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Figure 1: We extract glare components from a single-exposure photo in this high dynamic range scene. Using a 4D analysis of glare inside the
camera, we can emphasize or reduce glare. The photo in the middle shows a person standing against a sunlit window. We extract reflection
glare generated inside lens and manipulate it to synthesize the result shown on the left. On the right we show the glare-reduced component.
Notice that the face is now visible with improved contrast.

Abstract
Glare arises due to multiple scattering of light inside the camera’s
body and lens optics and reduces image contrast. While previous
approaches have analyzed glare in 2D image space, we show that
glare is inherently a 4D ray-space phenomenon. By statistically an-
alyzing the ray-space inside a camera, we can classify and remove
glare artifacts. In ray-space, glare behaves as high frequency noise
and can be reduced by outlier rejection. While such analysis can
be performed by capturing the light field inside the camera, it re-
sults in the loss of spatial resolution. Unlike light field cameras,
we do not need to reversibly encode the spatial structure of the ray-
space, leading to simpler designs. We explore masks for uniform
and non-uniform ray sampling and show a practical solution to an-
alyze the 4D statistics without significantly compromising image
resolution. Although diffuse scattering of the lens introduces 4D
low-frequency glare, we can produce useful solutions in a variety
of common scenarios. Our approach handles photography looking
into the sun and photos taken without a hood, removes the effect
of lens smudges and reduces loss of contrast due to camera body
reflections. We show various applications in contrast enhancement
and glare manipulation.
CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Radiometry
Keywords: Glare, Flare, Light Fields, Computational Photogra-
phy, Masks
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A scene with a bright light source in or near the field of view is
difficult to photograph. Glare reduces contrast and causes image
fog and large area ghosts. Glare is unavoidable: it disrupts ev-
ery optical system, including the human eye. Glare can be broadly
classified as due to reflection (Fresnel reflection at lens surfaces)
and scattering (diffusion in lenses). However, the two are often in-
distinguishable in the captured 2D photo. In this paper, we analyze
glare formation in 4D ray-space. Although glare appears as an ad-
ditive low-frequency bias in 2D, we show that a significant part of
the glare is high frequency noise in 4D ray-space. The key result is
that we can remove reflection glare by means of outlier rejection in
ray-space and also re-synthesize novel glare effects by manipulat-
ing those components.

Our approach involves a minor, inexpensive modification to the
camera (Figure 2). We insert a high frequency mask near the cam-
era sensor to act as a sieve that separate spurious rays in ray-space.
As we do not explicitly build a light field camera that reversibly
encodes the ray-space, the proposed modification leads to simple
design choices and requires less precision and minimal calibration.
For example, we show glare reduction by non-uniform ray sam-
pling using a pinhole array mask with randomly perturbed pinhole
locations.

The procedure is easier to explain using the terminology of a tra-
ditional light field camera. A light field camera records the spatial
and angular variations of rays incident at each location on the sen-
sor. For an un-occluded Lambertian scene patch in sharp focus, the
incoming rays have no angular variations. Reflection glare causes
a bright light source in the scene to make a stray contribution to the
sensor, but only along a specific angular direction (Figure 3). We
eliminate this outlier in the angular dimension and its impact on
the recorded luminance of the scene patch. These outliers appear
as high frequency noise in 4D although the projection of ray-space
onto a 2D sensor creates an apparent low-frequency glare.

Traditional methods use a 2D deconvolution approach to reduce
glare in 2D post-processing. However, deconvolution fails due to
limited quantization where glare overwhelms the signal. Our out-
lier rejection approach can handle reflection glare as well as certain
types of scattering glare. We reduce the reflection glare sufficiently
to permit good results by deconvolution methods.

We sample the ray-space as in a traditional light-field camera. In
some scenarios, we can ignore the spatial arrangement of the sub-
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Figure 2: Our hand-held prototype implementation using a medium
format camera and a printed film transparency (mask) placed on top
of the sensor. Section 6 describes further implementation details.

aperture views recorded on the sensor to remove outliers due to
glare. In others, we exploit coherence in neighboring sub-aperture
views for clustering the spurious rays due to glare in 4D. To the
best of our knowledge, our method is the first attempt to capture
and analyze glare in ray-space.

1.1. Contributions

We present a set of techniques to analyze glare by capturing a subset
of ray-space while minimizing resolution reduction. Note that our
goal is not light field capture but glare reduction and re-synthesis in
2D. Specific technical contributions are as follows

• We explain that glare is a higher dimensional phenomenon
and clarify how it manifests as a low frequency contrast re-
duction in photographs.

• We show a method to decompose glare spread function into
reflection (outlier), scattering (bias), body and non-glare com-
ponents.

• We show a practical method to capture and reduce glare in a
single shot photo with a portable handheld camera.

• We explore tradeoffs between loss of light, spatial resolution
and glare detection by uniform and non-uniform 4D ray sam-
pling using masks.

