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Abstract

Progressive transmission of images is an important functionality for communicating high res-
olution images over limited bandwidth networks. By encoding the image data in an accessible
and hierarchical format, the JPEG 2000 standard supports many types of image progessions,
e.f., based on quality, resolution, component and position. This paper considers a progressive
transmission scheme in which codestream ordering and transmission decisions are drive en-
tirely by the server, which is useful for classes of applicaitons that employ image analysis at
the server and perform streaming based on the results of this analysis. The proposed system
aims to minimize signaling overhead and allow for incremental decoding and display with
minimal processing delay. It also aims to fully exploit the various styles of progression that
are enabled by the JPEG 2000 coding format. The performance of our proposed scheme is
reported in terms of signaling overhead, complexity and visual effectiveness.
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ABSTRACT

Progressive transmission of images is an importantibumadity for communicating high resolution images olerited
bandwidth networks. By encoding the image datanraecessible and hierarchical format, the JPEG 2¢@@ard
supports many types of image progressions, e.g., baseplaity, resolution, component and position. Thisgvap
considers a progressive transmission scheme in which ceal@strdering and transmission decisions are driven lgntire
by the server, which is useful for classes of applioatihat employ image analysis at the server and pedtseaming
based on the results of this analysis. The proposensyaims to minimize signaling overhead and allow for
incremental decoding and display with minimal procegdielay. It also aims to fully exploit the various s$ylef
progression that are enabled by the JPEG 2000 cdalingat. The performance of our proposed scheme istexpmn
terms of signaling overhead, complexity and visuaaifeness.
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1. INTRODUCTION

Scalable image compression schemes such as JPEG?28@0 designed so that different qualities, resolutions,
components and positions of the compressed image dmuldasily accessed, transmitted, decoded and displayed.
Progressive transmission of such images refers to tieegs by which more important portions of the coded deg
transmitted first. For instance, progressive qualityctsieved by transmitting coarsely quantized samplebeimage

first, followed by refinements of the image sampM#en network bandwidth is limited, this effectiveljoas the
client to display a lower quality version of the ineag a short amount of time, and then as more codedislaéceived,

the image quality improves over time.

A practical need for progressive transmission existshi@rémote browsing of large images over networks livithied
bandwidth. In this particular application scenario, the desirmteract remotely with the content mandatesnéed for

a protocol between the client and server. The stdimat solution to this problem is JPIP, which is spedifis Part 9 of
the JPEG 2000 stand&rithis solution is essentially a request-response prbtbaballows clients to select portions of
an image for transmission from a server. A key advantdghis approach is the flexibility that is provitdéeo each
client. Specifically, each client makes one or mdielrP GET requests. The requests contain the nantieeoimage
resource and the query fields to request. The fidisribe many possible image features such as lagmlution,
component, precinct, viewing window, session, caclad, etc.

Beyond remote browsing of images, progressive transmissiafso useful in other application environments. For
instance, in our previous work, a scalable videcastieg system for surveillance applications that is thase JPEG
2000 has been developeth this system, a stored JPEG 2000 codestreamrisanded in the compressed-domain using
a low-complexity adaptation technique. Various typestreaming and display modes are supported that Gagita

the inherit scalability offered by JPEG 2000 and imaig&lysis techniques that detect regions-of-intéROI's) such as
pedestrian and face regions. It is important to exsjae that in this system the server has knowledge ofrienigparts

of the scene and is responsible for determining threg@muality to a given region and the appropriegasimission
policy; a system with such properties is referredgserver-driven.

The architecture and design philosophy for a serviged progression image transmission scheme differs fratnaf a
client-driven scheme such as JPIP that operates basemtjoests from each client. While the server-drivepragech
does not offer any level of interaction or feedbbelween client and server, it is suitable for carggiplications and has
some advantages. For one, signaling overhead and aelagxpected to be less in the server-driven apprdé€sh,
since the required processing on the client is sobatly simplified, reduced complexity is achievedn& these
approaches are fundamentally different, a direct coisgrawith JPIP is not included in this paper.



