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Iterative Decoding With Replicas
Juntan Zhang, Yige Wang, Marc P. C. Fossorier, Fellow, IEEE, and Jonathan S. Yedidia, Member, IEEE

Abstract—Replica shuffled versions of iterative decoders for low-
density parity-check (LDPC) codes and turbo codes are presented.
The proposed schemes can converge faster than standard and plain
shuffled approaches. Two methods, density evolution and extrinsic
information transfer (EXIT) charts, are used to analyze the perfor-
mance of the proposed algorithms. Both theoretical analysis and
simulations show that the new schedules offer good tradeoffs with
respect to performance, complexity, latency, and connectivity.

Index Terms—Belief propagation decoding, density evolu-
tion, extrinsic information transfer (EXIT) charts, low-density
parity-check (LDPC) codes, turbo codes.

I. INTRODUCTION

I TERATIVE decoding has received significant attention
recently, mostly due to its near-Shannon limit error perfor-

mance for the decoding of low-density parity-check (LDPC)
codes [1], [2] and turbo codes [3]. It uses a symbol-by-symbol
soft-in/soft-out decoding algorithm like maximum a posteriori
probability (MAP) decoding [4] and processes the received
symbols recursively to improve the reliability of each symbol
based on constraints that specify the code. In the first iteration,
the decoder only uses the channel output as input, and gener-
ates a soft output for each symbol. Subsequently, the output
reliability measures of the decoded symbols at the end of each
decoding iteration are used as inputs for the next iteration. The
decoding iteration process continues until a certain stopping
condition is satisfied. Then hard decisions are made based on
the output reliability measures of decoded symbols from the
last decoding iteration. Standard iterative decoders of LDPC
codes and turbo codes often require several tens of iterations
for the iterative decoding process to converge. Hence, methods
to accelerate the decoding convergence without sacrificing
performance are needed.

A “shuffled” turbo decoding method was previously proposed
[5] that takes account of the different reliabilities of extrinsic
messages that are available during an iteration of a turbo de-
coder. The shuffled turbo decoding algorithm converges faster
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and only needs approximately the same computational com-
plexity as standard parallel turbo decoding. Scheduling schemes
using the “shuffled” idea have also been proposed for decoding
LDPC codes and have been shown to converge faster than the
corresponding standard decoding [6]–[8].

The aim of this work is to develop “replica shuffled” versions
of the standard iterative decoding algorithms for LDPC codes
and turbo codes. By using replicated subdecoders, this method
provides a faster convergence than plain shuffled decoding at the
expense of higher complexity. In [9], parallelism within one it-
eration is achieved by proper interleaver design for the turbo de-
coder architecture. In this work, iterations themselves are paral-
lelized and consequently, the two approaches can be combined.

Our new approach is analyzed by density evolution [10] and
extrinsic information transfer (EXIT) charts [11]–[13]. Both
methods show that shuffled belief propagation (BP) converges
about twice as fast as standard BP and replica shuffled BP
converges faster than plain shuffled BP. The convergence
speed of replica shuffled BP is determined by the number of
subdecoders and the information updating schemes. For turbo
decoding, replica shuffled turbo decoding converges faster than
both plain shuffled turbo decoding and standard parallel turbo
decoding. It is worth mentioning that the proposed schemes
are sequential in nature. Therefore, they are mainly interesting
when the structure of a code makes it difficult to implement the
decoding in hardware in a fully parallel way (e.g., long LDPC
codes, LDPC codes with relatively dense connectivity such as
finite-geometry LDPC codes or turbo codes).

II. ITERATIVE DECODING OF LDPC CODES

LDPC codes can be represented by a bipartite graph with
variable nodes on the left and check nodes on the

right. This bipartite graph can be specified by the sequences
and , where repre-

sents the fraction of edges with left (right) degree , and
and are the maximum variable degree and check degree,
respectively. For a regular LDPC code, .

A. Algorithms

Following the definitions in [14], deterministic schedulings
can be implemented either based on horizontal [15], [16] or ver-
tical partitioning [6], [7] of the parity-check matrix. In [15], [16]
a horizontal partitioning was proposed to serialize the decoding
of LDPC codes and in the process, speed-up of the convergence
was achieved. The algorithms of [6], [7] directly intend to speed
up BP or simplified versions of BP by combining the bit node
and check node processings in their scheduling. In this work, we
consider replica approaches based on a vertical partitioning to
speed up the decoding. The replica principle can also be applied
to a horizontal partitioning in a straightforward way and similar
gains have been observed for both partitioning schedules.

0018-9448/$25.00 © 2007 IEEE
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1) Standard BP Decoding of LDPC Codes: Suppose a
regular binary LDPC code of length
and dimension is used for error control over an additive
white Gaussian noise (AWGN) channel with zero mean and
power spectral density . Assume binary phase-shift
keying (BPSK) signaling with unit energy, which maps a
codeword into a transmitted sequence

, according to , for
. If is a codeword in and

is the corresponding transmitted sequence, then the received
sequence is , with , where for

, the ’s are statistically independent Gaussian
random variables with zero mean and variance . Let

be the parity-check matrix which defines the
LDPC code. We denote the set of bits that participate in check

by and the set of checks in which
bit participates as . We also de-
note using the set with bit excluded, and

the set with check excluded. We define the
following notations associated with the th iteration.

• The log-likelihood ratio (LLR) of bit which is
derived from the channel output . In BP decoding, we
initially set .

• The LLR of bit which is sent from the check node
to bit node .

• The LLR of bit which is sent from the bit node
to check node .

• The a posteriori LLR of bit .
The standard BP algorithm is carried out as follows [2]:

Initialization:
Set , and the maximum number of iteration to .
For each , set .

Step 1:
(i) Horizontal Step, for and each ,

process

(1)

(ii) Vertical Step, for and each ,
process

(2)

Step 2: Hard decision and stopping criterion test:
(i) Create such that if and

if .
(ii) If or is reached, stop the decoding itera-

tion and go to Step 3. Otherwise, set and go to
Step 1.

Step 3: Output as the decoded codeword.

