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Abstract

We integrate the cascade-of-rejectors approach with Histograms of Oriented Gradients (HoG)
features to achieve fast and accurate human detection system. Our features are HoGs of variable-
size blocks that capture salient features of humans automatically. We find the appropriate set of
blocks, from a large set of possible blocks, using AdaBoost as a feature selection. Finally, we use
the integral image representation and a rejection cascade to greatly accelerate the performance of
our system. Taken together our system can process frames at rates of between 5 to 30 frames per
second, depending on the density in which we scan the image, while maintaining an accuracy
level similar to previously reported methods.
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Abstract

We integrate the cascade-of-rejectors approach with
the Histograms of Oriented Gradients (HoG) features to
achieve a fast and accurate human detection system. The
features used in our system are HoGs of variable-size blocks
that capture salient features of humans automatically. Us-
ing AdaBoost for feature selection, we identify the appro-
priate set of blocks, from a large set of possible blocks. In
our system, we use the integral image representation and a
rejection cascade which significantly speed up the compu-
tation. For a 320 × 280 image, the system can process 5 to
30 frames per second depending on the density in which we
scan the image, while maintaining an accuracy level similar
to existing methods.

1 Introduction

Human detection is a logical next step after the devel-
opment of successful face detection algorithms. However,
humans have been proven to be a much more difficult object
to detect because of the wide variability in appearance due
to clothing, articulation and illumination conditions that are
common in outdoor scenes.

Recently, Dalal & Triggs [1] presented a human de-
tection algorithm with excellent detection results. Their
method uses a dense grid of Histograms of Oriented Gra-
dients (HoG), computed over blocks of size 16 × 16 pix-
els to represent a detection window. This representation is
proved to be powerful enough to classify humans using a
linear SVM. Unfortunately, their method can only process
320 × 240 images at 1 FPS using a very sparse scanning
methodology that evaluates roughly 800 detection windows
per image.

We speed up their method, while increasing the number
of detection windows for evaluation from 800 to 12, 800.
The improvement is achieved by combining the cascade of
rejector approach that is extensively used for face detec-
tion [13, 11] with the HoG features. However, we discov-
ered that the use of fixed-size blocks, advocated by Dalal
& Triggs is not informative enough to allow fast rejection
in the early stages of the cascade. We therefore design a
much larger set of blocks that vary in sizes, locations and
aspect ratios. We then use AdaBoost to select the best
blocks suited for detection and construct the rejector-based
cascade. This results in a near real-time human detection
system that matches existing methods in terms of accuracy
and significantly outperforms them in terms of speed.

In the rest of the paper, we first give some background on
human detection. We then describe the method proposed in
[1], followed by the details of our framework and experi-
mental results.

2 Background

There appear to be two leading approaches to the prob-
lem of human detection. Please refer to [3] for a detailed
survey. One approach uses a single detection window analy-
sis whereas the other approach uses a parts-based approach.
Within each method, different authors offer different fea-
tures and different classifiers to tackle the problem.

Under the single-detection-window approach, the work
of Papgeorgiou and Poggio [8] uses Haar-based represen-
tation, combined with a polynomial SVM. The work of
Gavrila and Philomin [4] compare edge images to an ex-
emplar dataset using the chamfer distance. Viola et al. [14]
extended their Haar-like wavelets to handle space-time in-
formation for moving-human detection.

Others have taken a parts-based approach that aims at



dealing with the great variability in appearance due to body
articulation. In this approach, each part is detected sepa-
rately and a human is detected if some or all of its parts
are presented in a geometrically plausible configuration.
Felzenswalb & Huttenlocher [2] use pictorial structure ap-
proach where an object is described by its parts, connected
with springs, and represent each part with Gaussian deriva-
tive filters of different scale and orientation. Ioffe & Forsyth
[5] represent parts as projections of straight cylinders and
propose efficient ways to incrementally assemble these seg-
ments into a full body assembly. Mikolajczyk et al. [7]
represent parts as co-occurrences of local orientation fea-
tures. The system proceeds by detecting features, then parts
and eventually humans are detected based on assemblies of
parts.

Dalal and Triggs [1] used the single window approach
with a dense HoG representation that was successfully used
for object representation [6, 10, 7].

3 The Dalal-Triggs Algorithm

We start with a short description of the Dalal & Triggs
algorithm. Each detection window is divided into cells of
size 8 × 8 pixels and each group of 2 × 2 cells is integrated
into a block in a sliding fashion, so blocks overlap with each
other. Each cell consists of a 9-bin Histogram of Oriented
Gradients (HoG) and each block contains a concatenated
vector of all its cells. Each block is thus represented by
a 36 − D feature vector that is normalized to an L2 unit
length. Each 64 × 128 detection window is represented by
7 × 15 blocks, giving a total of 3780 features per detection
window. These features are then used to train a linear SVM
classifier.