The rest of this paper is organized as follows. In &t section, a brief overview of the server-drivechéecture is
provided. In section 3, a method for generating @desegments of the codestream to achieve the desirgegsive
transmission is elaborated on; the proposed headaafdor encapsulated segments of the codestream idiatsssed.
Experimental results are reported in section 4, andlading remarks are given in section 5.

2. SERVER-DRIVEN ARCHITECTURE

An overview of the proposed progressive image transomssistem is shown in Figure 1. The system includesvarse
that transcodes an input codestream into a transamatéestream. During the transcoding process, the trdas@lso
generates decomposition metadata that indicatesiptdseiinformation about each packet such as ther]Jagsolution,
component and precinct, the number of bytes, asagei a particular packet is part of an ROI. Frdns,tcodestream
bursts are produced according to control data thptements the progressive transmission policy. This codéta is
essentially a mapping of all the JPEG 2000 packetspatticular codestream bursts, and determines the thdér
codestream data is transmitted to the client. Thigrebdata may also be used by the transcoder to o#irttie
progression order of the codestream.
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Fig. 1. Overview of server-driven progressive imigasmission scheme.

The transcoded codestream may be identical to the orpaitered in some way, e.g., to reduce the d#tg crop the
image, or change the progression order. As will lsewdised later, changing the progression order coweryeuseful

in minimizing signaling overhead. It is also notedttliae codestream bursts are non-compliant portionshef
transcoded codestream. Each codestream burst contains muee added headers that provide descriptive infiloma
about the particular codestream burst.

At the client side, the compose operation reordeegeceived codestream bursts and inserts empty pasketeded to
construct a compliant codestream. The compose prieaessoked each time a new codestream burst is retdive
generate a new reconstructed codestream that indluelegew codestream burst. The newly reconstructegst@dm is
then decoded and displayed to give the effectaf@ssive reconstruction.

An illustrative example of this architecture is a digtted surveillance system with remote cameras actnbeservers
and a central office as the client where imageseueived and displayed. In such an application sagnewnsider the
case in which face detection is preformed at eactotermamera using the full image to determine thetilmetaand
presence of the ROI's of the image. The ROI shoulhitially transmitted at a reduced quality, with pregsive quality
improvements of the ROI region over time. The backgioshould then be transmitted next with similar qyalit
progressions over time. To achieve such an orderirtgthét conventional JPIP approach would require libatao first
access to the entire image to determine the ROlitotand the desired ordering of the codestream todmsmitted by
the server to the client, which is not practical.epfatively, the client would need to first receitie ROI information
for the image, which adds round trip delay time.his €xample, the face-first ordering is encoded witlamy response
to a client-server request, and the proposed systerblésta achieve a face-first transmission order thatices
transmission time and the bandwidth used.



3. CODESTREAM BURST GENERATION

This section outlines the specific techniques that udilzed to generate codestream bursts according given
progressive transmission policy. In particular, thacitre of the encapsulated codestream bursts is bledcri

The decompose process sequentially scans throughealhabkets in the codestream. Based on the corresgondi
decompose metadata and the control data, each paassigned to a particular codestream burst. For eatimgous
scan of packets in a given codestream burst (assumsétgr rscan order), a burst header is also written tgildesbis
data. The format of the codestream burst includingttheader and codestream data is illustrated in FRjure

The fields of the burst header are optional, i.d.palsome fields may be omitted if they are not neededao be
predicted by the client. The optimization of thesdd is not discussed at this time. The first field is“Thge”, which
signifies the type of burst header (i.e., long 12eBiprmat or short 6-Byte format used in this workdl afso indicates
any omitted header fields. The “ID” is the L-R-C-Rléx into the codestream data; “Count” contains the baunof
sequential IDs that follow in the codestream data segnaen “Size” is the number of bytes of the codestreata d
segment that follows.

