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Abstract
Progressive transmission of images is an important functionality for communicating high res-
olution images over limited bandwidth networks. By encoding the image data in an accessible
and hierarchical format, the JPEG 2000 standard supports many types of image progessions,
e.f., based on quality, resolution, component and position. This paper considers a progressive
transmission scheme in which codestream ordering and transmission decisions are drive en-
tirely by the server, which is useful for classes of applicaitons that employ image analysis at
the server and perform streaming based on the results of this analysis. The proposed system
aims to minimize signaling overhead and allow for incremental decoding and display with
minimal processing delay. It also aims to fully exploit the various styles of progression that
are enabled by the JPEG 2000 coding format. The performance of our proposed scheme is
reported in terms of signaling overhead, complexity and visual effectiveness.
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ABSTRACT 

Progressive transmission of images is an important functionality for communicating high resolution images over limited 
bandwidth networks. By encoding the image data in an accessible and hierarchical format, the JPEG 2000 standard 
supports many types of image progressions, e.g., based on quality, resolution, component and position. This paper 
considers a progressive transmission scheme in which codestream ordering and transmission decisions are driven entirely 
by the server, which is useful for classes of applications that employ image analysis at the server and perform streaming 
based on the results of this analysis. The proposed system aims to minimize signaling overhead and allow for 
incremental decoding and display with minimal processing delay. It also aims to fully exploit the various styles of 
progression that are enabled by the JPEG 2000 coding format. The performance of our proposed scheme is reported in 
terms of signaling overhead, complexity and visual effectiveness. 
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1. INTRODUCTION 

Scalable image compression schemes such as JPEG 20001,2 are designed so that different qualities, resolutions, 
components and positions of the compressed image could be easily accessed, transmitted, decoded and displayed. 
Progressive transmission of such images refers to the process by which more important portions of the coded data are 
transmitted first. For instance, progressive quality is achieved by transmitting coarsely quantized samples of the image 
first, followed by refinements of the image samples. When network bandwidth is limited, this effectively allows the 
client to display a lower quality version of the image in a short amount of time, and then as more coded data is received, 
the image quality improves over time. 

A practical need for progressive transmission exists for the remote browsing of large images over networks with limited 
bandwidth3.  In this particular application scenario, the desire to interact remotely with the content mandates the need for 
a protocol between the client and server. The standardized solution to this problem is JPIP, which is specified as Part 9 of 
the JPEG 2000 standard4,5; this solution is essentially a request-response protocol that allows clients to select portions of 
an image for transmission from a server. A key advantage of this approach is the flexibility that is provided to each 
client. Specifically, each client makes one or more HTTP GET requests. The requests contain the name of the image 
resource and the query fields to request. The fields describe many possible image features such as layer, resolution, 
component, precinct, viewing window, session, cached data, etc.  

Beyond remote browsing of images, progressive transmission is also useful in other application environments. For 
instance, in our previous work, a scalable video streaming system for surveillance applications that is based on JPEG 
2000 has been developed6. In this system, a stored JPEG 2000 codestream is transcoded in the compressed-domain using 
a low-complexity adaptation technique. Various types of streaming and display modes are supported that capitalize on 
the inherit scalability offered by JPEG 2000 and image analysis techniques that detect regions-of-interest (ROI’s) such as 
pedestrian and face regions. It is important to emphasize that in this system the server has knowledge of important parts 
of the scene and is responsible for determining the image quality to a given region and the appropriate transmission 
policy; a system with such properties is referred to as server-driven. 

The architecture and design philosophy for a server-driven progression image transmission scheme differs from that of a 
client-driven scheme such as JPIP that operates based on requests from each client. While the server-driven approach 
does not offer any level of interaction or feedback between client and server, it is suitable for certain applications and has 
some advantages. For one, signaling overhead and delay are expected to be less in the server-driven approach. Also, 
since the required processing on the client is substantially simplified, reduced complexity is achieved. Since these 
approaches are fundamentally different, a direct comparison with JPIP is not included in this paper.  



