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Abstract

In this letter, the optimality of equal gain combining (EGC) for energy detection of unknown
signals in a system with receive-diversity is studied. It is shown that EGC results in an optimal
test statistic for infinitesimally small signal-to-noise ratios (SNRs); however, it does not yield the
optimal test for all SNR values according to the Neyman-Pearson criterion. In other words, EGC
does not induce a uniformly most powerful (UMP) test for unknown signal detection.
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Abstract— In this letter, the optimality of equal gain combining
(EGC) for energy detection of unknown signals in a system
with receive-diversity is studied. It is shown that EGC results in
an optimal test statistic for infinitesimally small signal-to-noise
ratios (SNRs); however, it does not yield the optimal test for all
SNR values according to the Neyman-Pearson criterion. In other
words, EGC does not induce a uniformly most powerful (UMP)
test for unknown signal detection.

Index Terms— Energy detection, diversity, Neyman-Pearson
criterion.

I. I NTRODUCTION

DETECTING the presence of unknown signals [1] has
many applications in communications and radar prob-

lems, such as demodulation of on-off keyed signals, coarse
signal acquisition and aircraft detection [2]-[3]. Commonly,
energy detectors are employed in order to detect the presence
of unknown signals. An energy detector measures the energy
of an incoming signal and compares it to an appropriately
selected threshold to determine the presence of a transmitted
signal.

For an additive white Gaussian noise (AWGN) channel
model, the energy of the signal can be modeled by central
and non-central chi-square distributed random variables, re-
spectively, for noise-only and signal-plus-noise hypotheses [4].
Under this model, it is well-known that comparing the energy
level to a threshold corresponding to the maximum allowable
false-alarm (FA) rate is the uniformly most powerful (UMP)
test for signal detection [5].

When there is receive-diversity in the system, one can obtain
a set of energy measurements from a number of diversity
branches. For example, pulses are transmitted over a number
of time intervals in an impulse radio (IR) ultra-wideband
(UWB) acquisition problem; or, a transmitted signal can be
received by a number of antenna elements in a multiple-output
system. In such cases, the conventional approach is to employ
equal gain combining (EGC) for the set of measurements, and
compare the combined output to a threshold [6], [7]. Although
comparing the energy of a single measurement to a threshold
is a UMP test, no studies have been performed to analyze the
optimality of the test that compares the EGC of a given set
of energy measurements (from a set of diversity branches) to
a threshold.
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In this letter, we show that EGC results in a locally most
powerful (LMP) test for unknown signal detection. More
specifically, for detecting unknown signals, comparing the
total energy of a set of diversity branches to a threshold
gives the most powerful test for infinitesimally small signal-
to-noise ratios (SNRs). However, we also show that this test
is not uniformly most powerful (UMP) for signal detection. In
other words, if the SNR is not infinitesimally small, the EGC
becomes suboptimal. By showing that the EGC results in an
LMP test, but not a UMP test, we also implicitly prove that
there is not a UMP test for the detection of an unknown signal
given a set of energy measurements from a set of diversity
branches.

II. SIGNAL MODEL

Consider an energy detection problem in whichK obser-
vations are obtained as follows:

yi =
∫
|ri(t)|2dt, (1)

for i = 1, . . . ,K, where ri(t) denotes the received signal
for the ith observation. For example,ri(t) can be the received
signal at theith antenna for a system withK receive antennas,
or it can be the received signal corresponding to theith time
interval for a system with repetition diversity.1

Depending on whether a signal is present in the observa-
tions, yi in (1) can be expressed as

yi =
∫
|ni(t)|2dt, (2)

for i = 1, . . . ,K, for the noise-only hypothesis (H0), where
ni(t) is the zero-mean Gaussian noise with a flat spectral
density ofσ2

n over the system bandwidth, and is independent
for different observations, and

yi =
∫
|si(t) + ni(t)|2dt, (3)

for i = 1, . . . ,K, for the signal-plus-noise hypothesis (H1),
wheresi(t) is the unknown signal in theith observation.

The problem is to test the noise-only hypothesis against
a signal-plus-noise hypothesis, givenK observations in (1).
From [4], we can show thatyi has a central or non-central chi-
square distribution, respectively, for the noise-only and signal-
plus-noise hypotheses:

H0 : yi ∼ χ2
M (0) i = 1, . . . , K,

H1 : yi ∼ χ2
M (θi) i = 1, . . . , K, (4)

1A UWB system can be a good example for this, in which a number of
pulses are transmitted per information symbol.
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where M is the approximate dimensionality of the signal
space, which is obtained from the time-bandwidth product2

[4], θi is the energy of the signal for theith observation,
θi =

∫ |si(t)|2dt, andχ2
M (θ) denotes a non-central chi-square

distribution withM degrees of freedom and a non-centrality
parameter ofθ. Clearly,χ2

M (θ) reduces to a central chi-square
distribution withM degrees of freedom forθ = 0.