Codestream Burst Format:

Burst Codestream Burst Codestream
Header Data Header Data

Type ID Count Size

(optional) (optional) (optional) (optional)

Fig. 2. Syntax for codestream bursts and burst hesalés f

The decompose process described above is a generdbrsdbr representing any reordering of packetsingghis
method, the order of progressive transmission and giggald be changed, and packets corresponding totecydar
quality layer, resolution level or component couldrbmoved or transmitted at a later time. In this wapgressive
transmission of ROI's could also be achieved.

For example, a position-ordered source can be resdeto quality-layer bursts as shown in Fig. 3tHis figure, the
decompose process is illustrated. The input stream #phaf the figure includes four positions and thyeality layers
for each position as indicated by the different shgsliof the respective packets. The source contairmmelets for
position 0, followed by all packets for position dgsition 2, and position 3. The figure shows the fdiam of each
transmission (burst) layer. In this example, it is shoat after the burst header, the main JPC heattangmitted, and
that burst headers are inserted into the stream wérettes source stream ordering is broken. In this exaraplpackets
associated with quality layer 0 are inserted intdfifisé burst, packets associated with quality layer & the next burst,
and so on. This example is a trivial case for the @aepof explanation. The added headers will expaadstiteam
depending on how many are inserted, which is higblyendent on the ordering of the source input asoletkbordering
of the target output. More complex cases that allowethiprogression orders are described later and thalisign
overhead will also be addressed.
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Fig. 3. Example decompose operation from positiaterd codestream to quality-layer bursts.

To better understand how a particular transmissidicypleads to codeblock bursts, consider the simpé&rgte shown
in Fig. 4. Assume that the codestream has a PCRirgssion order and the policy is to transmit the R Wighest
quality first (labeled as region 1), followed by then-ROI regions (labeled as regions 2-5). In th&gydim, the each
arrowhead represents one added header. In partitafirst codeblock burst would contain 7 burst hesidene for
JPEG 2000’s main header, and 6 others for the continget of packets in each row of the ROI. The cod&bboirsts
corresponding to regions 2 and 3 would contain 6 ésadach, which correspond to the continuous seadfgts in
each row of the respective regions. Finally, the btk bursts corresponding to regions 4 and 5 wouldagorl
header each since all the packets in these regiofd lsewontinuously scanned.
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Fig. 4. Example of a specific scan that orders RO|, fisdiowed by scans for each non-ROI region.



Many additional transmission orders can be achievie ufferent scans. Scans can mix progression ordqresition,
quality, resolution, and component in the same im&gssitions can be defined by one or more ROIs, a motion
weighting based on object movement over a sequeniteagfes, or other scene characteristics such as thbemand
position of detected faces or the position of dististetected by sensors. Some example progressiotsiefly shown in
Fig. 5. For instance, Fig. 5(a) represents an image avdefined ROI region which is transmitted finstprogressive
quality layers until the ROI is completely sent, andntthe background is transmitted in quality layers! tim¢ full
image is complete. Figs. 5(b) and 5(c) repeat the $¥Didfirst progression with resolution layers or comparayers.
Figure 5(d) extends the defined ROIs to divide thegenmto 3 regions (top, middle, bottom) with the di&d ROI
region transmitted first, followed by the other regioFigure 5(e) is a version of the progression predeint Fig. 4,
where the image is divided into 5 regions. Figu@ Epresents a ROI-first, quality horizon transmissiotier, where
the ROI image is first transmitted in quality layeaad then quality layers are added to the backgroegidns along a
horizontal line until the horizon line is completeaxt, quality layers are added for any quality laybet have not been
transmitted surrounding the quality horizon regiotiluhe quality horizon fills the full image. Anoth@rogression is
presented in Figure 5(g) and referred to as QuUA®} Box. In this scheme, the ROI region is transmiite quality
layers until the ROI is complete. Next, all of the e@ning positions that are adjacent to a transmiR€d-region are
sent. This progression builds out from the defined R@ibre until the image has been fully transmitted. Fégb(h) is
the same as 5(g) with the exception that quality wliauzlds out from the geometric center of the imdggure 5(i) is
the same as 5(h) where the first image sent is therfatje at the lowest quality layer. Next, additiogality layers are
sent for the ROI region, and then for the remainiagkiground regions with the order shown in 5(h).
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Fig. 5. Various other progression order scans baséalyen resolution, component and position.

