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Abstract

In traditional surveillance systems tracking of objects is achieved by means of image and video
processing. The disadvantages of such surveillance systems is that if an object needs to be
tracked - it has to be observed by a video camera. However, geometries of indoor spaces typ-
ically require a large number of video cameras to provide the coverage necessary for robust
operation of video-based tracking algorithms. Increased number of video streams increases the
computational burden on the surveillance system in order to obtain robust tracking results. In this
paper we present an approach to tracking in mixed modality systems, with a variety of sensors.
The system described here includes over 200 motion sensors as well as 6 moving cameras. We
track individuals in the entire space and across cameras using contextual information available
from the motion sensors. Motion sensors allow us to almost instantaneously find plausible tracks
in a very large volume of data, ranging in months, which for traditional video search approaches
could be virtually impossible. We describe a method that allows us to evaluate when the tracking
system is unreliable and present the data to a human operator for disambiguation.
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ABSTRACT

In traditional surveillance systems tracking of objects is achieved by means of image and video processing. The
disadvantages of such surveillance systems is that if an object needs to be tracked - it has to be observed by
a video camera. However, geometries of indoor spaces typically require a large number of video cameras to
provide the coverage necessary for robust operation of video-based tracking algorithms. Increased number of
video streams increases the computational burden on the surveillance system in order to obtain robust tracking
results. In this paper we present an approach to tracking in mixed modality systems, with a variety of sensors.
The system described here includes over 200 motion sensors as well as 6 moving cameras. We track individuals
in the entire space and across cameras using contextual information available from the motion sensors. Motion
sensors allow us to almost instantaneously find plausible tracks in a very large volume of data, ranging in months,
which for traditional video search approaches could be virtually impossible. We describe a method that allows us
to evaluate when the tracking system is unreliable and present the data to a human operator for disambiguation.
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1. INTRODUCTION

Growing availability of video cameras and cheap sensors make the technology of building large surveillance
systems widely available. An indoor surveillance system may include a set of cameras and a set of sensors, access
card readers and perhaps other sensing and registering equipment. An example of such setup can be seen in
Figure 1. Each sensor individually may only cover a small portion of the space under surveillance, however, very
little work is done on analysis and recognition of human behavior across different sensors and sensor modalities.
That seems contradictory to how people typically use their spaces. A single camera is perhaps appropriate
for such tasks as identification, or access control, where all necessary information can be contained in a single
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Figure 1. Left: Example indoors surveillance system configuration. Right: MERL search system, as a part of the
DiamondTouch setup.



frame of video. In contrast, human behavior is typically extended in space and time and routinely crosses sensor
boundaries. This paper and our system partially addresses these issues developing a space-centric mechanism
for aggregating sensors and camera measurements within a single model.

Latest advances in technology of storage devices allow designers of video surveillance systems to further
increase quality and capacity of the recording units. Increased storage capacity of modern digital video recorders
(DVRs) enables corresponding increase in the number of video cameras used in such systems. For example, a
Digital Video Recorder, released last year by Mitsubishi Electric Company1 allows simultaneous recording of
videos from 16 video cameras. Up to 16 of these devices can be easily “daisy-chained”, so that 256 video feeds
get stored in the array of storage devices totalling about 8 Terabytes in the most standard configuration.

Paradoxically, the increased storage capacity poses a challenge to the domain of video surveillance - a human
operator or an automated system has to be able to handle such large volumes of video data in a very short period
of time to provide a good degree of responsiveness of the system to search requests. To illustrate the point, if a
security event can be localized to within a single hour, in the system with 256 video feeds may result in having
to search through 256 hours of video data.

On the other end of the spectrum lie the problems of typical indoor surveillance, where the geometry of
the space makes a complete video coverage prohibitively expensive. However, our earlier work2 shows that a
distributed network of simple motion sensors can be an inexpensive and accurate solution for a large number
of surveillance and space automation tasks. We have also explored heterogeneous sensor network configurations
that include sparse array of video cameras for typical tasks of forensic surveillance. We developed a system3 that
allows an operator to search a large database of sensor activations, arbitrarily joining them into search conditions
with intuitive query interface. These queries, combined with flexible matching criteria and (at this stage) not
using any computer vision algorithms permit fast retrieval of video segments that temporally coincide with the
patterns of sensor activations, specified by the operator.

