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Abstract
We propose secure protocols for gaussian mixture-based sound recognition. The protocols
we describe allow varying levels of security between two collaborating parties. The case
we examine consists of one party (Alice) providing data and other party (Bob) providing
a recognition algorithm. We show that it is possible to have Bob apply his algorithm on
Alice’s data in such a way that the data and the recognition results will not be revealed
to Bob thereby guaranteeing Alice’s data privacy. Likewise we show that it is possible to
organize the collaboration so that a reverse engineering of Bob’s recognition algorighm cannot
be performed by Alice. We show how gaussian mixtures can be implemented in a secure
manner using secure computation primitives implementing simple numerical operations and
we demonstrate the process by showing how it can yield identical results to a non-secure
computation while maintaining privacy.
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ABSTRACT

We propose secure protocols for gaussian mixture-based sound
recognition. The protocols we describe allow varying levels
of security between two collaborating parties. The case we
examine consists of one party (Alice) providing data and other
party (Bob) providing a recognition algorithm. We show that
it is possible to have Bob apply his algorithm on Alice’s data
in such a way that the data and the recognition results will not
be revealed to Bob thereby guaranteeing Alice’s data privacy.
Likewise we show that it is possible to organize the collabo-
ration so that a reverse engineering of Bob’s recognition algo-
rithm cannot be performed by Alice. We show how gaussian
mixtures can be implemented in a secure manner using se-
cure computation primitives implementing simple numerical
operations and we demonstrate the process by showing how it
can yield identical results to a non-secure computation while
maintaining privacy.

1. INTRODUCTION

In today’s highly networked world the problem of data pri-
vacy is becoming increasingly relevant. As many researchers
working on classification repeatedly observe, accepting data
is always welcome but obtaining it is not easy. Legal and se-
curity constraints are often hindering open cooperation and
make data exchange a cumbersome process (if at all possi-
ble). This is especially the case in audio and speech process-
ing where extensive recording databases by large corporations
and governments are kept in the dark in fear of privacy or se-
curity violations. The same privacy issues also extend in the
realm of commercial ventures where the business model of
a data processing company analyzing customer data as a ser-
vice is always greeted with suspicion. In this paper we ad-
dress this model of processing where privacy of both data and
algorithms is a priority of two cooperating, but not trusting,
parties. With no loss of generality we specifically concentrate
on a gaussian mixture-based sound recognition task. We show
that it is indeed possible to have a secure cooperation where
there are no privacy issues while the required computations
and results take place. The remainder of this paper is ordered
as follows. In section 2 we formally introduce the problem at
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hand, in section 3 we introduce the secure computation prim-
itives that are employed for this task, in section 4 we explain
how the secure primitives can be combined to perform vari-
ous forms of secure classification, and finally in section 5 we
present some results before we conclude.

2. PROBLEM FORMULATION

Secure classification allows two parties, Alice and Bob, to en-
gage in a protocol that will allow Alice to classify her data us-
ing Bob’s classifier without revealing anything to Bob. Also,
Alice will learn nothing about the classifier, other than an an-
swer to her query. A two-party protocol between Alice and
Bob is secure when privacy and correctness are guaranteed
for both Alice and Bob. It is said that a protocol protects pri-
vacy when the information that is leaked by the distributed
computation is limited to the information that can be learned
from the designated output of the computation. In the semi-
honest case, both parties follow the protocol as prescribed but
may record all messages and subsequently deduce informa-
tion not derivable solely from the protocol output. In the ma-
licious case, however, no assumption is made about the be-
havior of either party. It is required that the privacy of one
party is preserved even in the case of an arbitrary behavior of
the second party. A protocol in the semi-honest case can be
made secure in the malicious case when accompanied with
zero-knowledge proofs that both parties follow the protocol.

3. PRIMITIVES

We use certain primitives in the protocols we present and
based on how the primitives are implemented, one can achieve
different levels of security and computational/communication
efficiency. In general, there is a trade-off between security and
efficiency. Below, we describe the primitives that we use and
briefly discuss about protocols that implement them.

3.1. Secure Inner Products (SIP )

The primitive which we use most often is for computing se-
cure inner products. If Alice has vector x and Bob has vector
y, a secure inner product protocol produces two numbers a
and b such that a + b = xty. Alice will get the result a and



Bob will get the result b. To simplify notation, we shall denote
a secure inner product computation xty as SIP (x,y).

