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Abstract

We investigate the performance of iterative decoding algorithms for
multi-step majority logic decodable (MSMLD) codes of intermediate
length. We introduce a new bit-flipping algorithm that is able to
decode these codes nearly as well as a maximum likelihood decoder on
the binary symmetric channel. We show that MSMLD codes decoded

using bit-flipping algorithms can out-perform comparable BCH codes



decoded using standard algebraic decoding algorithms, at least for

high bit flip rates (or low and moderate signal to noise ratios).

1 Introduction

In [1], it was shown that iterative decoding of one-step majority logic decod-
able (OSMLD) codes performed very well; the performance was often better
than that of ordinary low density parity check (LDPC) codes [2, 3] of sim-
ilar blocklength N and rate R for values of N up to a few thousand bits,
despite the fact that the parity check matrix of OSMLD codes has a higher
density than that of ordinary LDPC codes. The reason for the improved
performance was mainly because the M x N matrix H used for decoding was
highly redundant, i.e., M > N(1 — R).

In this paper, we investigate iterative decoding of multi-step majority
logic decodable (MSMLD) codes for transmission over a binary symmetric
channel (BSC). With the use of redundant H matrices, these codes have
already been shown to perform relatively well on the additive white Gaussian
noise (AWGN) channel [4, 5]. However, unlike on the AWGN channel where
the performance of iterative decoding does not approach that of maximum
likelihood decoding (MLD), we find that fast and low complexity bit flipping
(BF) algorithms can achieve near MLD performance on the BSC.

2 Three-state Decoding Algorithm

Two different BF algorithms designed for LDPC codes with a few low-weight
checksums per bit were proposed by Gallager in [2]. In these algorithms, the
“message” from a bit to its neighboring check does not directly depend on
the message sent by that check back to the bit and vice versa. This is done
in order to prevent the introduction of correlations in the iterative process.

In our case, because of the very large number of checksums corresponding to



each bit, we can neglect that refinement with negligible performance degra-
dation and we can obtain the following algorithm, which simplifies Gallager’s

algorithm-B:

e For each checksum m and for each bit n in checksum m, compute the
modulo-2 sum o,,, of the initial value of bit n and of the other bit

values computed at iteration-(i — 1).

e For each bit n, determine the number N, of unsatisfied checksums o,,,
intersecting on it. If N, is larger than some predetermined threshold

by, invert the original received bit n, otherwise keep this value.

The use of a single threshold b, implies that bits with very different values
N, are viewed with the same reliability at the next iteration. For the codes
considered in [2], NV, can take only a few different values. This is not the case
for the codes considered in this paper. It seems reasonable to try to reflect the
differing reliablities of the bits in our algorithm. Consequently, we modify the
algorithm described above into the following “three-state” algorithm, which

also allows bits to be erased and checksums to be de-activated.

e For each checksum m and for each bit n in checksum m, compute the
modulo-2 sum o,,, of the initial value of bit n and of the other bit
values computed at iteration-(i — 1). If any of these bits is erased, the

checksum is de-activated.

e For each bit n, determine the number N,, of unsatisfied activated
checksums o,,,, intersecting on it.
If Ny, > by , invert the original received bit n.
If by > Ny, > by, erase bit n.

Otherwise keep the original received bit n.

Empirically, we find that the three-state algorithm performs best when

the thresholds b; and b, are functions of the iteration number. Unfortunately,



we could only do a rough optimization; however, this appears to be sufficient
since the performance is a rather insensitive function of the thresholds. We
typically chose to begin at the first iteration with b; equal to the maximum
possible number of unsatisfied checks .J, and with by =~ b; — J/15, and then
to decrease b; and by by the same small fixed integer (say one to five) at each
iteration, continuing to decrease their values until they reach zero.

The proposed three-state approach can also be applied in a straightfor-
ward way to Gallager’s original algorithm-B. In fact, for a theoretical analy-
sis, only this version is meaningful since the simplified algorithm introduces
correlation and it is not known how to handle correlated values in the analysis
of an iterative decoding algorithm in general. In that case, the three-state
algorithm becomes a generalized version of the algorithm described in [7,
Example 5], where by = by — 1. Consequently, if we assume the graph rep-
resentation of the code is a tree, the same approach as in [7] can be used to

analyze the three-state algorithm.

3 Decoding Approaches

A (p+ 1)-step majority logic decodable Euclidean geometry (EG) code over
EG(m, 2%) can be represented by an M x N incidence matrix H [8, p.309-
319]. The matrix H is also a parity-check matrix of the EG code. Its M rows
represent the (pu + 1)-flats of the Euclidean geometry EG(m, 2°) not going
through the origin and its 2™° — 1 columns represent the points other than
the origin, with h;; = 1 if the j-th point belongs to the i-th (14 1)-flat. Note
that for s = 1, we obtain the subclass of Reed-Muller (RM) codes.