4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed msgeetransmission scheme, an evaluation of the signal
overhead for different types of progressions and stoe@ms is conducted. The complexity and visual efiédhe
proposed scheme is also reported and discussed. Exptyige conducted with a JPEG 2000 encoded image of
640x480 with 3 quality layers and 3 resolution leweith LRCP progression, and precinct sizes set as 686482,
16x16. The total size of the encoded image is 38a€@,contains 2881 packets.

4.1 Signaling Overhead

Table 1 summarizes the broad range of the signalingheads for different progressive orderings of the tinpu
codestream and output codestream bursts in termsmdferuof headers for a sample input image with and witR@.

It is observed that for each transmission policy, tleeists a progression order of the codestream thlatsygeminimum
signaling overhead, which could be determined atstrger. In these cases, the overhead of the propopeskap is
extremely low and offers support for a wide rangerofjpessive transmission policies. It is also noted floarésults in
Table 1 that the presence of an ROI will create nd@seontinuities in the scan, and hence the need éoe tmeaders in
general. Fig. 6 expands on this point and plots thieepéage of signaling overhead in bytes for ROl wigtnying
dimensions assuming a quality progression with LRCRsineam. As noted earlier, the current system usesrsehde
are either 12 or 6 bytes each. These results showlthatigh there is some increase in the overheadothleis kept to



a minimum. It is important to emphasize that the giiagfig. 6 shows multiple values for one ROI aregs thariation in
the overhead is a result of the ROI position and dsima in a scene, which determines if the scan is brekel a
header needs to be inserted. For instance, with a RE&jression there will be increasing overhead foR@n with

increasing vertical dimension since it breaks the drdargreater number of scan lines.

Table 1. Evaluation of signaling overhead in codsstr bursts based on number of headers. Results are préaide
different transmission policies and progressive orderafghe input codestream, as well as with and witRDik

4.2 Complexity
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Fig. 6. Evaluation of signaling overhead in codestréarsts based on number of headers. Results are prdeided
different ROIs with varying dimensions and plotted &srection of total ROI area.
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Transmission No ROI With ROI
Policy LRCP RLCP RPCL PCRL CPRL |LRCP RLCP RPCL PCRL CPRL
Quality 3 9 2160 2160 216 111 117 2160 2160 216
Resolution 9 3 3 720 720 117 111 15 720 720
Component 27 27 720 240 3 135 135 720 240 15
Position 5 135 135 15 5 15 298 298 34 12 34
Position 3 81 81 9 3 9 82 82 10 4 10
Q Horizon 135 135 720 240 15 235 235 720 240 27
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In this subsection, the complexity of both the decasepaperation at the server, as well as the compa=atam at the
client is considered. The complexity of the transcopleration has been addressed in previously publisiekl ywhere
it has been shown that proposed transcoding techmayeesuitable for implementation on very low-costpssors.

As part of the decompose operation, each header idsettea burst requires calculating its position dsetf and size.
Thus, the complexity of the algorithm is linear anidtesd to the signaling overhead described abovesdlealculations
require an addition/subtraction, and can be perfdraseeach burst is written to the buffer. All bursts be generated in
a single scan of the JPC codestream and multiple outputisecwritten simultaneously, or a multi-pass approaai be
used. As a result, the required computation to impterttee proposed scheme is minor, thereby making is smitab
platforms with limited computation.