 
 

 

 

The rest of this paper is organized as follows. In the next section, a brief overview of the server-driven architecture is 
provided. In section 3, a method for generating ordered segments of the codestream to achieve the desired progressive 
transmission is elaborated on; the proposed header format for encapsulated segments of the codestream is also discussed. 
Experimental results are reported in section 4, and concluding remarks are given in section 5. 

2. SERVER-DRIVEN ARCHITECTURE 

An overview of the proposed progressive image transmission system is shown in Figure 1. The system includes a server 
that transcodes an input codestream into a transcoded codestream. During the transcoding process, the transcoder also 
generates decomposition metadata that indicates descriptive information about each packet such as the layer, resolution, 
component and precinct, the number of bytes, as well as if a particular packet is part of an ROI. From this, codestream 
bursts are produced according to control data that implements the progressive transmission policy. This control data is 
essentially a mapping of all the JPEG 2000 packets into particular codestream bursts, and determines the order that 
codestream data is transmitted to the client. This control data may also be used by the transcoder to optimize the 
progression order of the codestream. 
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Fig. 1. Overview of server-driven progressive image transmission scheme. 

The transcoded codestream may be identical to the input or altered in some way, e.g., to reduce the data rate, crop the 
image, or change the progression order. As will be discussed later, changing the progression order could be very useful 
in minimizing signaling overhead. It is also noted that the codestream bursts are non-compliant portions of the 
transcoded codestream. Each codestream burst contains one or more added headers that provide descriptive information 
about the particular codestream burst. 

At the client side, the compose operation reorders the received codestream bursts and inserts empty packets as needed to 
construct a compliant codestream. The compose process is invoked each time a new codestream burst is received to 
generate a new reconstructed codestream that includes the new codestream burst. The newly reconstructed codestream is 
then decoded and displayed to give the effect of progressive reconstruction. 

An illustrative example of this architecture is a distributed surveillance system with remote cameras acting as the servers 
and a central office as the client where images are received and displayed. In such an application scenario, consider the 
case in which face detection is preformed at each remote camera using the full image to determine the location and 
presence of the ROI’s of the image. The ROI should be initially transmitted at a reduced quality, with progressive quality 
improvements of the ROI region over time. The background should then be transmitted next with similar quality 
progressions over time. To achieve such an ordering with the conventional JPIP approach would require the client to first 
access to the entire image to determine the ROI location and the desired ordering of the codestream to be transmitted by 
the server to the client, which is not practical. Alternatively, the client would need to first receive the ROI information 
for the image, which adds round trip delay time. In this example, the face-first ordering is encoded without any response 
to a client-server request, and the proposed system is able to achieve a face-first transmission order that reduces 
transmission time and the bandwidth used. 



 
 

 

 

3. CODESTREAM BURST GENERATION   

This section outlines the specific techniques that are utilized to generate codestream bursts according to a given 
progressive transmission policy. In particular, the structure of the encapsulated codestream bursts is described. 

The decompose process sequentially scans through all the packets in the codestream. Based on the corresponding 
decompose metadata and the control data, each packet is assigned to a particular codestream burst. For each continuous 
scan of packets in a given codestream burst (assuming raster scan order), a burst header is also written to describe this 
data. The format of the codestream burst including burst header and codestream data is illustrated in Figure 2.  

The fields of the burst header are optional, i.e., all or some fields may be omitted if they are not needed or can be 
predicted by the client. The optimization of these fields is not discussed at this time. The first field is the “Type”, which 
signifies the type of burst header (i.e., long 12-Byte format or short 6-Byte format used in this work) and also indicates 
any omitted header fields. The “ID” is the L-R-C-P index into the codestream data; “Count” contains the number of 
sequential IDs that follow in the codestream data segment; and “Size” is the number of bytes of the codestream data 
segment that follows. 
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Fig. 2. Syntax for codestream bursts and burst header fields. 

The decompose process described above is a general solution for representing any reordering of packets. Using this 
method, the order of progressive transmission and display could be changed, and packets corresponding to a particular 
quality layer, resolution level or component could be removed or transmitted at a later time. In this way, progressive 
transmission of ROI’s could also be achieved.  