A straightforward approach is to run the BF algorithm based on H. This
matrix contains many four-cycles, but it is redundant with M >> N. Futher-
more, it is possible to use an M, x N sub-matrix H, of H for decoding. The
M, rows of H, are chosen in a manner that exploits the cyclic nature of the

code. That is, if H, contains a row X, it also contains all cyclic shifts of



X. No noticeable difference in performance has been observed for different
choices of these M, rows.

If a sufficient number of checksums M, is used, then the BF algorithm
converges rapidly to its final solution while if not enough checksums are used,
the BF algorithm generally never converges to a codeword. In this latter case,
a decoding failure is detected. This observation suggests a “call by the need”
algorithm in which, for M, < M, < --- < M, M, checksums are initially
used for N, iterations. If the algorithm converges to a codeword, correct
decoding is assumed; otherwise, the algorithm is reinitialized (not continued)
and performed based on M, checksums during N, iterations. This process
is repeated until either a codeword is found, or all M checksums have been

used without success, in which case the decoding fails.

4 Simulation Results

We assume a BSC obtained from BPSK signaling, so that for a code of rate

R, we have py = Q (\/REI,/NU), where E,/Nj is the signal to noise ratio
(SNR) per information bit.

4.1 (255,127,21) EG Code

In Figure 1, the simulated error performance of three-state BF decoding of the
(255,127,21) EG code with the direct approach of Section 3 is compared to ¢-
bounded distance decoding (BDD) with the Berlekamp-Massey algorithm of
its (255,123,39) BCH code counterpart as well as bit flipping with Gallager
algorithm-B of its (3,6) Gallager LDPC code counterpart. This EG code
corresponds to p+ 1 = 2 and the Euclidean geometry FEG(4,4) with 255
points other than the origin and 5355 planes not going through the origin.
Hence we can construct a parity check matrix H with 5355 rows and 255
columns. A maximum of 200 iterations was selected, while on average much

less are needed, especially at high SNR values. We observe that three-state
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Figure 1: BF decoding of the (255,127,21) EG code; low SNR regime.
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Figure 2: BF decoding of the (255,127,21) EG code; high SNR regime.
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Figure 3: BF decoding of the (255,127,21) EG code for fixed number of errors.

BF decoding of the EG code not only outperforms its counterparts at the SNR,
values represented, but also remains quite close to the sphere packing bound
(SPB), also represented in Figure 1. In fact, a lower bound on the MLD
failure rate for this code was computed by checking whether the decoding
errors were also MLD errors (with unbiased recording of the ties). This bound
is represented in Figure 1. One can see that the performance of the three-
state BF algorithm must be very close (within a few tenths of a dB) of MLD
performance. The error performance of the standard sum-product or “belief
propagation” (BP) algorithm, initialized with the crossover probability py of
the BSC is also shown in Figure 1. The reasons for the degraded performance
of BP at low SNR's are elaborated in Section 5.

We also mention that the advantage of the three-state BF algorithm over
Gallager’s algorithm B is a reduction factor that ranges between two and five
in the number of errors. This gain is small, but remains non-negligible in
approaching MLD performance, especially since the three-state algorithm is

not much harder to implement than Gallager’s algorithm B.



In Figure 2, we plot the performance of the three-state BF decoding algo-
rithm for the (255,127,21) EG code into the very high SNR, or low decoding
failure, regime. To obtain these performance curves, we randomly generated
random errors of fixed weight w, w > t and for each weight w, evaluated the
corresponding error performance Ps(w). The overall error performance P

was then obtained by the average

Po= 3 r)() )0 -m )

The results are reported in Figure 3. Since for WERs smaller than 1075,
no reliable evaluation of P;(w) is possible, we simulated weights w > wyn,
where W, is the smallest weight for which Py(w) > 107%. Based on these
results, we computed: (a) an upper bound on (1) by assuming the same
Py(w) = Ps(wpn) for weights w, t < w < wpn; (b) a lower bound on (1) by
assuming Ps(w) = 0 for weights w, t < w < wy,;,; and (c¢) an approximation
by extrapolating Ps(w) for weights w, t < w < Wyi,. A pessimistic lower
bound on MLD was also obtained by recording only the MLD errors for
weight w > wp;, and assuming P;(w) = 0 for weights w, ¢ < w < wpp,.
From Figure 2, we conclude that the three-state BF for the (255,127,21)
EG code outperforms ¢~-BDD of its BCH counterpart down to a WER of
about 1072, We must also mention that this performance is nearly the same
as that of a more complicated approach based on generalized parity check
(GPC) matrices [9]. At all word error rates down to 1072°, the difference
between the straightforward method and the GPC matrix based method is
less than 0.1 dB.

4.2 (511,256,31) EG (RM) Code

Figure 4 depicts the error performance of three-state BF decoding of the
(511,256,31) EG (or RM) code with the variable cost approach of Section 3.
For comparison, the SPB and t-BDD with the Berlekamp-Massey algorithm
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Figure 4: BF decoding of the (511,256,31) EG (or RM) code.

of the counterpart (511,250,63) BCH code have also been presented.