2) Plain Shuffled BP Decoding of LDPC Codes: In general,
for both check-to-bit messages and bit-to-check messages, the

more independent information that is used to update the mes-
sages, the more reliable they become. Iteration of the standard
two-step implementation of the BP algorithm uses all values

computed at the previous iteration in (1). However, cer-
tain values could already be computed based on a partial
computation of the values obtained from (2), and then be
used instead of in (1) to compute the remaining values

. This suggests a shuffling of the horizontal and vertical
steps of standard BP decoding. This decoding is referred to as
shuffled BP decoding.

In the shuffled BP algorithm [5], the initialization, stopping
criterion test and output steps remain the same as in the standard
BP algorithm. The only difference between the two algorithms
lies in the updating procedure. Step 1 of the shuffled BP algo-
rithm is modified as: for and each ,
process the horizontal step and vertical step jointly, with (1)
modified as

(3)

3) Replica Shuffled BP Decoding of LDPC Codes: Shuffled
BP decoding is a bit-based sequential approach and the method
described in Section II-A2 is based on a natural increasing order,
i.e., the messages at bit nodes are updated according to the order

. The larger the value of , the more indepen-
dent pieces of information are used to update the messages at
bit and the more reliable these messages become. Therefore,
as the index increases, the reliability of the bit decisions in-
creases and the corresponding error rate decreases. Indeed, the
same reasoning applies if shuffled BP decoding is performed in
reverse order; hence, if shuffled BP decoding is employed using
a bit order starting with bit and ending with bit , the error
rate increases with the index . As an illustration, Fig. 1 depicts
the number of bit errors using standard and shuffled BP decod-
ings (with increasing and decreasing order) for the
PG-LDPC code [17] at the signal-to-noise ratio (SNR) of 3.0 dB
and after the second iteration. A total of 10000 random blocks
were decoded. From Fig. 1, we observe that in plain shuffled
BP decoding, the later a bit is processed, the more reliable it is.
If more decoders are used, they can exchange their most reli-
able messages (bit-to-check messages associated with bits cor-
responding to the lower part of shuffled decoding curve) with
one another and achieve faster convergence. Based on this ob-
servation, replica shuffled BP decoding is developed next.

In replica shuffled BP decoding, several shuffled subdecoders
based on different updating orders operate simultaneously and
cooperatively. After each iteration, each subdecoder receives
more reliable messages from and sends more reliable messages
to other subdecoders. Based on these more reliable messages,
all replica subdecoders begin the next iteration. Hence, replica
decoding can be viewed as a way to parallelize iterations. For
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Fig. 1. Number of bit errors versus bit position in the PG-LDPC code at SNR of 3.0 dB.

two replicas, let and denote the subdecoders with nat-
ural increasing and decreasing updating orders, respectively. Let

and be the variables associated with at iteration

. The variables associated with are defined in a similar way.
The replica shuffled BP decoding with two replica subdecoders
is carried out as follows:

Initialization:
Set , and the maximum number of iteration to .

For each , set .

Step 1: Each replica subdecoder processes the following two
steps simultaneously. For and each ,
process

(i) Horizontal Step

(ii) Vertical Step

Step 2: Set for and

for .
Step 3: Hard decision and stopping criterion test:

(i) Create such that for if

and otherwise; for

if

and otherwise.
(ii) If or is reached, stop the decoding itera-

tion and go to Step 4. Otherwise, set and go to
Step 1.

Step 4: Output as the decoded codeword.

With respect to Fig. 1, note that Step 2 is equivalent to keeping
the lower parts of the two shuffled BP curves.

Another possible implementation is that these two sub-
decoders exchange more reliable messages synchronously
with each other during the decoding process. Define

and
, for . In synchronous scheme, the

updating and exchanging procedures operate simultaneously as
follows:

Step 1: For and each , for
and each , two replica subdecoders process

the following two steps simultaneously:
(i) Horizontal Step
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(ii) Vertical Step

Notice that in this case the two replica subdecoders use the same
set of bit-to-check LLR values. It is also straightforward to ex-
tend the replica shuffled BP decoding to the cases in which more
than two replica subdecoders are used.

4) Group Replica Shuffled BP Decoding of LDPC Codes: To
take advantage of as many newly delivered messages as pos-
sible and therefore to achieve the best performance, a fully se-
rial replica shuffled BP is necessary. However, this scheme is
not attractive for hardware implementation due to its serial na-
ture. A totally parallel implementation is not realistic either for
large code lengths, or codes with highly connected graph.

In [5], a method called “group shuffled” BP was presented.
In group shuffled BP, the bits of a codeword are processed in
groups in a semi-parallel manner. The groups are processed se-
rially while the bits within a group are processed in parallel. This
approach can be extended in a straightforward way to the design
of group replica shuffled BP decoders. Assume the bits of a
codeword are divided into groups and each group contains

bits (assuming for simplicity). Step 1
of the nonsynchronous group replica shuffled BP algorithm is
carried out as follows:

Step 1: For , each replica subdecoder processes
jointly the following two steps

(i) Horizontal step: for and each
, process:

(ii) Vertical Step: for and each
, process:

Synchronous group replica shuffled decoding is defined in a
similar way.

Replica shuffled BP can also update messages in groups based
on unnatural increasing or decreasing orders. Suppose the up-
dating order of one replica is , where

. Assume the updating orders of and

are and , respectively. Then replica shuffled BP with un-
natural updating ordering can be described with the above up-
dating rules by replacing and with

and , respectively.
Replica shuffled BP can be further generalized to various

forms. One example is that in the unnatural updating scheme,
some groups of bit nodes may be updated more than once at one
iteration while other groups of bit nodes are updated only once.
The updating of LLR values at the th iteration is now based on
the LLR values delivered at the th or th iteration
(as in the example of Section II–A5).

5) Relationship Between Group Plain and Group Replica
Shuffled BP: Group plain shuffled BP can be viewed as a special
case of synchronous group replica shuffled BP. Assume in group
plain shuffled BP decoding, the bits in a codeword are divided
into groups and each group contains bits. Consider
a group replica shuffled BP decoder with two subdecoders
and . For both and , the bits in a codeword are di-
vided into groups and each group contains
bits. For , let bits in group- in and
bits in group- in compose group- in group shuffled BP
decoding. In synchronous group replica shuffled BP decoding,
if subdecoder updates group- and subdecoder
updates group- simultaneously, group replica shuffled BP de-
coding with two subdecoders becomes group plain shuffled BP
decoding.