For example, a position-ordered source can be reordered into quality-layer bursts as shown in Fig. 3. In this figure, the 
decompose process is illustrated. The input stream at the top of the figure includes four positions and three quality layers 
for each position as indicated by the different shadings of the respective packets. The source contains all packets for 
position 0, followed by all packets for position 1, position 2, and position 3. The figure shows the formation of each 
transmission (burst) layer. In this example, it is shown that after the burst header, the main JPC header is transmitted, and 
that burst headers are inserted into the stream wherever the source stream ordering is broken. In this example, all packets 
associated with quality layer 0 are inserted into the first burst, packets associated with quality layer 1 into the next burst, 
and so on. This example is a trivial case for the purpose of explanation. The added headers will expand the stream 
depending on how many are inserted, which is highly dependent on the ordering of the source input and desired ordering 
of the target output. More complex cases that allow mixed progression orders are described later and the signaling 
overhead will also be addressed. 
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Fig. 3. Example decompose operation from position-ordered codestream to quality-layer bursts. 

To better understand how a particular transmission policy leads to codeblock bursts, consider the simple example shown 
in Fig. 4. Assume that the codestream has a PCRL progression order and the policy is to transmit the ROI with highest 
quality first (labeled as region 1), followed by the non-ROI regions (labeled as regions 2-5). In this diagram, the each 
arrowhead represents one added header. In particular, the first codeblock burst would contain 7 burst headers: one for 
JPEG 2000’s main header, and 6 others for the continuous set of packets in each row of the ROI. The codeblock bursts 
corresponding to regions 2 and 3 would contain 6 headers each, which correspond to the continuous set of packets in 
each row of the respective regions. Finally, the codeblock bursts corresponding to regions 4 and 5 would contain 1 
header each since all the packets in these regions could be continuously scanned.  
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Fig. 4. Example of a specific scan that orders ROI first, followed by scans for each non-ROI region. 



 
 

 

 

Many additional transmission orders can be achieved using different scans. Scans can mix progression orders of position, 
quality, resolution, and component in the same image. Positions can be defined by one or more ROIs, a motion 
weighting based on object movement over a sequence of images, or other scene characteristics such as the number and 
position of detected faces or the position of activity detected by sensors. Some example progressions are briefly shown in 
Fig. 5. For instance, Fig. 5(a) represents an image with a defined ROI region which is transmitted first in progressive 
quality layers until the ROI is completely sent, and then the background is transmitted in quality layers until the full 
image is complete. Figs. 5(b) and 5(c) repeat the same ROI-first progression with resolution layers or component layers. 
Figure 5(d) extends the defined ROIs to divide the image into 3 regions (top, middle, bottom) with the middle ROI 
region transmitted first, followed by the other regions. Figure 5(e) is a version of the progression presented in Fig. 4, 
where the image is divided into 5 regions. Figure 5(f) represents a ROI-first, quality horizon transmission order, where 
the ROI image is first transmitted in quality layers, and then quality layers are added to the background regions along a 
horizontal line until the horizon line is complete. Next, quality layers are added for any quality layers that have not been 
transmitted surrounding the quality horizon region until the quality horizon fills the full image. Another progression is 
presented in Figure 5(g) and referred to as Quality ROI Box. In this scheme, the ROI region is transmitted in quality 
layers until the ROI is complete. Next, all of the remaining positions that are adjacent to a transmitted-ROI region are 
sent. This progression builds out from the defined ROI region, until the image has been fully transmitted. Figure 5(h) is 
the same as 5(g) with the exception that quality alway builds out from the geometric center of the image. Figure 5(i) is 
the same as 5(h) where the first image sent is the full image at the lowest quality layer. Next, additional quality layers are 
sent for the ROI region, and then for the remaining background regions with the order shown in 5(h). 
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Fig. 5. Various other progression order scans based on layer, resolution, component and position. 

