B 
dist(A ∪ B) = max(dist(A), dist(B)) 

Difference: A – B 
dist(A – B) = min(dist(A), –dist(B)) 
 

Intersection: A ∩ B 
dist(A ∩ B) = min(dist(A), dist(B)) 
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sampled distances to a 2D shape. 
As long as the maximum curvature of an object is not too

high, a sampled distance field can provide a reasonably good
representation of the object’s surface. As was shown in [Gibson
1998a], the surface of a sphere can be represented with a very 
small volume of samples, especially when both the distance and
the gradient of the distance field are stored for each sample point
(see Figure 5). However, for detailed models, the distance field
must be sampled at high enough rates to avoid aliasing during
reconstruction and rendering. Large models that have even small
regions with high detail have very high memory requirements
and/or limited resolution when the distance field is stored in a
regularly sampled volume. Because generating the sampled
representation requires evaluating the distance function at every
sample point in the volume, regularly sampled volumes are also
slow to generate and process. 
 

4.2 Improving Efficiency 
There has been a significant amount of effort made to speed up 
the generation of regularly sampled distance fields. Many of these 
approaches are summarized in [Jones et al. 2006]. Researchers at 
the University of North Carolina [Hoff et al. 1999, Hoff et al. 
2001, and Sud et al. 2004] have used graphics hardware to speed 
up the distance computation in 2D and later in 3D. Others reduce 
processing by restricting evaluation of the distance field to a 
‘shell’ or ‘narrow band’ around the object surface [Curless 1996, 
Jones 1996, Desbrun and Cani-Gascuel 1998, and Whitaker 
1998]. In some cases, accurate distance values evaluated in the 
shell are then propagated to voxels outside the shell using fast 
distance transforms [Jones and Satherley 2001, Zhao et al. 2001] 
or fast marching methods from level sets [Kimmel and Sethian 
1996, Breen et al. 1998, Whitaker 1998, and Fisher 2001]. 
[Szeliski and Lavalle 1996, Wheeler 1998, and Strain 1999] 
evaluate distance values at cell vertices of a classic or ‘3-color’ 
octree (i.e., an octree where all cells containing the surface are 
subdivided to the maximum octree level) to reduce the number of 
distance evaluations over regular sampling. 
 
4.3 Adaptively Sampled Distance Fields 
More recently, it was observed that substantial savings both in 
memory requirements and in the number of distance evaluations 
required to represent an object could be made by adaptively 
sampling the object’s distance field according to the local 
complexity of the distance field rather than whether or not a 
surface of the object was present. [Gibson 1998a] noted that the 
distance field near planar surfaces can be reconstructed exactly 
from a small number of sample points using trilinear 
interpolation. This observation led to Adaptively Sampled 
Distance Fields (ADFs) [Frisken et al. 2000], which use detail-
directed sampling, i.e., high sampling rates where there are high 
frequencies in the distance field and low sampling rates where the 
distance field varies smoothly. As illustrated in Figure 6, this 
approach results in a substantial reduction in the number of 
distance evaluations and significantly fewer stored distance values 
than would be required by a 3-color quadtree. ADFs are a 
practical representation of distance fields that provide high quality 
surfaces, efficient processing, and a reasonable memory footprint. 
[Perry and Frisken 2001] demonstrate the practical utility of 

 

Figure 4. a) A 2D shape and 3 signed sampled distance values. b) 
A regular sampling of the distance field. 

a) b) 

-30 

10 
-20 

a) b) 

c) d) 

Figure 5. The surface of a sphere is well represented by a sampled
distance field even at very low resolution. a) radius = 30 sample
points, b) radius =  3 sample points, c) radius = 2 sample points,
d) radius = 1.5 sample points. 

Figure 6. Quadtree representations for storing a sampled distance 
field of a 2D shape. a) is a boundary-limited (i.e., 3-color) 
quadtree in which cells are subdivided to their maximum level if 
they contain the shape’s boundary. a) is an ADF with a 
biquadratic reconstruction function in which cells are subdivided 
according to local detail in the distance field. The ADF requires 
significantly fewer distance samples to achieve the same 
representation quality. 

a) b) 
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ADFs in a 3D sculpting system that provides real time volume
editing and interactive ray casting on a desktop PC (Pentium IV
processor) for volumetric models that have a resolution equivalent
to a 2048x2048x2048 volume. 