Since each subdecoder in group replica shuffled BP decoder
can take any updating order, group replica shuffled BP decoding
provides more flexibility than group plain shuffled BP decoding.
Hence, we can find some scheduling for group replica shuffled
BP decoder that has better performance than group plain shuf-
fled BP using the same decoding time and the same hardware
resources, i.e., the same number of subdecoders. For example,
consider a irregular LDPC code which was con-
structed in a semi-random manner [25]. The variable node and
check node degree distributions are

and
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TABLE I
PERFORMANCE COMPARISON OF GROUP PLAIN AND GROUP REPLICA SHUFFLED BP DECODING

Fig. 2. Illustration of the scheduling of group plain shuffled BP decoding with
two groups and group replica shuffled BP decoding with two subdecoders and
four groups.

respectively. We compare group plain shuffled BP decoding
with two groups and group replica shuffled BP decoding with
two subdecoders and four groups. Fig. 2(a) illustrates the sched-
uling of group plain shuffled BP decoding. The variable nodes
are divided into two parts, 1 and 2. The processing follows
the order: . Fig. 2(b) illustrates
the scheduling of group replica shuffled BP decoding. With re-
spect to the first subdecoder, the variable nodes are divided into
four parts, and . The processing follows the order:

. With respect to the second subdecoder,
the variable nodes are divided into and . The pro-
cessing follows the order:

. Since the decoding time
for one iteration in group replica shuffled BP triples that in group
plain shuffled BP decoding, we compare their performance after
6 and 18 iterations, respectively, in Table I. We observe that with
this particular scheduling and the same number of subdecoders,
group replica shuffled BP outperforms group plain shuffled BP.

B. Analysis by Density Evolution

1) Density Evolution of Shuffled BP: Density evolution [10]
is an effective numerical method to analyze the performance of
message-passing iterative decoding algorithms based on graph.
It has been shown that for a given message-passing decoder,
if the channel and the decoder satisfy the symmetry conditions
[10], then the decoding bit error rate (BER) is independent of the
transmitted sequence. The process of density evolution there-
fore can be greatly simplified by assuming the all-zero sequence
is transmitted. It is straightforward to verify that shuffled and
replica shuffled BP decoder satisfy the symmetry condition, so
that the all-zero transmitted codeword assumption is valid. In
density evolution of shuffled and replica shuffled BP, a cycle-
free structure of the LDPC code graph is assumed as in [10]. In
this case, the incoming messages to any bit or check node are
independent, which also simplifies the derivation of the proba-
bility density functions (pdfs) of the outgoing messages.

In shuffled and replica shuffled BP decoding, the pdfs of out-
going and incoming messages of bit nodes depend on the bit
index number. Let and be the pdfs of the in-
coming and outgoing messages of bit nodes in the th group at
iteration , respectively. We assume the bits of an LDPC code-
word are divided into groups and for simplicity we assume
given any check, the number of adjacent bits from any group is
at most one.

For the bit node processor of shuffled BP, the density
evolution is the same as that of standard BP, so that for

(4)

where denotes the Fourier transform operator.
As observed from (3), depends on both for

and for . To avoid a brute-force calculation of all

possible combinatorial formats of and , we let the
average pdf of the newly delivered outgoing messages from bit
nodes in group at iteration be

(5)

Similarly, we let the average pdf of the outgoing messages from
bit nodes in group be

(6)

The check node processing can be implemented in a recursive
way [18]. Define a core operation as

(7)

Then (1) can be calculated by applying (7) recursively as

(8)

If the incoming messages are independent and identically dis-
tributed (i.i.d.) random variables with pdf , the pdf of the
outgoing message can be efficiently computed as [18]

(9)

where denotes the operation of pdfs of bit-to-check messages
based on check node processing (7). Let us consider group shuf-
fled BP with natural increasing ordering. The incoming mes-
sages to the check nodes adjacent to bit nodes in the th group
have in total

(10)
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possible formats. For each , there are

(11)

possible formats which contain newly delivered bit-to-check
messages at the current iteration and bit-to-check
messages delivered at the previous iteration. The average pdf of
message incoming to bit nodes in the th group at iteration
becomes

(12)

Theorem 3.2.2 in [8] provides a recursion for density evolu-
tion of a serial schedule. In [8], the variable nodes are divided
into sets of equal size. Based on the assumption that no
two variable nodes in a set are connected to the same check
node, density evolution is simplified and only recursions are
needed. For the bit nodes associated with group , the updating
rule in our paper is the same as that in [8]. However, the up-
dating rules for check nodes differ. In [8], the updating of pdfs
for check nodes is based on a single pdf, which is the average of
all pdfs of the bit nodes. In our approach, the pdf of a check node
is updated from all different pdfs of bit nodes from different
groups, based on a combinatorial analysis with a consideration
of the degree of the check node and all possible combinations
of the pdfs of the bit nodes.

2) Density Evolution of Replica Shuffled BP: It is straight-
forward to extend these updating rules of pdfs for shuffled BP
to replica shuffled BP. For instance, in nonsynchronous replica
shuffled BP with two subdecoders, the updating rule of the pdfs
of the outgoing belief messages from bit nodes is the same as
that in plain shuffled BP, while the pdfs of incoming belief mes-
sages to bit nodes are modified as

(13)

for . If an unnatural updating ordering is em-
ployed, the indices and in (13) are replaced with

and , respectively.
Density evolution of synchronous replica shuffled BP oper-

ates in the same way while updating pdfs of incoming belief
messages to bit nodes synchronously, i.e.,

(14)

for , and

(15)

for . The density evolution of replica shuffled BP
with more than two subdecoders can be obtained in a similar
way.