We start with the assumption that the signal has the same
energy in different observations; that is,θi = θ ∀i. Then,
we extend the results to the more general case in Section
IV. Note that θi = θ ∀i can be valid in certain scenarios;
for example, in a system employing repetition diversity in
a slow-fading environment, the signal energy is the same
for different observations, as can be observed in a UWB
acquisition problem.

III. L OCALLY AND UNIFORMLY MOST POWERFUL TESTS

It is observed from (4) that the energy detection of unknown
signals is a composite hypothesis testing problem, which
compares the simple hypothesisθ = 0 against a composite
hypothesisθ > 0 (assumingθi = θ ∀i) [5]. In general, it
is difficult to assign prior probabilities to these hypotheses in
practical situations; especially, for acquisition, time-of-arrival
and radar problems. Therefore, we do not assume any priors
for the signal presence, and analyze the optimality of the
conventional EGC scheme in the Neyman-Pearson framework3

[5].
We first focus on the case in whichθ is close to zero,

which corresponds to the problem of detecting weak signals.
This can be realistic in certain scenarios, such as for detecting
UWB signals, which usually have low SNRs. In such a case,
the following proposition shows that the EGC results in the
most powerful test; i.e. comparing the total signal energy to a
threshold maximizes the detection probability for a given FA
rate.

Proposition 1: Given an FA rateα and the energy samples
from K observations of the received signal,y1, . . . , yK , the
LMP test for signal detection compares the total energy to a
threshold as follows:

K∑

i=1

yi

H0

S
H1

h−1(α), (5)

whereh is a monotone decreasing function expressed as

h(x) = e
− x

2σ2
n

MK/2−1∑

k=0

1
k!

(
x

2σ2
n

)k

(6)

for KM being an even number.
Proof: From (4) and the independent and identically dis-

tributed (i.i.d.) nature of{yi}K
i=1 in this constant-signal-energy

case, the likelihood ratio can be expressed as

Lθ(y) =
K∏

i=1

pθ(yi)
p0(yi)

, (7)

2Note that a commonM can be used in (4) without loss of generality,
assuming that it is selected according to the signal with the largest time-
bandwidth product.

3Alternatively, the maximum likelihood criterion can also be considered
[8].

wherey = [y1 · · · yK ], and

pθ(y) =
1

2σ2
n

(y

θ

)M
4 − 1

2
e
− (θ+y)

2σ2
n IM/2−1

(√
y θ

σ2
n

)
, (8)

p0(y) =
y

M
2 −1e

− y

2σ2
n

σM
n 2M/2Γ(M/2)

, (9)

with Γ(·) being the gamma function [9], and

Iν(x) =
∞∑

k=0

(x/2)ν+2k

k! Γ(ν + k + 1)
, (10)

for x ≥ 0, the νth-order modified Bessel function of the first
kind.

After some manipulation, the likelihood ratio can be ob-
tained as

Lθ(y) = (f(θ))K
K∏

i=1

gθ(yi), (11)

where

f(θ) = σM−2
n 2

M
2 −1Γ(M/2)e−θ/(2σ2

n), (12)

gθ(yi) =
∞∑

k=0

lkθkyk
i , (13)

with

lk = [(2σ2
n)M/2+2k−1k!Γ(M/2 + k)]−1. (14)

For the LMP test, the decision rule [5],

d

dθ
Lθ(y)|θ=0

H0

S
H1

η, (15)

can be calculated, from (11)-(13), as

K∑

i=1

yi

H0

S
H1

η̃, (16)

whereη̃ = (2σ2
nη + K)2σ2

nΓ(m/2 + 1)/Γ(m/2).
In order to determine the threshold̃η, we consider the FA

constraint:

α = P

{
K∑

i=1

yi > η̃|H0

}

= e−η̃/(2σ2
n)

KM/2−1∑

k=0

1
k!

(
η̃

2σ2
n

)k

= h(η̃), (17)

where the second equality is obtained by using the expression
for the cumulative distribution function (CDF) of a central
chi-square distributed random variable withKM degrees of
freedom [9], since the sum ofK i.i.d. central chi-square
random variables withM degrees of freedom results in
another central chi-square random variable withKM degrees
of freedom.

Since h(η̃) in (17) is a monotone decreasing function, a
unique η̃ can be obtained for a given FA rateα. Hence, the
LMP test can be expressed as in the proposition.¤

Note that the proposition states that the comparison of the
total block energy to a threshold is an LMP test for signal
detection as long as the threshold is selected so that the FA rate
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is equal toα, the maximum allowable level. In other words,
the EGC of the observations is optimal in the Neyman-Pearson
sense for infinitesimally small SNRs.