While there are various instantiations of ADFs (see Figure 7
for some examples) [Frisken et al. 2002], this paper is primarily
focused on quadtree and octree-based ADFs which subdivide the
space enclosing an object into rectilinear cells whose size depends
on the local detail of the distance field (see Figure 6b). A set of
sampled distance values are stored for each leaf cell of the
quadtree or octree. Distances and gradients of the distance field at
arbitrary points within a cell can be reconstructed by interpolating
the sampled values stored for the cell (and possibly neighboring
cells). We currently use trilinear interpolation for reconstructing
3D distance fields from distances sampled at the eight corners of
3D ADF leaf cells and biquadratic interpolation for reconstructing
2D distance fields from nine sample points stored in 2D ADF leaf
cells. Note that ADFs essentially subdivide space into small
regions over which we have a local implicit function that is
defined by the sample points associated with that region and the
interpolation function. This subdivision of the globally implicit
distance field into spatially-limited local implicit fields provides
efficient querying and processing of the field. 

Recently, we have implemented an improved 2D ADF
representation that uses a biquadratic interpolation function for 
better quality and more efficient representation of curved edges
(see Figures 6b and 8a) and specialized ADF cells that provide a
compact and exact representation of the distance field near
corners and thin sections of a 2D shape (see Figure 8b) [Perry and 
Frisken 2003, Frisken and Perry 2004]. 

 
5. Processing Adaptively Sampled Distance Fields
5.1 ADF Generation 
Octree-based ADFs can be generated using a top-down tiled 
generation algorithm described in [Perry and Frisken 2001]. 
Starting with a geometric description of an object (e.g., a triangle 
model) and the root cell of the ADF, cells of the ADF are 
recursively subdivided until the field within a cell is well 
represented by the cell’s sampled distance values and its 
reconstruction function. For example, for an octree-based ADF
using trilinear interpolation, distances from the object to each cell 
vertex and distances to a set of test points within the cell are 
computed. The distances at cell vertices are used to reconstruct 
estimates of the distances at the test points; if the estimates do not 
match the computed distances at the test points, the cell is further 
subdivided. Additional data structures are used to avoid 
recomputing distances whenever possible and to ensure that 
shared distances (i.e., the distance value of a vertex that is shared 
by several cells) are only stored once. 
 
5.2 Direct Rendering 
3D ADFs can be rendered in several ways: directly via ray tracing 
and indirectly by first generating a surface representation (e.g., 
points or triangles) that can be rendered via a traditional graphics 

Figure 8. Improved ADFs for more accurate and efficient 2D
shape representation. a) a 2D ADF with a biquadratic
interpolation function for reconstructing distance values and b) an
ADF with special cell representations for corners and thin
sections of the shape. 

Figure 9. An ADF 
rendered as points at 
two different scales.

a) b) 

Figure 7. Various ADF instantiations: a) a 2D shape and its b) quadtree-based ADF, c) wavelet-based ADF, and d) multi-resolution 
triangulation-based ADF. 

a) b) c) d) 
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pipeline (e.g., OpenGL). For direct rendering, a ray is cast into the
ADF in the view direction for each pixel. Cells that might contain
the surface (as indicated by the cell’s distance values) are tested in
front to back order for ray-surface intersections. If an intersection
occurs, the intersection point and the gradient of the distance field
at the intersection point are determined and used to compute the
color of the pixel. Secondary rays (e.g., shadow rays or reflection
rays) can be spawned at each intersection point for higher quality
rendering. An adaptive ray casting approach can be used to 
achieve reasonable full-image rendering rates and fast local
updates of regions that are being interactively edited [see Perry 
and Frisken 2001 for details]. 
 
5.3 Point-based Rendering 
The octree data structure lends itself well to point-based rendering
approaches [Perry and Frisken 2001]. To generate a point-based 
model of the surface, leaf cells of the octree that contain the
surface are seeded with a set of randomly generated points. A
uniform distribution of points over the surface can be achieved by
seeding leaf cells with a number of points that is proportional to
the size of the leaf cell (i.e., large leaf cells are seeded with more
points than small leaf cells). Once the seeded points are placed in
each leaf cell, they are relaxed onto the surface by following the
gradient of the distance field until they reach the surface. The
points can be optionally shaded using the gradient of the distance 
field at their final locations. This approach is quite fast, allowing
800,000 Phong-shaded points to be generated in 1/5 of a second
on a Pentium II processor in 2001. Figure 9 shows a point-base 

model rendered via OpenGL at two different sizes. 
 