The extension of density evolution of shuffled and replica
shuffled BP for decoding irregular LDPC codes is also straight-
forward. Consider an irregular LDPC code with degree distribu-
tions and . Consider
plain shuffled BP decoding in natural increasing order. From
(12), at iteration , the pdf of incoming messages to bit nodes in
the th group from a check node with degree is

(16)
Since the pdfs of the outgoing messages of check nodes with
different degree are distinct, the expectation of these pdfs is the
overall pdf of the messages incoming to bit nodes int the th
group

Similarly, the pdf of outgoing messages from bit nodes in the
th group at iteration becomes

(17)

3) Simulation Results: Fig. 3 depicts the BER as a function
of the numbers of decoding iterations predicted by density evo-
lution with standard BP, shuffled BP, replica shuffled BP with
two and four subdecoders (synchronous exchanging) methods,
for decoding rate- regular LDPC codes with
1.111 dB. In the simulation, we assume the bits in an LDPC
codeword are divided into groups. We observe that
shuffled BP converges about twice as fast as the standard BP
decoding while replica shuffled BP converges faster than plain
shuffled BP. As expected, we observe that the larger the number
of subdecoders in replica shuffled BP, the faster the convergence
of decoding.

Fig. 4 depicts the BER versus the number of iterations pre-
dicted by density evolution with replica shuffled BP decoder of
two subdecoders using nonsynchronous and synchronous ex-
changing schemes, for a regular LDPC code. We observe
that replica shuffled BP under the synchronous exchanging
scheme converges faster than under the nonsynchronous
exchanging schedule. It is also worth mentioning that the
synchronous scheme requires less memory than the nonsyn-
chronous scheme, but more frequent memory access.

Fig. 5 depicts the BER as a function of the numbers of de-
coding iterations predicted by density evolution with standard
BP, shuffled BP, replica shuffled BP with two and four sub-
decoders (synchronous exchanging) methods, for decoding a
rate- irregular LDPC code over an AWGN channel with

0.409 dB. The check and bit nodes distributions of
this code are and

, respectively
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Fig. 3. BER versus number of iterations predicted by density evolution with the standard BP, plain shuffled BP, replica shuffled BP with two and four subdecoders
(synchronous scheme), for decoding a regular LDPC code at the SNR of 1.111 dB.

Fig. 4. BER versus number of iterations predicted by density evolution with replica shuffled BP with two subdecoders under nonsynchronous and synchronous
updating schemes, for decoding a regular LDPC code.

[19]. We observe a similar behavior as in the case of regular
LDPC codes.

Fig. 6 depicts the BER versus the decrease in BER predicted
by density evolution with standard BP and replica shuffled BP

with four subdecoders, for decoding the above irregular LDPC
code at the SNR of 0.409 dB. We observe that at a given prob-
ability of error, the decrease of the probability of error with
replica shuffled BP is always larger than that of standard BP,
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Fig. 5. BER versus number of iterations predicted by density evolution with
the standard BP, plain shuffled BP, replica shuffled BP with two and four sub-
decoders (synchronous scheme), for decoding an irregular LDPC code at the
SNR of 0.409 dB.

Fig. 6. BER versus decrease in BER predicted by density evolution with the
standard BP and replica shuffled BP with four subdecoders and synchronous
updating, for decoding an irregular LDPC code at the SNR of 0.409 dB.

which illustrates the faster convergence property of replica shuf-
fled BP from another perspective. We also observe that density
evolution of replica shuffled BP with four subdecoders has three
fixed points, which is the same as that of standard BP. We ob-
serve a similar behavior for plain shuffled BP and replica shuf-
fled BP with two subdecoders.

C. Analysis by EXIT Charts

EXIT charts [11]–[13] are another effective technique to
study the convergence behavior of iterative decoding. They are
easy to visualize and to program and are a good complement to
density evolution. Both the variable node and check node EXIT
curves can be computed in closed form [20] for the standard BP
decoding. Let be the average mutual information between
the bits on the edges of the graph and the a priori (extrinsic)
LLRs of the variable (check) nodes. Similarly, let be the
average mutual information between the bits on the edges of the

Fig. 7. An example for illustrating the ideal parity-check matrix of a
regular LDPC code with length .

graph and the extrinsic (a priori) LLRs of the variable (check)
nodes. Then the EXIT functions of a degree variable node
and a degree check node are respectively

(18)

(19)

where and is defined as

(20)

is the inverse function of . The approximation
functions of and are given in [20, the Appendix].

1) EXIT Charts of Plain Shuffled BP: In order to find a
closed form for the shuffled BP decoding, the following ideal
model is constructed for a regular LDPC code. Suppose the
variable nodes can be divided into sets and those in the
th set only connect to the th edge of the check nodes. For

example, quasi-cyclic regular LDPC codes have this feature.
This ideal model is also suitable for codes constructed using the
progressive edge-growth (PEG) method [21]. The parity-check
matrix corresponding to this ideal model is referred to as the
“ideal” parity-check matrix. Fig. 7 illustrates an example of the
ideal parity-check matrix of a regular LDPC code with
length .

Based on the above ideal model, since all the edges of the
variable nodes in the same set connect to different check nodes,
they cannot benefit from one another. However, they can equally
make use of the updated information of the previous edges. The
processing of each check node also becomes identical.

Let the mutual information between the bits on any edge con-
nected to a check node and their corresponding a priori LLRs
be equal to the average input mutual information . Let be
the updated mutual information between the bit on the th edge
of the same check node and its a priori LLRs. Denote by the
mutual information between the bit on the th edge of this check
node and its extrinsic LLRs. Then the EXIT function for a check
node of a regular LDPC code decoded with shuffled BP
decoding is

(21)

It is worth stating that for standard BP, ’s are the same for all
edges of a check node since all of them are processed simulta-
neously. However, that is not the case for plain shuffled BP. In
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Fig. 8. The mutual information updating process for the LDPC code with the
ideal parity-check matrix in Fig. 7.

plain shuffled BP, variable nodes are processed in a fully serial
manner and in our ideal model described before this means the
edges of a check node are processed serially, so is improved
as the increase of . For example, consider the ideal parity check
matrix in Fig. 7. Fig. 8 illustrates its updating process using
plain shuffled BP. Since the processing of each check node is
identical, Fig. 8 depicts only one check node. The dark dots
in Fig. 8 represent the variable nodes that are being processed.
Based on the ideal model assumption, we know that the th edge
of all the check nodes only connects to the variable nodes in the
th set. Supposing variable nodes are processed from Set 1 to