The topic of this paper is an introduction of a novel method for tracking individuals indoors in a typical office
environment using the mixed modality sensor network described in our earlier paper.3

Most tracking algorithms have to address the issue of multiple objects present simultaneously in the camera
view. This problem becomes even more pronounced when using ultra-low resolution sensors that are perceptually
blind to the number of people in its view. However, constraints of larger spatial context may allow disambiguation
of situations where multiple people are observed by a sensor network. For instance, when two people cross paths
in the hallway a tracking algorithm can evaluate velocities of each person use these estimates to find a plausible
interpretation of the sensor observations. However, this decision is based on a possibly incorrect assumption and
once committed to, cannot be recovered from using the motion sensor data alone. In such situations the problem
remains that for most practical applications of surveillance algorithms for general robust error-free tracking do not
exist. Thus our general approach to the problems of this sort is to not focus on building a system that makes no
mistakes, but rather a ”self-critical” one, which makes explicit the degree of uncertainty about its own responses.
This approach allows us to be efficient in the way it uses the human operator, making it possible to quickly
narrow down the set of alternative interpretations of the scene by cohesively presenting to the operator only the
information necessary for making the decision. In this paper we present our first experiences in implementing
our vision in a full-scale sensor-camera network and its particular application to tracking individuals through an
office space occupied by about 100 people. The remainder of this paper is organized as follows - section 2 briefly
lists relevant to relevant work, section 3 describes the hardware implementation and architecture of the network,
section 4 introduces the tracking extensions to the system introduced in our earlier work.3 We conclude with
section 5 giving brief discussion and future plans for the development of the tracking aspects of the system.

2. RELATED WORK

There is a significant body of literature surrounding the interpretation of human behavior in video.4–8 A common
thread in all of this work is that tracking is the very first stage of processing. That limits the work to sensor
modalities that can provide highly accurate tracking information in the absence of any high-level inference. In
particular, the ambiguities inherent in using a motion detector network can be expected to introduce enough
noise in the tracking results to render most of these approaches unusable.



Figure 2. Left: A pan-tilt-zoom camera. Right: A wireless, passive, infrared motion detector.

There are a few works that have attempted to step outside this framework.9,10 These systems learn task-
specific state models that allow the behaviors to be recognized directly from the sensor data, without tracking.
Our work follows this philosophy, and adapts it to the domain of sensor networks.

Wilson and Atkeson11 also utilize a network of motion detectors. Their system is targeted at residences, where
they assume that only a few individuals will be present. This allows them to pursue a classic track-then-interpret
methodology. More people means more ambiguity, and more ambiguity means exponentially more hypotheses
that must be considered during tracking. Therefore, this approach is only applicable to low-census buildings,
such as homes. Wilson and Atkeson also assume strategic placement of sensors. That level of specialization is
not economical in large buildings, or where usage patterns change regularly. We assume that our network will
be built into the lights, outlets, and vents, and that it will likely be installed by professional electricians and
ventilation engineers, rather than behavioral psychologists or eldercare specialists.

3. SYSTEM ARCHITECTURE

The system that we deployed at MERL consists of a network of wireless motion sensors and an six pan-tilt-zoom
cameras (see Figure 2) affixed to the ceiling. The sensor network is built of sensor nodes that include passive
infra-red (PIR) motion detectors. This is the same sensing technology used in most motion-activated lights and
appliances on the market today. The sensor nodes are inexpensive, approximately $30 per node in prototype
quantities of 1000, and much cheaper than that in full-scale mass production. The nodes are approximately 3cm
by 5cm by 6cm.

3.1. Motion sensor nodes

The nodes use an industry-standard IEEE 802.15.4 radio. This is the physical layer typically used by Zigbee
devices. These new radios are standards-compliant and therefore capable of inter-operating with equipment
designed by many different vendors.

Measurements on a new sensor node show that it consumes approximately 50µA in ‘motion detector’ mode,
and 46mA when communicating over the radio. However, communication is brief (16 ms). The node then returns
to its ‘motion detector’ mode. Assuming that the sensor node detects motion every T seconds, this gives an
average current consumption of

50µA +
15ms

T
46mA (1)
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Figure 3. Map of the one floor of the office space. Shaded areas show public spaces where the sensors are installed.
Locations of the six cameras are marked by small triangles.

Analysis of the current network reveals that the average inter-arrival time at a given node is 122 seconds.
Even if a sensor is activated once per minute, it would still only draw an average current of 61.5µA. A typical
lithium AA cell with a capacity of 2Ah will therefore power our sensor for approximately 32,520 hours, longer
than three years!

Long life on battery power (or parasitic power) is very important: it drastically reduces installation cost by
eliminating the need for wires. Installation can become near-zero cost: just stick it up.