 

4. EXPERIMENTAL RESULTS  

To demonstrate the effectiveness of the proposed progressive transmission scheme, an evaluation of the signaling 
overhead for different types of progressions and codestreams is conducted. The complexity and visual effect of the 
proposed scheme is also reported and discussed. Experiments are conducted with a JPEG 2000 encoded image of 
640x480 with 3 quality layers and 3 resolution levels with LRCP progression, and precinct sizes set as 64x64, 32x32, 
16x16. The total size of the encoded image is 38 KB, and contains 2881 packets. 

4.1 Signaling Overhead 

Table 1 summarizes the broad range of the signaling overheads for different progressive orderings of the input 
codestream and output codestream bursts in terms of number of headers for a sample input image with and without ROI. 
It is observed that for each transmission policy, there exists a progression order of the codestream that yields a minimum 
signaling overhead, which could be determined at the server. In these cases, the overhead of the proposed approach is 
extremely low and offers support for a wide range of progressive transmission policies. It is also noted from the results in 
Table 1 that the presence of an ROI will create more discontinuities in the scan, and hence the need for more headers in 
general. Fig. 6 expands on this point and plots the percentage of signaling overhead in bytes for ROI with varying 
dimensions assuming a quality progression with LRCP codestream. As noted earlier, the current system uses headers that 
are either 12 or 6 bytes each. These results show that although there is some increase in the overhead, the total is kept to 



 
 

 

 

a minimum. It is important to emphasize that the graph in Fig. 6 shows multiple values for one ROI area; this variation in 
the overhead is a result of the ROI position and dimension in a scene, which determines if the scan is broken and a 
header needs to be inserted. For instance, with a PCRL progression there will be increasing overhead for an ROI with 
increasing vertical dimension since it breaks the order in a greater number of scan lines. 

Table 1. Evaluation of signaling overhead in codestream bursts based on number of headers. Results are provided for 
different transmission policies and progressive orderings of the input codestream, as well as with and without ROI. 

No ROI With ROI Transmission 
Policy LRCP RLCP RPCL PCRL CPRL LRCP RLCP RPCL PCRL CPRL 

Quality 3 9 2160 2160 2160 111 117 2160 2160 2160 
Resolution 9 3 3 720 720 117 111 15 720 720 
Component 27 27 720 240 3 135 135 720 240 15 
Position 5 135 135 15 5 15 298 298 34 12 34 
Position 3 81 81 9 3 9 82 82 10 4 10 
Q Horizon 135 135 720 240 15 235 235 720 240 27 
Q ROI Box 495 495 474 158 55 1081 1081 672 2160 121 

Q Center BG 1081 1081 121 41 121 1189 1189 151 51 133 
Q Center 729 729 456 152 81 793 793 465 155 89 
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Fig. 6. Evaluation of signaling overhead in codestream bursts based on number of headers. Results are provided for 

different ROIs with varying dimensions and plotted as a function of total ROI area.  

4.2 Complexity 

In this subsection, the complexity of both the decompose operation at the server, as well as the compose operation at the 
client is considered. The complexity of the transcode operation has been addressed in previously published work7, where 
it has been shown that proposed transcoding techniques are suitable for implementation on very low-cost processors. 

As part of the decompose operation, each header inserted into a burst requires calculating its position or offset and size. 
Thus, the complexity of the algorithm is linear and related to the signaling overhead described above. These calculations 
require an addition/subtraction, and can be performed as each burst is written to the buffer. All bursts can be generated in 
a single scan of the JPC codestream and multiple outputs can be written simultaneously, or a multi-pass approach may be 
used. As a result, the required computation to implement the proposed scheme is minor, thereby making is suitable for 
platforms with limited computation. 

To reconstruct and display the sequence of codestream bursts, the compose operation is applied. Initially, the first burst 
containing the JPC main header is read. Using information in the main header and the added burst headers, empty 
packets are inserted for any missing burst data that has not yet been received. An insertion sort was used in our 
implementation as the burst is read so that this operation would be efficient. This allows the burst data to be received in 
any order; however, only certain orders result in uniquely decodable and compliant images. Every burst can be used to 



 
 

 

 

generate a new JPC stream that can be decoded and displayed. Thus, the decoding time needs to be considered.  Since 
there is no efficient way to add the contribution of one new packet to a decoded image, a new compressed image is 
generated in our system for each incoming burst. However, applications can control the rate at which reconstructed 
codestreams are decoded and displayed. This essentially provides some control on the complexity at the client. 