Set 3, then all the th edges of the check nodes are processed
before any th edge of any check node for . When the
variable nodes in Set 1 are processed, they take the output ex-
trinsic information from the first edges of the check nodes
as their input a priori information as shown in Fig. 8(b). Since
the a priori information of a check node is initially, fol-
lowing (19), we have . Based on (18),
the output extrinsic information from the variable nodes in Set
1 as shown in Fig. 8(c). Then
the updating of Set 1 is completed. Next we process the vari-
able nodes in Set 2 as shown in Fig. 8(d) and (e). The variable
nodes in Set 2 take the output extrinsic information from the

second edges of the check nodes as their input a priori informa-
tion. To calculate , we follow (19) and take the average of

and as the input a priori information, i.e.,

Then based on (18), the output extrinsic information of the
variable nodes in Set 2 equals . Finally,
we process the variable nodes in Set 3. They take the output ex-
trinsic information from the third edges of the check nodes
as their input a priori information. Similarly, is obtained
from (19) with the average of and as the input a priori
information, i.e.,

Then the variable nodes in the third set output extrinsic infor-
mation , which equals as shown in
Fig. 8(g), and one iteration is completed.

The above updating process can be generalized to any
regular LDPC code with the ideal parity-check matrix,

i.e.,

(22)

(23)

for .
The average input mutual information of all the variable

nodes is and the average output mutual
information is

The EXIT function for a variable node in the shuffled BP de-
coding is given by

(24)

Next, we compare and . Let
and . Since is approximately linear with

when is within a small range, we obtain in that case

Therefore, it follows
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From simulations, we observe that the variances of the a
priori inputs to different variable nodes at one iteration vary
within a small range. Hence the EXIT function for a variable
node in shuffled BP decoding is almost the same as that in stan-
dard BP decoding.

2) EXIT Charts of Replica Shuffled BP: It is straightforward
to extend this method to replica shuffled BP. Using a similar ap-
proach, we can show that the EXIT function for a variable node
in replica shuffled BP decoding is also almost the same as that
in standard BP decoding. Since in the nonsynchronous scheme,
subdecoders only exchange information at the end of each iter-
ation, the EXIT function for a check node in replica shuffled BP
with two subdecoders and the nonsynchronous updating can be
written as

even (25)

odd (26)

The EXIT function for a check node in replica shuffled BP with
more than two subdecoders can be obtained in a similar way.

In the synchronous scheme, subdecoders exchange informa-
tion immediately. Suppose subdecoders are used. Then we
can divide each of the sets of the ideal model into sub-
sets. Each subdecoder processes the variable nodes in a distinct
subset of the same set at the same time. After all the variable
nodes have been processed once, the subdecoders go back to
the first set and process a subset different from those they have
already processed. Thus, the replica shuffled BP can be regarded
as applying the shuffled BP times. Therefore, the EXIT func-
tion for a check node in the synchronous scheme with subde-
coders is given by

(27)

(28)

with .
While these derivations allow us to model the convergence

of each method, it is well known that the threshold derived on
a tree cannot be changed by modifying the scheduling of the

algorithm only. So the threshold value remains the same for all
methods.

Theorem 1: Based on EXIT chart analysis, the threshold of a
code decoded by plain shuffled BP or replica shuffled BP is the
same as BP.

Proof: Let be the threshold in standard BP de-
coding. When , the EXIT curves of variable
and check nodes cross each other at some point, say . If

, then . In
plain shuffled BP decoding, if we use as the input a priori in-
formation to check nodes, then the extrinsic information of the
first edge in a check node is because .
Variable nodes take as input and send back to check
nodes because . From this we
can see the input mutual information to check nodes is not
improved during the process of updating variable nodes serially,
i.e., and . So and

, which means the EXIT curves
of variable and check nodes in plain shuffled BP also cross each
other at the point . The same result can be proved for replica
shuffled BP.

In general, the actual Tanner graph does not satisfy all the
constraints of our ideal model, but the convergence behavior of
the corresponding code can still be well approximated by the
ideal model as shown next. Fig. 9 compares the EXIT func-
tions obtained from the simulation method of [13] and the pro-
posed closed forms. Both methods assume the input LLRs have
a Gaussian distribution. We observe that the EXIT functions
of these two methods are almost the same, which validates the
EXIT functions derived in this paper.

We also verified by EXIT charts that the nonsynchronous
scheduling converges slower than the synchronous one, as
shown in Fig. 4. Fig. 10 depicts the EXIT charts of five de-
coding methods. We observe that replica shuffled BP with four
subdecoders using the synchronous scheme converges much
faster than the other methods. Fig. 11 depicts EXIT curves
superimposed to constant-BER curves [28, Ch. 9]. For the
same BER, the iteration number of standard BP is twice that
of shuffled BP and eight times that of replica shuffled BP with
four subdecoders and synchronous updating.

Fig. 12 depicts the EXIT curves of different decoding
methods at the SNR of 1.11 dB, which is the threshold of the

regular LDPC code. We observe that the EXIT curves
of variable and check nodes cross each other at the same point
for all the methods. Hence, they have the same threshold as
expected from Theorem 1.

These results can be readily extended to irregular LDPC
codes.

3) EXIT Charts of Group Plain Shuffled BP: Based on the
analysis of plain shuffled BP, we deduce the following theorem.

Theorem 2: When decoding a regular LDPC code, group
plain shuffled BP should have at least groups in order to have
at any given iteration the same performance as plain shuffled BP
based on the ideal model.

It is very easy to observe this result using the ideal
parity-check matrix because the variable nodes in each set do not
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Fig. 9. Comparison between the EXIT curves obtained from the simulation method of [13] and the proposed closed forms for a regular LDPC code at the
SNR of 1.5 dB.

Fig. 10. EXIT curves (in closed form) for shuffled BP and four types of replica shuffled BP decodings at the SNR of 1.5 dB (variable nodes (VND) and check
nodes (CND)).

benefit from each other and they can be processed in parallel
without changing the performance. Simulation results presented
in the next section confirm that this value is a good estimate of
the least number of groups necessary to achieve the same per-
formance as plain shuffled BP on real Tanner graphs. Conse-
quently, Theorem 2 indicates that the speedup obtained by shuf-
fled BP over standard BP can still be achieved with a high level
of parallelism since, in general, is quite small. For complete-
ness, we develop the remaining case next.