When motion is detected, a sensor-specific ID is broadcast over a wireless network. In our research prototype
system, the packet is globally timestamped and copied to a conventional LAN for central storage and analysis.
However, we anticipate that in a production system the nodes may communicate only locally by passing infor-
mation directly between immediate neighbors to be analyzed, or to end-effectors in the system (such as an alarm
system).

3.2. Sensor network in an office invironment

The map in Figure 3 depicts the test area. The network of 215 sensors covers 3000 square meters of office space
occupied by over 100 people. Over nine months the system has recorded over ten million motion observations.
Inter-arrival times statistics from this data were used in the design of the new nodes, as described in Section 3.1.

Executives and administrators occupy the wing on the right of the map. Researchers occupy the bottom
and left wings. The central core of the building contains restrooms, lobbies, elevators, the mail room and the
kitchen. In the center of the building there is a stairwell to another floor of the company that is mostly occupied
by researchers.

4. TRACKING PEOPLE IN THE MERL MIXED MODALITY NETWORK

A distinct challenge for the task of forensic surveillance is the sheer volume of the data that needs to be reviewed
for an operator to make a decision. For instance, the system deployed at MERL includes 6 video cameras. If an
event of interest can be localized to within an hour, an operator might be facing the necessity to browse through
6 hours of video recording in order to review the evidence. Thus, the primary focus of our system is providing
the operator with the ability to quickly assess the situation and find relevant evidence in a large volume of data.

The system that we built for managing the data collected with the sensor network includes the query engine
with a gestural front end, as described in our earlier work.3 Here we introduce the tracking extension that allows
an operator track a single individual with some minimal amount of interaction with the system.
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Figure 4. User Interface of the MERL Forensic surveillance system. The interface consists of five main panels, listed
clock-wise - Floorplan, Timeline, Video clip bin, Tracklet selection control and Camera view, further described in the
text.
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Figure 5. Tracklet graph representation of the track bundle. Each edge , called Tracklet, represents a contiguous sequence
of sensor activations, while nodes - states of tracklet endpoints.

The screen shot of the tracking module is shown in Figure 4. The figure shows one of the camera views
that is either selected by the operator, or automatically chosen by the simple camera scheduling algorithm. The
scheduling algorithm is invoked during the playback of the clips form the video clip bin, shown in the bottom
left of the interface. Upper right panel shows the floorplan with the currently selected track. The position of a
person in the floorplan control is indicated by a ”swell” in the track shown in the picture in red. Bottom gray
panel is the ”piano-roll” of the sensor activations, linked into tracklets, the elementary units from which tracks
are built during the interaction with the operator. Finally, upper left panel is a visual representation of the
tracklet graph.

4.1. Tracklets and Tracklet Graph

An idea that central to our philosophy of user assisted forensic tracking is the idea of tracklets and the corre-
sponding representation of the tracklet set as a tracklet graph.

A tracklet is a set of sensor activations such that each sensor in the set is unambiguously reacheable from its
immediate predecessor, according to the pre-determined geographic ordering. We will call the process of finding
the immediate predecessor to a current sensor activation linking. A tracklet is an elementary building block of
a track and has two end points. An end point is labeled with one of four labels:

1. Track-Start. The first sensor activation in the tracklet, such that no preceeding sensor activations can be
linked to it within the predetermined time interval;

2. Track-Join. An end-point sensor activation in the tracklet such that there exist multiple preceeding tracklets
that can be linked to it within the predetermined time interval∗;

3. Track-Split. An end-point sensor activation in the tracklet such that there exist multiple successor tracklets
that can be linked to it within the predetermined time interval†;

4. Track-End. The last sensor activation in the tracklet, such that it cannot be linked to any subsequent
sensor activation within the predetermined time interval.

All tracklets form a set of graphs, each of which represents an inherent confusion of the system about
individual tracks. A graph is a set of tracklets that can be joined according to the temporal and geographical
restrictions which can be either imposed by the user or learned over time. A node in the tracklet graph is a
label of a tracklet endpoint, while the edge represents the tracklet. Figure 5 shows an example of a track bundle

∗a single valid predecessor tracklet may not exist as it would have already been linked into the current tracklet
†a single valid successor tracklet may not exist as it would have already been linked into the current tracklet



temporally arranged top-to-bottom. The graph has two starting tracklets, which subsequently merge into a
single path. The merged tracklet then splits twice resulting in four end points.

The tracklet graph is the core representation of the sensor activation data that we use for the purposes of
tracking. When the tracking information is stored in the database it is organized in tracklet graphs, which rep-
resent the limit of the system’s tracking ability. When the need arises to extract a particular track these tracklet
graphs are used to plan the efficient interaction with the operator and find the unambiguous interpretation of
the scene.