Two different numbers of total parity checks, M = 76,650 and M =
511,000 have been considered (corresponding to 150 and 1000 different cyclic
shifts of weight-32 codewords of the dual code, respectively). In both cases,
we chose five different sizes of the set of checksums used, namely, M, = 5110;
My, = 12,775; M. = 22,550; and My = 51,000. For each size, at most 10
iterations were performed. The value b; was set to the maximum number
of unsatisfied checksums at each initial iteration and decreased by one (or a
small number) at each subsequent iteration while we chose by = b;—20. Again
these values were not thoroughly optimized so that additional secondary
gains should be achievable.

The application of the variable cost method is validated by the fact that
for M = 76,650, no undetected error was recorded at all simulated SNR
values. For M = 511,000, at the SNR value of 4.5 dB, about 10% of the errors
were undetected (all of them occurring when all checksums were considered)

and at this SNR value, one out of the 100 errors recorded was recognized as



an MLD error. At lower SNR values, no undetected errors and no MLD errors
were recorded. While a reasonably good error performance is achieved, we
are clearly not able to obtain a tight bound on MLD performance. Because
the three-state BF algorithm has a very low word error rate even for error
patterns with a number of bit flips far beyond the guaranteed error-correcting
capability ¢ of the code, we are also not able to meaningfully repeat the
analysis of the very high SNR regime. We also observe that despite the fact
that the minimum distance of this code is about half of that of its BCH
counterpart, iterative BF decoding of this EG code can easily outperform
t-BDD of its BCH counterpart and approaches relatively closely the SPB
at the WERs presented in Figure 4. We must also mention that a more
complicated approach based on the decomposable structure of RM codes
yielded no improvement [9].

At a given code rate, as IV increases, the weight of the rows of the parity
check matrix H also increases for the class of MSMLD codes. This causes the
number of redundant rows in H to grow to a very large number if near MLD
peformance is required, as is already apparent for the results we present for
the (511,256,31) code. Consequently, this approach does not seem to scale up
very well with NV despite the fact that iterative decoding is used. This is not
totally surprising, as in general, the decoding complexity of MLD increases
exponentially with N. On the other hand, near MLD of EG codes of length
N <511 based on their parity check matrix H given in Section 3 is possible

with this approach and was verified by simulation for many shorter codes.

5 Extension to Iterative Decoding for the AWGN
Channel

A very natural extension of these results is to replace the BSC by an AWGN
channel. Although as already stated in the introduction, relatively good

results for iterative decoding of MSMLD codes have been previously reported
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for the AWGN channel, all these results fall short of near MLD. The main
reason we believe is the large dynamical range taken by the a-posteriori
values evaluated after few iterations due to the large correlation propagated
by feedback (note that in the BF algorithms, the values at the bit nodes are
always the same at the beginning of each iteration). As a result, there is no
longer much difference between soft information and hard information with
erasure. Indeed, the same conclusions also hold for BP decoding over the
BSC, although in that case, no significant degradation can be expected at
high enough SNR, as observed in Figure 1.

Using a heuristic extension of the decomposition proposed in [10], the a-
posteriori information L, evaluated at iteration-(i + 1) can be represented
as the sum of the a-priori information L, and a function of approximated
extrinsic information values L¢ derived (and observable) at iteration-i. In
graphs with cycles, fjf can be viewed as the sum of the true extrinsic infor-

mation L{ and additional correlated values L{, so that

Lisvi = Lo+ f(L9)

with L = L¢+ LS,
Consequently, the influence of correlation can be reduced by modifying the
function f() in several ways g() such as scaling (go f = af, 0 < a < 1),
off-setting (g o f = sgn(f) max{|f| — 3,0}), damping (go f = af; + (1 —
a)fii1, 0 < a < 1), or clipping (g o f = sgn(f)min{|f|,C}). However,
these modifications affect both LY and L{ while hypothetically, it would be
desirable to reduce L{ only. This is indeed a much difficult task as we have
direct access to Zf only. For example, all best approaches used to iteratively
decode the (255,127,21) EG code over the AWGN channel fell short of MLD
by about 0.8 dB [11].
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6 Conclusion

In this paper, we have shown that iterative BF algorithms can achieve near
MLD of intermediate length MSMLD codes despite the presence of four-
cycles in their graph representation. This drawback is overcome by the very
large number of redundant low weight checksums. The most straightforward
parity check matrix representation of these codes in conjunction with a “call
by the need” decoding seems to provide the best compromise between error
performance and decoding complexity.

In principle, the three-state BE' decoding approach could be applied to any
other intermediate length linear code. One “merely” needs to find a sufficient
number of redundant low weight codewords in the dual code to construct a
useful parity check matrix H. Unfortunately, this does not appear to be an
easy task for codes that are not as nicely structured as the families of codes

considered in this paper.
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