Many protocols have been proposed and they can be cat-
egorized as cryptographic protocols (eg. [1, 2]) and algebraic
protocols (eg. [3, 4]). They provide different levels of se-
curity and efficiency. In this paper, we use a cryptographic
protocol based on the idea of homomorphic encryption. See
the appendix for a description of the protocol and [2] for a
proof that the protocol is correct and secure.

3.2. Secure Maximum Index Protocol (SMAX)

Let Alice have a vector x = [x1 . . . xd] and Bob have the
vector y = [y1 . . . yd], they would like to compute the index
of the maximum of x + y = [(x1 + y1) . . . (xd + yd)]. At
the end of the protocol, neither party will know the actual
value of the maximum. Notice that the same protocol can be
used to compute the index of the minimum. We denote this as
j = SMAX(x,y).

Many generic secure two-party protocols have been pro-
posed that enable computation of a function f on the input
shares (e.g. [5]). The function f in our case gives the index
of the maximum of the sum of the input shares. The com-
munication complexity of most such protocols is linear in the
size of the circuit being evaluated.

Another approach is to follow the idea presented in [6].
Bob generates a random polynomial in two variables f(x, y) =
f ′(x+y) such that f ′(zi) ≤ f ′(zj) if and only if zi ≤ zj . For
each i = 1, 2, . . . , d, Alice uses OPE (oblivious polynomial
evaluation) once to learn hi(xi) where hi(x) = f(x, yi). The
index for which hi(xi) is the maximum is the answer Alice is
looking for. Notice that neither party will be able to learn the
actual value of the maximum element. However, Alice will
be able to learn the order of elements in x + y.

3.3. Secure Maximum Value Protocol (SV AL)

Let Alice have a vector x = [x1 . . . xd] and Bob have the vec-
tor y = [y1 . . . yd], they would like to compute the value of
the maximum element in z = x + y. After the protocol, nei-
ther party will know the index of the maximum element. No-
tice that the same protocol can be used to compute the value
of the minimum. Let us denote this as a + b = SV AL(x,y).

For this protocol, we can use the idea presented in [7]. Let
us first consider a naive approach. Notice that zi ≥ zj ⇐⇒
(xi − xj) ≥ (yj − yi). Alice and Bob can do such pairwise
comparisons and mimic any standard maximum finding al-
gorithm to learn the value of the maximum. To perform the
comparisons securely, they can use a protocol for Yao’s mil-
lionaire problem [5].

However, if Alice and Bob follow the above naive ap-
proach, both will be able to also find the index of the max-
imum. Hence, the idea is for Alice and Bob to obtain two
vectors whose sum is a random permutation of z. Neither

Alice nor Bob should know the permutation. They can then
follow the above naive approach on their newly obtained vec-
tors to compute additive shares of the maximum element. See
[7] for the detailed protocol.

4. SECURE CLASSIFICATION

Alice has a d-component data vector x and Bob knows multi-
variate gaussian distributions of N classes ωi, i = {1, . . . , N}
that the vector could belong to. They would like to engage in
a protocol that lets Bob classify Alice’s data but neither of
them wants to disclose data to the other person. We propose
protocols which enable such computations.

The idea is to evaluate the value of the discriminant func-
tion

gi(x) = ln p(x|ωi) + ln P (ωi) (1)

for all classes ωi and assign x to class ωi if gi(x) > gj(x) for
all j 6= i. Here, p(x|ωi) is the class-conditional probability
density function and P (ωi) is the a priori probability of class
ωi. We consider two cases where: (1) each class is modeled
as a single multivariate gaussian, and (2) each class modeled
as a mixture of gaussians.

4.1. Case 1: Single Multivariate Gaussian

We assume that the distribution of data is multivariate gaus-
sian i.e. p(x|ωi) ∼ N (µi,Σi), where µi is the mean vector
and Σi is the covariance matrix of class ωi. Ignoring the con-
stant term (d/2) ln 2π, we can write equation (1) as:

gi(x) = −
1

2
(x−µi)

tΣ−1
i (x−µi)−

1

2
ln |Σi|+ln P (ωi) (2)

Simplifying, we have:

gi(x) = xtW̄ix + w̄t
ix + wi0 (3)

where

W̄i = −
1

2
Σ−1

i , w̄i = Σ−1
i µi, and

wi0 = −
1

2
µt

iΣ
−1
i µi −

1

2
ln |Σi|+ ln P (ωi)

Let us create the (d + 1)-dimensional vectors x̄ and wi

by appending the value 1 to x and appending wi0 to w̄i. By
changing W̄i into a (d+1)×(d+1) matrix Wi where the first
d components of the last row are zeros and the last column is
equal to wt

i , we can express equation (3) in a simplified form:

gi(x) = x̄tWix̄

Expressing x̄ as x for simplicity, we can write the above equa-
tion as:

gi(x) = xtWix (4)

Henceforth, we shall use x to denote a (d+1)-dimensional
vector with the last component equal to 1 unless otherwise
mentioned.