4.2. Human-Guided Tracking

The task of human-guided tracking and forensic search that we attempt to solve with our system can be illustrated
with a simple scenario:

A laptop was reported stolen from the office X during the lunch hour between 1:00pm and 2:00pm. There was
no camera coverage available outside the office. The operator needs to find all people that passed by the office
during the lunch hour, possibly identify them and collect evidence connecting the individual with the event.

In such a situation, the operator would want to identify all tracks that originated at the door of the office
and to identify the suspect by collecting all available video evidence. It is to this end that we build our system.

4.2.1. General Principles of Forensic Tracking

Track-Start and Track-End labels are unambiguous beginnings and ends of complete tracks. However, automatic
resolution of Track-Split and Track-Join label ambiguities is impossible in the space of sensor activations alone.
The source of split and join labels is the perceptual blindness of the sensor network to any features other than
presence of motion. In such situation, two people crossing paths in the hallway will cause the system to generate
at least 4 tracklets, containing sensor activations for each person before and after the crossover point. Mapping
the identity to these tracks and maintaining their continuity with absolute certainty is impossible. In the light
of this we sidestep the mapping problem by using the following observations:

1. Operator does not need to disambiguate the entire scene, only the subgraph originating at the selected
tracklet;

2. Resolving branch ambiguities can be simplified by considering video clips associated with each candidate
track;

The first observation significantly reduces the amount of tracklets that need to be considered as possible
candidates to be aggregated into the track. Since in our scenario an operator is tracking one person at a time,
the system only needs to explain the behavior of that person, while effectively ignoring other occupants. That
is, for the example of two people crossing paths, we assume one tracklet being selected before the cross-over, and
therefore, only two tracklets need to be considered as a possible continuation, and not all four. This iterative,
focused approach to tracking and track disambiguation allows us to reduce the complexity of the problem from
potentially exponential to linear.

The second observation simply implies that when a split-join confusion occurs, the system can trace the
tracklets to the nearest camera and display the corresponding video clips to the operator to make the decision
about which tracklet is the plausible continuation for the aggregate track.

Even though one can imagine developing a tracking algorithm that estimates the dynamics of the motion
of the objects under the network of sensors, any such algorithm will inevitably make mistakes. In security
application the commitment to the results of the even slightly inaccurate tracking algorithm can be quite costly.
Instead we chose to implement the tracking system following the ”Human-In-The-Loop” metaphor,12,13 using
tracklet graphs as the underlying representation of the tracking data.

The main focus of the system is the efficient browsing of a large data set. To this end, we are concerned with
decreasing the false negative rate, with false positive rate being a distant second. In order to achieve these goals
we have adopted the mechanism of the track aggregation described below.
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Figure 6. Human-guided track selection process using tracklet tree representation. a) Example of the selection subgraph
which includes camera views available for each tracklet, as well as split/join locations where track splicing occurs (shown
by blue diamond shapes). Tracklets are shown as edges of the graph passing through the camera views. b) First step of
the interactive graph pruning process. One step-lookahead tracklets are presented to the operator. c) Second step of the
graph pruning. d) Final track recovered.

4.2.2. Track aggregation

The process of human guided tracking in the forensic mode of our system begins with selecting a group of sensors
where we expect the track to start. For instance, in our system, with sensor placed outside of people offices, the
operator would select several sensors on the floor plan that can possibly be activated when the person leaves his
office. An example of such a trigger condition is shown in the floorplan control in Figure 4. There the trigger
event is set outside the office in the bottom part of the plan. By performing a very fast search in the database
we can identify every instance a of a tracklet that originated in one of the chosen sensors.

At this point an operator needs to select a single track to explore. Upon selecting the first tracklet in the
corresponding graph by simply clicking on the tracklet start in the timeline control, the tracklet is drawn on the
floorplan up to the point where there is an end, a split or a join endpoint. If the endpoint is reached, then the
track is declared complete. Otherwise, the process of track aggregation proceeds iteratively, using the tracklet
graph to splice the candidate tracklets into a coherent track. In this process at each confusion point of the graph
(split or join end point) the operator chooses the subgraph to traverse further. The process is illustrated in
Figure 6. The thumbnails in the graph show that a video clip from the camera oriented towards the activated
sensors is available. Blue diamond shape indicates that a confusion point is reached and there are possible
conflicting tracklets following the confusion point. Links in the graph indicate that there exist a tracklet path.