When the group number is less than , the EXIT function
of group plain shuffled BP is easily obtained if the check node

degree is divisible by the group number, but it becomes cum-
bersome otherwise. Let be the number of groups. Suppose
the check node degree is divisible by with .
Then the EXIT function of group plain shuffled BP can be de-
scribed as

(29)

If , then

(30)
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Fig. 11. EXIT curves (in closed form) for standard BP, shuffled BP, and replica shuffled BP with four subdecoders with synchronous updating at the SNR of
1.5 dB, superimposed to constant-BER curves.

Fig. 12. EXIT curves (in closed form) for standard BP, shuffled BP, and four types of replica shuffled BP at the SNR of 1.11 dB.

(31)

Otherwise

(32)

(33)

where .

The preceding analysis is for vertical shuffled BP, similar re-
sults can be obtained for horizontal shuffled BP in [15], [16].

Theorem 3: When decoding a regular LDPC code, horizontal
group plain shuffled BP should have at least groups in order
to have at any given iteration the same performance as plain
shuffled BP based on the ideal model.

In horizontal shuffled BP, instead of dividing variable nodes
into sets, we divide check nodes into sets. The check nodes
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Fig. 13. Comparison between the EXIT curves obtained from the simulation method of [13] and the proposed closed forms for group shuffled BP and group
replica shuffled BP with four subdecoders and synchronous updating, for decoding a regular LDPC code at the SNR of 1.5 dB.

in each set do not benefit from each other and they can be pro-
cessed in parallel without changing the performance.

4) EXIT Chart of Group Replica Shuffled BP: The EXIT
function of group replica shuffled BP with nonsynchronous up-
dating is almost the same as that of replica shuffled BP (i.e.,

) except that ’s in (25) and (26) are obtained from
(30) and (32).

For the synchronous scheme, when , group replica
shuffled BP can be regarded as applying standard BP times.
Therefore, the corresponding EXIT function is

(34)

(35)

where .
When , if is divisible by and

is divisible by , group replica shuffled BP is equivalent to
applying group shuffled BP with groups times. Let .
Then the EXIT function becomes

(36)

(37)

where .
When , the EXIT function of group replica shuf-

fled BP with synchronous updating is the same as for .
Hence, we have the following theorem.

Theorem 4: When decoding a regular LDPC code, group
replica shuffled BP should have at least groups in order

to have at any given iteration the same performance as replica
shuffled BP based on the ideal model.

Fig. 13 depicts the EXIT curves obtained from the simulation
method of [13] and the proposed closed forms for group shuffled
BP and group replica shuffled BP with synchronous updating.
We observe that the curves obtained with these two methods
match each other well, which again validates our derived EXIT
functions.

Fig. 14 depicts the error performance of shuffled BP, group
shuffled BP with six groups, replica and group replica shuffled
BP with 24 groups with four subdecoders, and synchronous up-
dating for decoding a regular LDPC code,
whose Tanner graph was constructed by the PEG method [21].
Since the number of the bit nodes, 8000, cannot be divided by 6
or 24, the remaining bit nodes are assigned to the corresponding
last group. From this figure, we observe that the group methods
with the smallest group number derived theoretically in The-
orems 2 and 4 have almost the same performance as their cor-
responding non-group counterparts.

D. Simulation Results

Fig. 15 depicts the word error rate (WER) of iterative de-
coding of a LDPC code, with the standard
BP, plain shuffled and group replica shuffled BP algorithms, for

and , with four replica subdecoders and
synchronous updating. The maximum number of iterations
for plain and group replica shuffled BP was set to 10. We observe
that the WER performances of replica shuffled BP decoding
with four subdecoders and , and a group number
larger or equal to four, are approximately the same as that of
standard BP with .

Fig. 16 depicts the WER of standard and replica shuffled BP
decoding of a irregular LDPC code which was
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Fig. 14. Word error rate (WER) of shuffled BP, group shuffled BP with six groups, replica shuffled BP with four subdecoders, and synchronous updating and its
group version with 24 groups, for decoding a regular LDPC code.

Fig. 15. WER of a LDPC code with group shuffled BP algorithm, for and at most 10 iterations.

constructed in a semirandom manner [25]. The variable node
and check node degree distributions are

and
, respec-

tively. The number of replica subdecoders was four and up-
dating was synchronous. We observe that replica shuffled BP
with and provides a similar performance as
that of standard BP with .

For most Gallager type LDPC codes, synchronous replica
shuffled BP offers similar ultimate performance as nonsyn-

chronous replica shuffled BP. However, for some LDPC codes
with relatively higher density parity-check matrices (such
as LDPC codes based on Euclidean and projective geometry
(PG)), nonsynchronous replica shuffled BP may provide a better
ultimate performance than the synchronous one. In Table II,
synchronous and nonsynchronous replica shuffled BP with two
subdecoders and 200 iterations for both decoding algorithms
are compared (the large iteration number was chosen to ensure
convergence in both cases). For this code, the nonsynchronous
schedule provides a better performance.
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Fig. 16. Error performance for iterative decoding of a irregular LDPC code.

TABLE II
PERFORMANCE COMPARISON OF NONSYNCHRONOUS AND SYNCHRONOUS
REPLICA SHUFFLED BP DECODING FOR THE PG-LDPC CODE

III. ITERATIVE DECODING OF TURBO CODES

A turbo code [3] encoder is formed by the concatenation of
two (or more) convolutional encoders, and its decoder consists
of two (or more) soft-in/soft-out convolutional decoders which
feed reliability information back and forth to each other. At each
iteration, the decoding of each component decoder is based on
not only the received channel values, but also the extrinsic mes-
sages delivered by other component decoders. For simplicity,
we consider a turbo code that consists of two rate- sys-
tematic convolutional codes with encoders in feedback form.
Let be an information block of length

and be the corresponding coded se-
quence, where , for ,
is the output code block at time . Assume binary phase-shift
keying (BPSK) transmission over an AWGN channel, with
and all taking values in for and

. Let be the received se-
quence, where is the received block
at time . Let denote the estimate of .
Let denote the encoder state at time . Following [4], define

, where , and
let represent the corresponding
values computed by component decoder , with . Let

denote the extrinsic value of the estimated informa-
tion bit delivered by component decoder at the th itera-
tion [23].