4 A Fast Human Detection Framework

The Dalal & Triggs algorithm makes use of three key
components: (1) the use of HoG as a basic building block,
(2) the use of a dense grid of HoGs across the entire detec-
tion window to provide a good description of the detection
window, and (3) a normalization step within each block that
emphasizes relative behavior, with respect to the neighbor-
ing cells, as opposed to the absolute values.

An important factor, that is missing in their approach, is
the use of blocks in multiple scales. They use fairly small
block size (typically, 16 × 16 pixels) which might miss the
“big picture”, or global features of the entire detection win-
dow. Indeed, they report that adding blocks/cells of differ-
ent scales would somewhat improve the results but would
also significantly increase the computation cost. The cap-
turing of the “big picture” is therefore relied on the dense
set of small-scale blocks across the entire detection window.

To accelerate the detection process we use a cascade of
rejectors and use AdaBoost to choose which features to
evaluate in each stage, where each feature corresponds to
one block. However, the small size of the blocks is proved
to be a major obstacle. We found that none of these small
size blocks was informative enough to reject enough pat-
terns so as to accelerate the detection process. Therefore,
we increase our feature space to include blocks of differ-
ent sizes, locations and aspect ratios. As a result, we have
5, 031 blocks to choose from, compared to the 105 blocks
used in the Dalal-Triggs algorithm. Moreover, we found
that the first few stages of the cascade, that rejects the ma-
jority of detection windows, actually use large blocks and
the small blocks are used much later in the cascade.

To support the fast evaluation of specific blocks, as are
chosen by our AdaBoost-based feature selection algorithm,
we use the integral image representation to efficiently com-
pute the HoG of each block.

It is worth mentioning that Viola et al. [14] use a
similar framework for detecting humans in a surveillance
environment, where people to be detected are very small
and usually have a clear background (road, wall, etc.).
But, as claimed in their paper, the detection performance
greatly relies on the available motion information. How-
ever, for the Dalal-Triggs’s INRIA database which contains
extremely complicated backgrounds and dramatic illumi-
nation changes, the Harr-wavelet feature achieves a much
lower detection accuracy than that of the HoG feature. We
will demonstrate this point in the Experiments section.

4.1 Integral Histograms of Orientated
Gradients

The “Integral Image” [13] allows very fast evaluation
of Harr-wavelet type features, known as rectangular filters.
This led to a real-time face detection system that was later
extended to a human detection system [14], using rectan-
gular filters both in space and time. Recently, Porikli [9]
suggested the “Integral Histogram” to efficiently compute
histograms over arbitrary rectangular image regions.

Inspired by their work, we exploit a fast way of calculat-
ing the HoG feature. First, we discretize each pixel’s orien-
tation (including its magnitude) into 9 histogram bins. We
compute and store an integral image for each bin of the HoG
(resulting in 9 images in our case) and use them to compute
efficiently the HoG for any rectangular image region. This
requires 4 × 9 image access operations.

This approach, while fast to compute, differs from the
method suggested by Dalal T̃riggs and in fact is inferior
to it because of the following two reasons. First, Dalal &
Triggs use a Gaussian mask and tri-linear interpolation in
constructing the HoG for each block. We cannot use these
steps because they don’t fit well into our integral image ap-



proach. Second, Dalal & Triggs use an L2 normalization
step for each block. Again, we replace the L2 normaliza-
tion with L1 normalization which is faster to compute using
the integral image. A more detailed analysis regarding the
impacts of these variations is given in the Experiments sec-
tion.

4.2 Variable-size Blocks

The use of HoG features in the Dalal & Triggs approach
was restricted to a single scale (105 blocks of size 16 × 16
pixels). Moreover, they report that using blocks and cells at
multiple scales improves results somewhat while the com-
putational cost greatly increases.

We circumvent this problem by using feature selection.
Specifically, for a 64 × 128 detection window we consider
all blocks whose size ranges from 12× 12 to 64× 128. The
ratio between block width and block height can be any of
the following ratios (1 : 1), (1 : 2) and (2 : 1). Moreover,
we choose a small step-size, which can be any of {4, 6, 8}
pixels depending on the block size, to obtain a dense grid
of overlapping blocks. In total, 5031 blocks are defined in a
64 × 128 detection window, each of which contains a 36-D
histogram vector of concatenating the 9 orientation bins in
2×2 sub-regions. The advantages of using a set of variable-
size blocks are twofold. First, towards a specific object cate-
gory, the useful patterns tend to spread over different scales.
The original 105 fixed-size blocks only encode very limited
information. Second, some of the blocks in this large set of
5031 blocks might correspond to a semantic part in people,
say human leg. A small number of fixed-size blocks is less
likely to establish such mappings.