To reconstruct and display the sequence of codestoessts, the compose operation is applied. Initidheg, first burst
containing the JPC main header is read. Using infoomati the main header and the added burst headepy em
packets are inserted for any missing burst data thatriot yet been received. An insertion sort was useour
implementation as the burst is read so that this operatould be efficient. This allows the burst datdéreceived in
any order; however, only certain orders result imqualy decodable and compliant images. Every bursbeansed to



generate a new JPC stream that can be decodedspialydd. Thus, the decoding time needs to be condide&mce
there is no efficient way to add the contributionoofe new packet to a decoded image, a new compressge is
generated in our system for each incoming burst. Heweapplications can control the rate at which retoicted
codestreams are decoded and displayed. This essept@lides some control on the complexity at the client

Table 2 shows example complexity measured on a 2.8 Razium with 2GB RAM. The same test stream as used in
previous experiments is considered with the ROI progmeshown in Fig. 4, i.e., 5 bursts. The experimesgtduKakadu
Software Version 6 to measure decoding times. Thedaate time is optional; as discussed earlier, this steproaide

a codestream with an optimal ordering for the decomptage. The time to write the bursts includes bothlf@eand
burst header generation since these steps are pedf@iniee same time. The compose operation includesntieeto
read the bursts and compose a compliant JPEG 2008stcedm. The results clearly indicate that the auiuiti
decompose and compose steps that have been introduttes paper incur minor additional computations @ering

the total processing time. A further breakdown ofdeeoding times for each burst is plotted in Figlt % shown that

the decode time for each burst increases approxiynatehbrly with the size of the composed codestream

Table 2. Sample breakdown of processing times foodgrcand decoder operations.

Server (encoder) operation

1.48 ms Transcode

7.02 ms Decompose (average for each burst: 1.40 ms)

Client (decoder) operation

7.28 ms Compose (average for each burst: 1.46 ms)

78.5ms Decode (average for each burst: 15.70 ms)
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Fig. 7. Sample decode times of the five composed éséglowing the progression order shown in Fig. 4.

4.3 Visual Effect

To illustrate the visual effect of the system, twogyessive ordering configurations are provided. Thesanples are
simply intended to demonstrate the visual reconstruetioarious stages of the progression, and to alse gfeability
to support mixed progressions.

Fig. 8 shows the resulting images that are reconsthatt¢he client using the ROI scan defined in FigTHis is an
example of a simple progression order based on thiggmsThe resulting decoded images associated with barst
are shown in Figs. 8(a)-(e). The total number of by@responding to each burst is also indicated idp&on. From
these bytes values and an assumed bit-rate for the ¢harieestraightforward to calculate the transmissione for
each burst. The method is easily extended for muliié



Fig. 8. Resulting decoded images after each succeassisefrom the ROI progression shown in Fig. 4. (e3tHurst
corresponding to 1854 total bytes, (b) second bursesponding to 7568 total bytes, (c) third burst gpoading to
15620 total bytes, (d) fourth burst corresponding3e2A total bytes, (e) fifth burst corresponding t848Btotal bytes.

Fig. 9 shows a progression of mixed position andityudfig. 9(a) shows the initially transmitted baatgnd of the
image at a low quality level. Fig. 9(b) adds quatitly to the ROI region. Fig. 9(c) then adds qualitghe background
based on the position near the horizon. Finally, #{d) adds the remaining quality information which t& done in as
many or few bursts as needed. Several progression sigpsbben omitted to save space, but generally spp#hkn
technique can produce a wide number of progressaps st



Fig. 9. Resulting decoded images after each succeasiseftom an ROI-first quality progression order.f{est burst
for background corresponding to 4647 total byte3 s¢lsond burst for enhanced ROI corresponding to &italbytes,
(c) third burst for enhanced quality horizon corresting to 13017 total bytes, (d) final burst for fgllality image

reconstructions corresponding to 38340 total bytes.

5. CONCLUDING REMARKS

A server-driven progressive image transmission schezesed on JPEG 2000 has been presented for appldtan
employ content-aware transmission techniques and tloeqaire interaction with a client. Based on trengmission
policy, codestream bursts are generated with inségader information so that the codestream could denstructed
in a progressive manner at the client side. It has Isbown that minimal signaling overhead is requirethlsyscheme,
and that support for a wide range of progressive trasssom policies could be provided.
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