A. Algorithms

1) Standard Serial and Parallel Turbo Decoding: The de-
coding approach proposed in [3] operates in serial mode, i.e., the
component decoders take turns in generating the extrinsic values
of the estimated information symbols, and each component de-
coder uses the most recent extrinsic messages delivered by the
other component decoder as a priori values of the information
symbols. The disadvantage of this scheme is its decoding delay.
In the parallel turbo decoding algorithm [24], both component
decoders operate in parallel at any given time. After each itera-
tion, each component decoder delivers its extrinsic messages to
the other decoder, which uses these messages as a priori values
at the next iteration.

2) Plain Shuffled Turbo Decoding: Although the parallel
turbo decoding reduces the decoding delay of serial decoding
by half, the extrinsic messages are not taken advantage of as
soon as they become available, because the extrinsic messages
are delivered to component decoders only after each iteration
is completed. The aim of the shuffled turbo decoding is to
use the more reliable extrinsic messages at each time. Let

be the sequence permuted by the in-
terleaver corresponding to the original information sequence

, according to the mapping ,
for . We assume that . There
is a unique corresponding reverse mapping , for

and . In shuffled turbo de-
coding, first ’s of the two component decoders are computed
in parallel and then ’s and ’s are calculated partially based
on the most recent updates at the current iteration. Although the
two component decoders operate simultaneously as in parallel
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Fig. 17. Examples for illustrating the processing of plain and replica shuffled turbo decodings. (a) Example of plain shuffled turbo decoding with .
(b) Example of replica shuffled turbo decoding with .

turbo decoding scheme, the messages are updated during each
iteration based on and [5]. Correspondingly, it
provides a faster decoding convergence.

3) Replica Shuffled Turbo Decoding: In the plain shuffled
turbo decoding summarized in Section III-A2, we assume all
the component decoders compute ’s followed by ’s. Let us
refer to the two component decoders as and . Another
possible scheme is to operate in the reverse order, i.e., all the
component decoders compute ’s followed by ’s and we refer
to them as and . In terms of error performance, there
is no difference between these two approaches. However, the
reliabilities of the extrinsic messages associated with a certain
information bit delivered by these two shuffled turbo decoders
differ. In general, the more independent information is used,
the more reliable the delivered messages become. For the ex-
trinsic messages delivered by component decoder , which

are denoted as , the larger is, the more reliable this

message is. Similarly, for the extrinsic message de-

livered by , the smaller is, the more reliable this mes-
sage is. It is natural to expect a faster decoding convergence if
these two shuffled turbo decoders operate cooperatively instead
of independently. Because in this approach two sets of shuf-
fled component decoders are used to decode the same sequence
of information bits, we refer to it as replica shuffled turbo de-
coding. In replica shuffled turbo decoding, two plain shuffled
turbo decoders (processing recursions in opposite directions)

and operate simultaneously and exchange
more reliable extrinsic messages during each iteration. We as-
sume that the component decoders deliver extrinsic messages

synchronously, i.e., , where the

and denote the times at which and

deliver the extrinsic values of the th ( th)
estimated symbol of the original information sequence and of
the interleaved sequence , respectively. As a result, each value
is available as soon as computed or four new values become
available at same time instant.

Let us first consider the processing of component decoder

at the th iteration. After time , the values of

should be updated and the values of are needed. There

are two possible cases. The first case is , which

means the extrinsic value of the information bit

has already been delivered by decoder . As in plain shuffled

turbo decoding, this newly available is used to com-

pute the values and . The second

case is , which implies the extrinsic value

of the information bit has not been delivered yet by . Then
in plain shuffled turbo decoding, the values and
are updated based on the extrinsic messages delivered at last iter-
ation. In replica shuffled turbo decoding, however, there are two
further subcases. The first subcase is , which

implies the extrinsic value of the information bit

has already been delivered by decoder . Then this newly

available , instead of is used to compute

the values , , and . The second sub-
case is , which implies both extrinsic mes-

sages of the information bit , i.e., and ,

are not available yet. In this subcase, the values of and

are updated based on the extrinsic messages delivered
at the th iteration. The recursions of component decoders

, , and are realized based on the same principle.
After iterations, the shuffled turbo decoding algorithm out-
puts , where

which is different from the estimate in standard turbo decoding
[3] and plain shuffled turbo decoding.

Fig. 17(a) and (b) illustrate the decoding processes of plain
and replica shuffled turbo decoding, respectively, with .
In Fig. 17(a), when bit-1 of decoder is processed, the new
extrinsic information from decoder is not available yet, and
the extrinsic information from the previous iteration is used as
a priori information; when bit-3 of decoder is processed, the
new extrinsic information from the current iteration is used as it
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Fig. 18. Monte Carlo model for computing the transfer function of a given
turbo code with conventional turbo decoding.

Fig. 19. Monte Carlo model for computing the transfer function of plain shuf-
fled turbo decoding.

is already available. In Fig. 17(b), when bit-1 of decoder is
processed, no new extrinsic information from decoders and

is available, so the information from the previous iteration
is used; when bit-3 is processed, only the new extrinsic infor-
mation from is available, and this new value is used; when
bit-7 is processed, information from decoder is not avail-
able yet, but that from decoder is; when bit-8 is processed,
new extrinsic information from both and is available,
and the most recently updated value is used. These two last cases
illustrate the advantage of using replica decoders.

It is straightforward to generalize replica shuffled turbo de-
coding to multiple turbo codes which consist of more than two
component codes. Also group of bits can be updated periodi-
cally only to reduce information exchanges between replicas.
Based on the above descriptions with two replicas, the total
computational complexity of the replica shuffled turbo decoding
for multiple turbo codes at each decoding iteration is about twice
that of the parallel turbo decoding.

The proposed approach can be generalized to more than two
replicas of each decoder but in that case, termination issues have
to be considered, unless the convolutional code is in tail-biting
form.