Another way to view our approach is as an implicit way
of doing parts-based detection using a single window ap-
proach. The most informative parts, i.e. the blocks, are
automatically selected using the AdaBoost algorithm. The
HoG features we use are robust to small and local changes,
while the variable size blocks can capture the “global pic-
ture”.

4.3 Training the Cascade

We construct rejection cascade similar to the one pro-
posed in [13], with the following modifications. Each fea-
ture in our scheme corresponds to the 36D vector used to
describe a block. The weak classifiers we use are the sepa-
rating hyperplane computed using a linear SVM. Finally,
because evaluating each of the 5, 301 possible blocks in
each stage is very time consuming, we adopt a sampling
method suggested by Scholkopf & Smola [12](pp. 180).
They show that one can find, with a high probability, the
maximum of m random variables, in a small number of tri-
als. More specifically, in order to obtain an estimate that is

with probability 0.95 among the best 0.05 of all estimates,
a random sub-sample of size log0.05

log0.95 ≈ 59 will guarantee
nearly as good performance as if we considered all the ran-
dom variables. In practice we sample 250 blocks, at ran-
dom, in each round.

For each level of the cascade we construct a strong clas-
sifier consisting of several weak classifiers (linear SVMs in
our case). In each level of the cascade we keep adding weak
classifiers until the predefined quality requirements are met.
In our case we require the minimum detection rate to be
0.9975 and the maximum false positive to be 0.7 in each
stage. The training process took a few days using a PC with
1.8GHz CPU and 2GB memory.

Algorithm 1 Training the cascade

Input: Ftarget: target overall false positive rate
fmax: maximum acceptable false positive

rate per cascade level
dmin: minimum acceptable detection

per cascade level
Pos: set of positive samples
Neg: set of negative samples

initialize: i = 0, Di = 1.0, Fi = 1.0
loop Fi > Ftarget

i = i + 1
fi = 1.0
loopfi > fmax

1) train 250 (%5 at random) linear SVMs using Pos
and Neg samples
2) add the best SVM into the strong classifier, update
the weight in AdaBoost manner
3) evaluate Pos and Neg by current strong classifier
4) decrease threshold until dmin holds
5) compute fi under this threshold

loop end
Fi+1 = Fi × fi

Di+1 = Di × dmin

Empty set Neg
if Fi > Ftarget then evaluate the current cascaded

detector on the negative,i.e. non-human,images
and add misclassified samples into set Neg.

loop end

Output: A i-levels cascade
each level has a boosted classifier of SVMs
Final training accuracy: Fi and Di
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Figure 1. HoG vs. Rectangular filters. (a) The best HoG filter. (b) The best rectangular filter.

5 Experiments

We implemented the Dalal & Triggs algorithm using the
same training/testing databases they provided. We observed
that our implementation resulted in perfectly consistent re-
sults with those reported in their paper. The values of all pa-
rameters suggested in their paper result in the best accuracy
and our miss-rate/FPPW (false positives per window) curve
is very similar to the one they reported. At 10−4 FPPW, the
detection rate is about 88%. Note that, in their experiments,
the best two curves, “Ker. R-HOG” and “Lin. R2-HOG”,
have a significant higher computational cost. Therefore, we
only consider “Lin. R-HOG” proposed in their experiments,
which achieves a similar accuracy to the more expensive
“Ker. R-HOG” and “Lin. R2-HOG”, as the FPPW goes
down.

As our main contribution is integrating the HoG feature
into a cascade framework, a straightforward comparison is
applying the original Viola-Jones Detector to human de-
tection task. The Intel OpenCV library provides an effi-
cient implementation of the Viola-Jones face detector. After
slight modifications, we adapt it to human detection (note
that we do not use any motion information, as the input does
not consist of pairs of images). The resulting cascade has 18
stages and about 800 weak classifiers. The training process
took eight days using a PC with 1.4GHz CUP and 512MB
memory. This detector resulted in a very low hit rate (about
50%) under the same testing dataset. A more detailed com-
parison of this rectangular filter to the HoG filter will be
presented later.

To understand this large discrepancy between the two
types of filters we designed an experiment that compares
the stability of HoG features to that of the rectangular fea-
tures. To do this we picked the best HoG feature and the
best rectangular feature (shown in figure 1) and analyzed
their stability as follows: we computed the HoG feature on
each of the 2,418 training images and took its mean. We

then measured the correlation between the HoG feature, as
computed for each image, and the mean HoG feature. We
repeated the experiment with the best rectangular feature.
The results are shown in figure 2. As can be seen, the HoG
feature is much more stable (the peak of the distribution,
that measures the correlation, is around 0.85, and the vari-
ance is about 0.1) than the rectangular feature (the peak is
around 0.5 and the variance is about 0.3).