Consider a subgraph shown in Figure 6a. The structure of this selection graph represents a set of paths
through the tracklet set that is possible to traverse starting at the tracklet and the camera view shown at the
top of the figure. Since the ambiguous points are known, at each such point the system can present the set
of ambiguous tracklets to the operator for disambiguation. For instance, at the first step, the confusion point
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Figure 7. State of the video clip bin after the complete track has been recovered. Each row of the bin represents a
separate camera, while left-to-right arrangement reflects their temporal relationship. There are possible temporal gaps
between the clips which are automatically removed for display purposes.

represents a 3-way split from the current node (Figure 6b). The first tracklet leads to two camera views in
sequence. The second tracklet terminates without going through any camera, while the third one passes through
a camera and leads to the subsequent 2-way split. Each of these tracklets is drawn on the floor plan and is
colorcoded as shown in the figure.

Three groups of thumbnails are then added to the Tracklet selection control (see Figure 4). The color-coded
thumbnail groups, as shown in Figure 6b represent a one-step lookahead on the full selection graph. The operator
is asked to select one of the paths the he would like to explore further, thereby rejecting the other two. The
resulting situation is shown in Figure 6c, where a 2-way split is further explored. If a mistake is made, the
operator can use the selection tree control to roll back the selections. The process continues until the end-track
label is encountered (see Figure 8).

Note that the tracklet selection graph in Figure 6a is related to the tracklet graph in Figure 5, but is not the
same. In fact, the notation of the graph of Figure 6a represents a general selection mechanism, which can be
used for traversal of the tracklet graph either forward in time (as illustrated) or backwards. In the former case
the start and end markings of the selection graph in Figure 6a have the same meaning as those in the tracklet
graph, while diamonds only represent splits. Track merges are irrelevant to the forward selection process, as
they present no forward selection alternative. In contrast, if the selection graph is used for backward traversal,
then start and end markings of the selection graph have the opposite meaning to those of the tracklet graph and
diamonds only represent merges.

While the track is being built, the video clips related to each confirmed tracklet are collected in the Video
clip bin (bottom left of Figure 4). The clip bin shows video clips ordered temporally left-to-right, while each row
of the clips corresponds to an individual camera. Figure 7a shows the collection of video clips at the conclusion
of the tracking task, corresponding to Figure 8). Note the occasional overlap between video clips from different
cameras, which represent the situation when the person is observed by several cameras at once.

Figures 7b-f show selected frames from each of the clips in the clip bin after a complete track is built. They
represent the entire set of the video evidence about the 15 minutes of person’s movement during which he has
been tracked. The rectangles outlining the person’s position in each frame were added manually, for illustrative
purposes.

The final assembled track, covering a 15 minute long interval, is shown in Figure 8 in red. The track begins
outside the view of any of the cameras on the bottom left tip of the line (point 1). It then follows through 4
cameras with IDs 6, 4, 1 and 3 (Figure 7b-e respectively) to the upper right corner, where the person stops to
talk to another occupant (point 2). Then the track proceeds all the way to the left, where the person disappears
out of the sensor view for about 3 minutes (point 3). Finally, after a short period of hovering in the left-most end
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Figure 8. Final assembled track covering a 15 minute long time interval.

of the track the person retreats to his office via a different path, again passing through the view of the camera
4 (Figure 7f). Note that the camera 6 does not observe the person on its return trajectory, as at that time it
turned away from the sensors in the path.

5. DISCUSSION AND CONCLUSIONS

The goal of the paper is to present a technique of efficient browsing and tracking of human in a large database
of sensor activations and video feeds under the metaphor of Human-Guided Search.

In this work we presented our solution to the problem of tracking individuals inside an office space. As
a primary tracking device we chose a distributed network of cheap sensors augmented with generally non-
overlapping set of video cameras that move under an independent control. The video cameras only observe a
small fraction of the entire space, which makes it difficult to use them alone for the purposes of tracking people.
For example, tracking individuals that did not cross any of the camera views would be impossible.

In contrast, the sensor network provides a low-fidelity measure of all the activity in the space, with no gaps
in space or time. This complete coverage makes tracking feasible and robust, despite the simplicity of the sensor
modality. Furthermore this data simplicity is a distinct advantage in bandwidth and computational costs. The
data is very compact, making the algorithms used to process it very fast and efficient.

We present our user interface and the concept of tracklet graphs. The tracklet graph models the inherent
confusion in the tracking systems. This representation allows us to formulate the tracking problem as an iterative
process of tracklet splicing in order to retrieve complete tracks of individuals along with all relevant video evidence
collected along the track by any available camera.

We have seen that these algorithms, despite the simplicity of the sensor modality, can extract powerful
descriptions of context from the data. Providing these bits of context to a human operator results in a much
more efficient, reliable, and powerful system.
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