4.1.1. Protocol: Single Multivariate Gaussian (SMG)

Input: Alice has vector x, Bob has Wi for i = 1, 2, . . . , N .
We express the matrix Wi as [W1

i W
2
i . . .Wd+1

i ], where W
j
i

is the j-th column of Wi.
Output: Alice learns I such that gI(x) > gj(x) for all j 6= I .
Bob learns nothing about x.

1. For i = 1, 2, . . . , N

(a) For j = 1, . . . , d + 1, Alice and Bob perform
SIP (x,Wj

i ) to obtain the vectors ai = [a1
i . . .

ad+1
i ] and bi = [b1

i . . . bd+1
i ] respectively. Alice

then computes aix.

(b) Alice and Bob perform SIP (bi,x) to obtain qi

and ri respectively.

2. Alice has vector A = [(a1x+ q1) . . . (aNx+ qN )] and
Bob has vector B = [r1 . . . rN ].

3. Alice and Bob perform the secure maximum index pro-
tocol between the vectors A and B and Alice obtains
I = SMAX(A,B).

Correctness: In step 1, ai and bi are vectors such that ai +
bi = xtWi. Also, bix = qi + ri. Hence, xtWix is given
by aix + qi + ri. I is the value of i for which xtWix is
maximum.
Efficiency: For a given i = I , the above protocol has (d + 2)
SIP calls. Hence, it would take N(d+2) SIP calls and one
call of SMAX .
Security: If Bob gets to know the dot products of d different
vectors with x, he can learn x completely. However, we see
that neither Bob nor Alice ever learn the complete result of
any dot product. Hence, if the protocols for SIP and SMAX
are secure, the above protocol is secure.

4.2. Case 2: Mixture of Gaussians

Let us now consider the case where each class is modeled as
a mixture of gaussians. Let the mean vector and covariance
matrix of the j-th gaussian in class ωi be µij and Σij re-
spectively. Hence we have p(x|ωi) =

∑Ji

j=1
αijN (µij ,Σij)

where Ji is the number of gaussians describing class ωi and
αij are the mixture coefficients. The log likelihood for the
j-th gaussian in the i-th class is given by

lij(x) = xtW̄ijx + w̄t
ijx + wij (5)

where

W̄ij = −
1

2
Σ−1

ij , w̄ij = Σ−1
ij µij , and

wij = −
1

2
µt

ijΣ
−1
ij µij −

1

2
ln |Σij |

Expressing x as a (d + 1)-dimensional vector and W̄ij , w̄ij ,
wij together as the (d + 1)× (d + 1) matrix Wij as done in

the previous case, we can simplify equation (5) as:

lij(x) = xtWijx (6)

Hence, the discriminant function for the i-th class can be writ-
ten as

gi(x) = logsum
(

ln αi1 + li1(x), . . . , lnαiJi
+ liJi

(x)
)

+ lnP (ωi) where (7)

logsum(x1, . . . , xJi
) = max(x1, . . . , xJi

) + ln
(

Ji
∑

j=1

e∆j
)

,

∆j = xj −max(x1, . . . , xJi
) ∀j ∈ {1, . . . , Ji}.

4.2.1. Protocol: Mixture of Gaussians

Input: Alice has vector x, Bob has Wij , αij and P (ωi) for
i = 1, 2, . . . , N , and j = 1, 2, . . . , Ji.
Output: Alice learns I such that gI(x) > gj(x) for all j 6= I .
Bob learns nothing about x.

1. For i = 1, 2, . . . , N

(a) Alice and Bob engage in steps 1 and 2 of Pro-
tocol 1 for the Ji gaussians in the i-th mixture
to obtain vectors Ai = [Ai1 . . . AiJi

] and B′

i =
[B′

i1 . . . B′

iJi
]. Notice that Aij + B′

ij = lij(x).