In the next experiment we evaluated the importance of
using blocks of different sizes. Figure 3 shows three his-
tograms. Each histogram shows the distribution of the
classification accuracy (measured by the same error rate)
of blocks using a linear SVM. The first histogram is of
all blocks of size 16 × 16 pixels, the second histogram is
of blocks of size 40 × 80 pixels and the third histogram
is of all 5, 031 blocks. The figure clearly shows that the
16 × 16 blocks are the least informative and that increas-
ing the block population does contribute significantly to the
performance of our system.

Figure 4 gives some details about our cascade. The cas-
cade consists of 30 levels and we found that, on average, 4.6
block evaluations are needed to classify a detection win-
dow. This is a speedup more than 20X, compared to the
105 blocks that must be evaluated for every detection win-
dow in the Dalal & Triggs algorithm. It is worth mention-
ing that in our rectangular-based cascade, we found that, on
average, we need to evaluate 19.4 blocks to classify a detec-
tion window. Note that a direct comparison of the computa-
tional costs between the two types of cascades (HoG-based
and rectangular-based) is difficult because the HoG-based
method requires the creation of 9 integral images, a nor-
malization step for each block and different weak classifiers
(linear SVMs for the HoG Vs. a threshold function for the
rectangular case).

Next, we inspected the most informative blocks that were
chosen by our system. Figure 5(a) shows the best five
blocks with minimum error rates. We observe that the best
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Figure 2. Stability of HoG vs. Rectangular filters. These histograms measure the stability of these
two kinds of features. (a) Stability of the HoG feature. (b) Stability of the rectangular feature. The
horizontal axis denotes the correlation between a feature and the mean of features. The peak of the
HoG histogram is closer to 1 and much more narrow.
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Figure 3. Classification score of blocks of different sizes. This shows that (a) small blocks (16 × 16
pixel) are much less informative than (b) large blocks (40× 80 pixels). Note that there are much fewer
large blocks to choose from. (c) Histogram of all 5,031 blocks considered in the feature selection
process.



0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

cascade level

S
V

M
 n

um
be

r

Number of SVM classifiers in each cascade level

0 5 10 15 20 25 30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

cascade level

re
je

ct
 r

at
e

Accumulated reject rate over cascade levels 

(a) (b)

Figure 4. Cascade details (using HoGs of variable-size blocks). The cascade consists of 30 levels
where the weak classifiers are linear SVM using a 36-D feature of each block, and the feature set
consists of 5, 031 blocks of different sizes, locations and aspect ratios. (a) The number of SVM
classifiers in each level. (b) The rejection rate as cumulative sum over cascade levels. The first four
levels in our cascade only contain four SVM classifiers each, and reject about 90% of the detection
windows. Therefore, the average number of blocks to be evaluated for each detection window is as
low as 4.6.

block size is about 36 × 80 (which is roughly the human
size presented in the training image). From (b) to (d), we
visualize the blocks selected in our cascade of level-1,2,8
as well. Note that during the cascade training we randomly
evaluate 5% of all possible blocks in each level. There-
fore, the ”best” blocks chosen in a cascade may not the
best ones globally. However, we observe that the blocks
located in some specific positions, say the body, the legs,
the head, etc., achieve a much higher accuracy and thus are
more likely to be selected. While Dalal & Triggs algorithm
only uses a fixed-scale block of 16 × 16, which incurs a
much higher error rate in our experiment, we found that
16 × 16 pixel blocks appear only after the 8-th stage of our
cascade. The early stages of the cascade use much larger
block sizes. Another interesting observation is that most se-
lected blocks cluster in the central area, which demonstrates
that AdaBoost is very efficient in selecting the most infor-
mative blocks as opposed to the blocks in background.

Finally, we compare four approaches: Dalal and Triggs,
a cascade of rectangular features and our approach with L1-
norm and with L2-norm. A comparison of miss-rate/FPPW
curves is presented in figure 6. As for the cascade detec-
tor, we use different stages to obtain a pair of (miss rate,
FPPW). For example, for a 30-stages cascade, we can get 30
pairs to plot a curve. We notice that both L1-Norm and L2-
Norm work slightly better in low FPPW region than Dalal
& Triggs algorithm. However, as the miss rate reduces, our
approach incurs a higher FPPW. Note that the difference
between the L1-Norm and L2-Norm results is small in our

framework, contrary to the conclusion in Dalal and Triggs’
experiments. Figure 7 shows some typical results of our
algorithm.

6 Conclusions

We demonstrate a near real-time human detection system
that matches the detection performance of previous methods
with a up to 70X speedup. This is achieved by integrating
the cascade-of-rejectors concept with the Histogram of Ori-
ented Gradients (HoG) features. Central to the success of
our approach is that the features are chosen from a large set
of blocks at multiple sizes, locations and aspect ratios.
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