Although the total energy test in (5) is the most powerful
test for infinitesimally small values ofθ, we show in the
following proposition that it is not the most powerful test for
all θ whenK ≥ 2.

Proposition 2: For K ≥ 2, the total energy test in (5) is
not a UMP test for (4).

Proof: From the likelihood ratio expression in (11), we can
express the likelihood ratio test as

K∏

i=1

gθ(yi)
H0

S
H1

δ, (18)

whereδ is a threshold, which is set according to the FA rate
criterion. Note that the first term in the right-hand-side of (11)
is implicitly included in the threshold of the test in (18).

We know that a UMP test exists for (4) if and only if the
critical region for a given FA rate, the set of observations
satisfying

∏K
i=1 gθ(yi) > δθ, can be made independent of the

value ofθ for all θ > 0 [5]. In order for the total energy test to
be UMP, we should be able to reduce that critical region to the
set of observations satisfying

∑K
i=1 yi > δ̃. If we can prove

that this is impossible, then the proof of the proposition will be
complete4. In order to prove this, we can check the boundary
of the critical region,

∏K
i=1 gθ(yi) = δθ. If the boundary of the

critical region is not linear, then the critical region is different
from that of the total energy test, which proves the claim in
the proposition.

First, considerK = 2. In this case, the slope of the
boundary should be equal to−1 so that it can be expressed
as y1 + y2 = δ̃ for an appropriatẽδ. We can show that the
slope condition is satisfied if

gθ(y1)
g
′
θ(y1)

=
gθ(y2)
g
′
θ(y2)

, (19)

for all y1 and y2, whereg
′
θ(yi) represents the derivative of

gθ(yi) with respect toyi.
We can prove that (19) is not true by simply evaluating it

at a certain point. For example, fory1 = 0, y2 = δ̃ andθ = 1,
(19) reduces, using (13), to

l1
l0

=
2l2 + 3l3δ̃ + 4l4δ̃

2 + · · ·
l1 + l2δ̃ + l3δ̃2 + · · · . (20)

From (14), (20) can be expressed, after some manipulation,
as

1 =
M
2

(
2l2 + 3l3δ̃ + 4l4δ̃

2 + · · ·
)

(
M
2 + 1

)
2l2 +

(
M
2 + 2

)
3l3δ̃ +

(
M
2 + 3

)
4l4δ̃2 + · · · ,

which is obviously false since the denominator is strictly larger
than the numerator.

Therefore, we see that the slope of the boundary is not
−1. In fact, it is easy to see that the boundary is not linear
since the slope is not constant. For example, fory1 = y2 =

4For K = 1, the critical regiongθ(y1) > δ reduces toy1 > δ̃ since
gθ(y1) is a monotone increasing function ofy1. Hence, comparingy1 to a
threshold is a UMP test in this case.

δ̃/2, (19) is satisfied; hence, the slope is−1. Therefore, the

slope is different at(0, δ̃) and (δ̃/2, δ̃/2), which shows that
the boundary is not linear.

For the K > 2 case, it follows from gradient arguments
that in order for the total energy test to be UMP, the following
equalities should be satisfied:

gθ(y1)
g
′
θ(y1)

= · · · = gθ(yK)
g
′
θ(yK)

, (21)

for all y1, . . . , yK . From the previous analysis, it directly
follows that (21) is not true, either.

Hence, we conclude that the total energy test is not a UMP
test for the problem in (4).¤

IV. CONCLUSIONS ANDEXTENSIONS

We can deduce from Propositions 1 and 2 that there is no
UMP test for the problem in (4). This is because, if there were
one, it would be the total energy test since it is already the
most powerful test aroundθ = 0.

Moreover, we observe that the EGC is optimal for infinites-
imally small θ when the threshold is selected appropriately
according to the given FA rate. However, it is not optimal in
general for any givenθ. In other words, given a set of energy
measurements from a number of diversity branches, the EGC
is not always optimal.

Finally, we can extend the results to the case in which the
signal energyθi in (4) is not constant for all observations. In
this case, it can be shown that the result of Proposition 1 is
still true, since

∂

∂θi
Lθ(y)|θ=0 = c1

K∑

k=1

yk − c2, (22)

for i = 1, . . . ,K, whereθ = [θ1 · · · θK ], and c1 and c2 are
positive constants. Also, it is straightforward to show that the
EGC does not result in a UMP test, since it is already not
optimal for the constant energy,θi = θ ∀i, case. In other
words, in the most general case, the test is not UMP for the
alternative[0,∞]K , because it is not UMP on the diagonal
subset of this alternative.
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