B. Analysis by EXIT Charts

In this section, we first review the results obtained in [11],
[13], [28]. Both channel observations and a priori knowledge
can be modeled as conditional Gaussian random variables [11].
Denote by and the LLRs of channel observations,

Fig. 20. Monte Carlo model for computing the transfer function of replica shuf-
fled turbo decoding.

a priori and extrinsic messages, respectively. Since we assume
an AWGN channel, each received signal with

. Then . It follows

(38)

where and . Hence, the consistency
condition [27] is satisfied.

Consider the a priori input , with
and . Using a similar analysis, we obtain

(39)

and the consistency condition is also satisfied. Denote as the
mutual information exchanged between and and as
that exchanged between and . Since is conditionally
Gaussian and the consistency condition is satisfied, is inde-
pendent of the value of . Therefore, can be written as a func-
tion of , say and has been defined in (20).

Since we do not impose a Gaussian assumption on is
approximated based on the observation of samples of , so
that [13], [28]

(40)

The transfer function is defined as and for a
fixed value , it is just . The transfer functions
of both decoders are plotted on a single chart. Since in turbo
decoding the extrinsic messages of the first decoder serve as the
a priori messages of the second decoder, the axes are swapped
for the transfer function of decoder-2.

1) Analysis of Plain Shuffled Turbo Decoding: In [28, Ch. 9],
a Monte Carlo model is used to derive the EXIT chart for a given
turbo code. Its structure is shown in Fig. 18, with two Gaussian
random noise generator outputs and whose distributions
satisfy (38) and (39), respectively. Then and are sent to
the single-input single-output (SISO) decoder, which outputs

. Based on (20) and (40), and can be calculated. The
transfer functions are obtained accordingly.

In plain shuffled turbo decoding, each decoder sends the
newly updated extrinsic messages to the other decoder imme-
diately after updating. Hence, we adopt three Gaussian random
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Fig. 21. EXIT charts of a two-component turbo code with interleaver size , for standard parallel, plain shuffled, and replica shuffled turbo decoding,
0.15 dB.

Fig. 22. Bit error performance of a two-component turbo code with interleaver size , for standard parallel, plain shuffled and replica shuffled decodings.

noise generators in the model to compute the transfer function,
as shown in Fig. 19. The first two generators are identical to
those in Fig. 18, while the third one takes the interleaved se-
quence as input. The outputs of all these generators,
and , are sent to the plain shuffled turbo decoders, where
and are used as the a priori messages of decoder-1 and de-
coder-2, respectively. Then and are obtained and both
of them are used to calculate in (40).

2) Analysis of Replica Shuffled Turbo Decoding: For replica
shuffled turbo decoding, the model to compute the transfer func-

tion is depicted in Fig. 20. Since the four decoders,
and , exchange information synchronously, the newly

updated a priori messages of and are the same after
each iteration and so are those of and . Therefore, we
still use three Gaussian random noise generators, but send
to and , and to and , respectively. Since
each decoder takes the extrinsic messages from two other de-
coders as its a priori messages, only the most recently updated
extrinsic messages serve as the a priori messages in the next it-
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eration. Hence, it is more convenient to use the a priori LLRs for
the next iteration, say and , to calculate . Therefore, in
Fig. 20, we have the replica shuffled turbo decoder output

and instead of and . The values
and are then calculated using the same formulas as before and
the transfer functions follow.

C. Simulation Results

Fig. 21 depicts the EXIT charts of a rate- turbo code with
two component codes and interleaver size , for standard
parallel, plain shuffled, and replica shuffled turbo decoding at
the SNR of 0.15 dB. We observe that the replica shuffled turbo
decoding converges faster than both the parallel and plain shuf-
fled turbo decoding.

Fig. 22 depicts the BER of the same turbo code, with standard
parallel, plain shuffled, and replica shuffled decoding. After five
iterations, the replica shuffled turbo decoder outperforms its par-
allel and plain counterparts by several tenths of a decibel. Fur-
thermore, at the SNR value of 0.15 dB, the BER of replica shuf-
fled turbo decoding after five iterations is slightly worse than
that of standard parallel turbo decoding after ten iterations, as
predicted from the EXIT charts in Fig. 21.

IV. CONCLUSION

Replica shuffled iterative methods have been proposed to
decode LDPC codes and turbo codes with reduced latency.
The faster convergence property of the presented algorithms
has been verified by density evolution and EXIT charts. Both
theoretical analysis and simulation results show that replica
shuffled decoding provides good tradeoffs with respect to
performance, complexity, and latency. Although not explored
in this work, connectivity in the decoder realization can also
benefit from the replica approach.

Based on EXIT charts analysis, we derived an estimate for the
least number of groups needed for group plain and replica shuf-
fled BP to achieve the same performance as plain and replica
shuffled BP, respectively. This result is useful because the fully
serial updating of plain and replica shuffled BP is often not at-
tractive in practice, and group shuffled BP is needed. This result
indicates that we can achieve the same performance as the fully
serial version with only a few carefully chosen groups.

Since group plain shuffled BP can be viewed as a special case
of synchronous group replica shuffled BP, group replica shuffled
BP decoding provides more flexibility than group plain shuf-
fled BP decoding and we can find schedulings for which group
replica shuffled BP decoder has better performance than group
plain shuffled BP using the same decoding time and the same
hardware resources. However, we observed that in general, the
scheduling of group plain shuffled BP is very good.

For most Gallager type LDPC codes, both synchronous
and nonsynchronous replica shuffled BP achieve similar error
performance after convergence. In that case, the synchronous
scheduling requires less iterations than the nonsynchronous
one. However, for some LDPC codes with relatively high
density parity-check matrices (such as LDPC codes based on
Euclidean and projective geometry), nonsynchronous replica
shuffled BP may provide a better performance than the syn-
chronous one.

The replica approach is particularly useful for turbo codes
since their decoding is serial. EXIT charts have been used to
estimate the convergence of replica shuffled, plain shuffled, and
parallel turbo decoding. From both EXIT chart analysis and sim-
ulation results, it is observed that replica shuffled turbo decoding
can save about half iterations compared with parallel turbo de-
coding, which is a significant improvement.

In general, the proposed replica approach can be viewed as
several processing elements updating the same memory unit,
each element corresponding to one iteration of the underlying
algorithm. The global scheduling of the memory accesses can
be determined from the convergence analysis by density evolu-
tion or EXIT charts. This analysis is also useful to design codes
suitable for replica decoding.
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