5.4 Tessellation 
ADFs can also be converted to triangle models which can be 
rendered interactively using graphics hardware. We use a 
modified SurfaceNets triangulation algorithm [Gibson 1998b, 
Perry and Frisken 2001] (later relabeled as Dual Contouring in [Ju 
et al. 2002]) to create topologically consistent, high quality 
triangle models on the fly. The octree data structure of the ADF 
can be exploited for creating Level-of-Detail triangle models (see 
Figure 10). The tesselation algorithm is very fast and handles
adjacent octree cells whose sizes differ by greater than a factor of 
two. The method was able to generate 200,000 triangles in 0.37 
seconds on a Pentium II processor in 2001 and is considerably 
faster on today’s workstations.  
 
5.5 Concept Modeling 
Building on prior work in implicit modeling (see e.g., 
[Bloomenthal 1997]), modeling with generalized cylinders (e.g., 
[Crespin et al. 1996] and [Aguado et al. 1999]), and sketched-
based input (e.g., [Cohen et al. 2001] and [Grimm 1999]), we 
have implemented a prototype system for creating expressive and 
detailed 3D creatures and other organic models via a simple and 
intuitive interaction method. Leveraging off of traditional 2D 
drawing, this system incorporates three design stages: 1) free-
hand sketching of skeleton curves that rough out the basic shape 
of the object, 2) fleshing out the geometry of the creature by 
specifying a set of 2D cross-sectional profiles that are lofted along 
the skeleton, and 3) editing the lofted surface to add high 
resolution geometric detail via a brush-based carving metaphor. 
These three stages are illustrated in Figure 11.  

In the second design stage, the user fleshes out the geometry 
by lofting 2D cross-sectional profiles along the skeleton. The 
profiles are represented as 2D ADFs and are edited using a new 
2D profile editor that provides a seamless interface between pixel-
based (painting) and vector-based (curve drawing) metaphors. 
Because lofting is performed as an implicit blend, the cross 
sections can have arbitrary topology. A new robust lofting method 
that exploits ADFs is used to produce high resolution models that 
accurately reflect the detailed shape of the 2D profiles. 
 
5.6 Detailed Carving 
ADFs provide a significant improvement over regularly sampled 
distance fields and distance fields stored in 3-color octrees (i.e., 
octrees subdivided based on the presence of an object’s surface 

Figure 10. The octree data structure can be exploited for 
generating level-of-detail triangle models. a) a low resolution 
triangle model and b) a medium resolution model generated from 
an ADF.  

Figure 11. a) A skeleton curve defining the basic shape and a set of 2D profiles that are placed perpendicular to the skeleton to define the 
surface of the shape. Note that the profiles can have arbitrary topology. In b) the profiles have been lofted along the skeleton producing an
expressive concept model. In c) detail has been added to the surface of the shape using a brush-based carving tool. 

a) b) 

a) b) c) 
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rather than on detail in the distance field) because the smaller
memory size and faster processing times of ADFs enable
interactive carving at very high resolution. Carving is
accomplished by performing Boolean operations (e.g.,
differencing or unioning) between the carving tool and the object
being carved. For practical purposes, the effect of the carving tool
is limited to a bounding region surrounding the tool. ADF cells of
the object that lie within this bounding region are regenerated; the
distance field in the regenerated cells is computed by applying the
appropriate Boolean operation to the distance field of the tool and
the distance field of the object. 

[Perry and Frisken 2001] describe Kizamu, a system for
sculpting detailed characters that uses ADFs. This system
provides a means for generating ADF models from various
sources such as stock distance functions (e.g., spheres, rectilinear
boxes, cones, and cylinders), CSG combinations of stock distance
functions, height fields and range data, extrusion and revolution of
2D ADFs, lathing of existing ADFs, and triangle models. Kizamu
(i.e., “to carve” in Japanese) allows users to perform detailed 
carving of the surfaces of these ADF models using a pressure
sensitive pen and a brush-based metaphor. The carving tool can be
applied perpendicular to the viewing direction or in a direction
normal to the local object surface. The system maintains a history 
of operations during carving and provides infinite undo and redo
operations. Figures 11c, 12, and 13 show several parts generated
using Kizamu, illustrating that ADFs can be used to produce
smooth, organic surfaces with high quality edges and corners and 
intricate geometric detail. 

 
6. Summary 
The use of distance fields for representing and processing shape 
has application in many fields. In particular, distance fields 
provide an intuitive representation for digital design because they 
can be intuitively and efficiently combined using Boolean 
operations and they can be edited and manipulated in ways that 
resemble real clay. More efficient algorithms and efficient 
representations of distance fields (such as ADFs) have facilitated 
several systems that use distance fields for design. In this 
overview, we have discussed properties and advantages of 
distance fields for representing shape, reviewed previous work 
using distance fields in digital design, and described methods for 
representing and processing ADFs together with two systems that 
use ADFs for concept modeling and detailed carving. 
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