(b) Bob forms the vector Bi = [Bi1 . . . BiJi
], where

Bij = B′

ij + ln αij .

(c) Alice and Bob engage in the secure maximum
value protocol with vectors Ai and Bi to obtain
yi and zi i.e. yi + zi = SV AL(Ai,Bi).

(d) Alice and Bob compute vectors Āi = [(Ai1 −
yi) . . . (AiJi

−yi)] and B̄i = [(Bi1−zi) . . . (BiJi
−

zi)].

(e) Alice and Bob compute the dot product between
the vectors eĀi and eB̄i using SIP (eĀi , eB̄i) and
Bob gets the result of the dot product. Let the
result be φi.

2. Bob computes the vector u = [u1 . . . uN ] where ui =
zi + ln φi + ln P (ωi). Alice computes the vector v =
[v1 . . . vN ] where vi = yi.

3. Alice and Bob perform the secure maximum index pro-
tocol between vectors u and v and Alice obtains I =
SMAX(u,v).

Correctness: If one follows the protocol carefully, it is easy
to see that ui + vi is equal to gi(x).
Efficiency: For a given i, there are (Ji(d + 2) + 1) SIP calls
and 1 SV AL call. Hence, in all, there are (d+2)

∑N

i=1
Ji+N

SIP calls, N SV AL calls and 1 SMAX call.



Security: If Protocol 1 and the protocols for SIP , SV AL
and SMAX are secure, the above protocol is secure.

Notice that in step 1e, Bob receives the entire result of
the inner product operation. Though this reveals no infor-
mation about x to Bob, we can easily modify the step so
that Alice and Bob receive additive shares φiA and φiB such
that φiA + φiB = φi. In step 2, Bob can compute ui as
zi + φiB + ln P (ωi) and Alice can compute vi as yi + φiA

and the protocol will still hold. In case Alice and Bob want to
compute additive shares of the likelihood instead of the class
label, they will have to do an additional step of computing the
logsum of ln φiA and ln φiB to obtain φ̄iA and φ̄iB . They can
then compute ui as zi + φ̄iB + ln P (ωi) and vi as yi + φ̄iA

and engage in SV AL to compute the likelihood.

5. RESULTS, CONCLUSIONS AND FUTURE WORK

To validate the secure model we ran a large scale experiment
on audio from sports television programs. The desired task
was to learn and classify six different types of audio classes
within the data. We performed the task twice, once with-
out the privacy constraints by direct training and classifica-
tion from the data, and once with the secure classifiers. The
entire process between Alice and Bob was simulated using
a MATLAB implementation. As expected the results from
the two experiments were identical. The computation over-
head was significantly more in the secure method, however
the experiments were done using naively coded models and
dramatic speedups can be obtained with careful optimization
work. The use of different primitives can also result into
widely varying performance, communication and security lev-
els and a description of these is a lengthy research project of
its own and out of the scope of this paper.

Using the same process we have also implemented secure
Hidden Markov Models however due to space limitations we
reserve the presentation of details for a future communica-
tion. Likewise, various signal processing and classification
algorithms can be described in terms of secure primitives and
reformulated in a secure cooperative manner. We expect this
to be a fruitful area of research in the future. In addition to se-
cure formulations there is also work that can be done in devel-
oping better protocols for the primitives used (SIP , SMAX
and SV AL) and to increase their efficiency.

Modifying algorithms already in existence to deal with se-
cure cooperative models can be taken advantage of using the
approach we have described. It is our hope that this process
can help promote a more open collaboration setting where
parties can freely exchange data and algorithms without legal
and privacy issues.

6. APPENDIX

The following protocol is based on homomorphic encryption
and was proposed by [2]. Inputs: Private vectors x and y

with Bob and Alice respectively.
Outputs: Shares a and b such that a + b = xty.

1. Setup phase. Bob:

• generates a private and public key pair (sk, pk).

• sends pk to Alice.

2. For i ∈ {1, . . . , d}, Bob:

• generates a random new string ri.

• sends ci = En(pk; xi, ri) to Alice.

3. Alice:

• sets z ←
∏d

i=1
cyi

i .

• generates a random plaintext b and a random nonce
r′.

• sends z′ = z·En(pk;−b, r′) to Bob.

4. Bob computes a = De(sk; z′) = xty − b.

See [2] for a proof that the protocol is correct and secure.
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