Table 2 shows example complexity measured on a 2.8 GHz Pentium with 2GB RAM. The same test stream as used in 
previous experiments is considered with the ROI progression shown in Fig. 4, i.e., 5 bursts. The experiment used Kakadu 
Software Version 6 to measure decoding times. The transcode time is optional; as discussed earlier, this step can provide 
a codestream with an optimal ordering for the decompose stage. The time to write the bursts includes both file I/O and 
burst header generation since these steps are performed at the same time. The compose operation includes the time to 
read the bursts and compose a compliant JPEG 2000 codestream. The results clearly indicate that the additional 
decompose and compose steps that have been introduced in this paper incur minor additional computations considering 
the total processing time. A further breakdown of the decoding times for each burst is plotted in Fig. 7. It is shown that 
the decode time for each burst increases approximately linearly with the size of the composed codestream. 

Table 2. Sample breakdown of processing times for encoder and decoder operations. 

Server (encoder) operation 

 1.48 ms Transcode 

 7.02 ms Decompose (average for each burst: 1.40 ms) 

Client (decoder) operation 

 7.28 ms Compose (average for each burst: 1.46 ms) 

 78.5 ms Decode (average for each burst: 15.70 ms) 
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Fig. 7. Sample decode times of the five composed images following the progression order shown in Fig. 4. 

 

4.3 Visual Effect  

To illustrate the visual effect of the system, two progressive ordering configurations are provided. These examples are 
simply intended to demonstrate the visual reconstruction at various stages of the progression, and to also show the ability 
to support mixed progressions. 

Fig. 8 shows the resulting images that are reconstructed at the client using the ROI scan defined in Fig. 4. This is an 
example of a simple progression order based on the position. The resulting decoded images associated with each burst 
are shown in Figs. 8(a)-(e). The total number of bytes corresponding to each burst is also indicated in the caption. From 
these bytes values and an assumed bit-rate for the channel, it is straightforward to calculate the transmission time for 
each burst. The method is easily extended for multiple ROI. 
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(e) 

Fig. 8. Resulting decoded images after each successive burst from the ROI progression shown in Fig. 4. (a) First burst 
corresponding to 1854 total bytes, (b) second burst corresponding to 7568 total bytes, (c) third burst corresponding to 

15620 total bytes, (d) fourth burst corresponding to 23721 total bytes, (e) fifth burst corresponding to 38340 total bytes. 

Fig. 9 shows a progression of mixed position and quality. Fig. 9(a) shows the initially transmitted background of the 
image at a low quality level. Fig. 9(b) adds quality only to the ROI region. Fig. 9(c) then adds quality in the background 
based on the position near the horizon. Finally, Fig. 9(d) adds the remaining quality information which can be done in as 
many or few bursts as needed. Several progression steps have been omitted to save space, but generally speaking the 
technique can produce a wide number of progressive steps. 

 



 
 

 

 

    

(a)   (b)   (c)    (d) 

Fig. 9. Resulting decoded images after each successive burst from an ROI-first quality progression order. (a) first burst 
for background corresponding to 4647 total bytes , (b) second burst for enhanced ROI corresponding to 8191 total bytes, 

(c) third burst for enhanced quality horizon corresponding to 13017 total bytes, (d) final burst for full quality image 
reconstructions corresponding to 38340 total bytes. 

 

5. CONCLUDING REMARKS 

A server-driven progressive image transmission scheme based on JPEG 2000 has been presented for applications that 
employ content-aware transmission techniques and do not require interaction with a client. Based on the transmission 
policy, codestream bursts are generated with inserted header information so that the codestream could be reconstructed 
in a progressive manner at the client side. It has been shown that minimal signaling overhead is required by this scheme, 
and that support for a wide range of progressive transmission policies could be provided. 
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