• We apply these ideas to reduce and manipulate glare in a va-
riety of settings. Our approach handles photography looking
into the sun and photos taken without a hood, removes the
effect of dust on the lens and reduces loss of contrast due to
camera body reflections.

1.2. Benefits and Limitations

We believe that ours is the first method to address glare reduction
in a single exposure photo. We are inspired by Talvala et al. [2007]
who were first to devise an active method. Unlike light field capture
methods, we can recover full resolution information for in-focus
parts of the image in several cases. In addition, our method is ide-
ally suited for single-exposure capture of scenes with extremely
high dynamic range (HDR). Even without multi-exposure HDR
imaging, we can ensure that saturating glare does not overwhelm
the scene signal. However, our approach does suffer from several
limitations. Our method can handle many types of glare, but not all
of them.

• Our approach cannot handle extended area light sources in
a general way because the resulting glare has low frequency
components in angular dimensions.

• Glare due to large area scattering (such as foggy or dusty
lens, low-quality camera body interior) cannot be reduced.
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Figure 3: The key idea is based on the observation that reflection
glare manifests as outliers in angular samples of ray-space. (Left)
A bright pixel imaged at i (blue) contributes a stray reflected ray
(purple) to the pixel j (orange). However, among the cone of rays
arriving at j, only one ray is spurious, whose contribution can be
rejected as an outlier. (Right) Analyzing glare in ray-space and
intensity image. Rays due to blue scene patch maps to non-adjacent
rays (purple) due to lens inter-reflections, as well as contribute to
neighboring spatial samples (scatter glare) due to lens acting as a
mild diffuser (cyan).

• We do not remove diffraction effects due to finite aperture
and aperture diaphragm blades, commonly noticed as streaks
in photographs. Diffraction is a wave-based phenomenon and
cannot be analyzed with our geometric optic approach. In
addition, any sensor-related issues such as blooming [Apogee
Instruments ] or purple-fringing due to sensor pixel micro-
lenses are not addressed.

• We can only address glare created by camera optics and body
and not glare due to external elements like haze.

In addition, the proposed method has several disadvantages.

• Adding a mask (or a lenslet) may introduce its own glare and
diffraction.

• We reduce the resolution of the sensed image to some extent
although we can maintain resolution of in-focus image por-
tions not affected by glare.

• We block significant amount of light necessitating longer ex-
posure time for mask based designs.

• We can handle a glare-inducing light source to appear any-
where in the scene (even outside the field of view), but we
assume that the scene of interest is within the depth of field.

1.3 Related Work

Measuring and Removing Glare from Images: ISO standard
9358 [International Organization For Standardization 1994] de-
scribes the measurement procedure and defines veiling glare index
as the ratio of luminance in the center of a black target to the lumi-
nance of the surrounding large area uniform illuminant. McCann
& Rizzi [2007] have measured glare in multiexposure HDR imag-
ing. Bitlis et al. [2007] have built a parametric model for stray
light effects in digital cameras. In computer graphics, 4D to 8D
transport tensors between the light source and sensor have been de-
veloped [Sen et al. 2005; Garg et al. 2006] for relighting and view
interpolation. These methods can potentially be used to character-
ize glare. But they are not applicable for reducing or decomposing
glare on the camera image sensor. To remove glare, software meth-
ods post-process an image that already contains glare via deconvo-
lution [Reinhard et al. 2006]. Similar computational methods are
used in X-ray imaging [Seibert et al. 1985].

Glare Prevention in Optics: High-end lenses use novel optical
design and materials to reduce glare. Lens-makers’ strategies in-
clude coating and lens shaping. The 4% to 8% transmission loss



due to reflection at each glass-air interface means that a 5 to 10
element lens can lose half the incident light and instead create sig-
nificant reflection glare. Anti-reflective coating films make use of
the light-wave interference effect. Vacuum vapor deposition coats
the lens with a 1/4 wavelength thin film using a

√
n refractive in-

dex substance, where n is the lens glass index. Multilayered coating
can bring down the reflection to 0.1%. But this is not sufficient to
deal with light sources which are 4+ orders of magnitude brighter
than other scene elements. Ancillary optical elements such as filters
also increase the possibility of flare effects. Digital camera sensors
are more retro-reflective than film. Meniscus lenses with curved
profile act as a spherical protective glass in front of the lens assem-
bly and prevent unwanted focused reflections from the sensor. The
curved profile defocus creates large area flare rather than ghosts.
Lens makers use an electrostatic flocking process to directly ap-
ply an extremely fine pile to surfaces requiring an anti-reflection
finish. The pile stands perpendicular to the wall surfaces acting as
Venetian blinds: an effective technique for lenses with long barrel
sections. Structural techniques include light blocking grooves and
knife edges in lenses to reduce the reflection surface area of lens
ends. Hoods or other shading devices are recommended for block-
ing undesired light outside the picture area.

Comparison with Other Active Approaches: Our work is mo-
tivated by the recent work of Talvala et al. [2007]. Our approach
follows their lead to prevent glare-producing light from reaching
the sensor pixels. As far as we know, theirs is the first and per-
haps the only pre-capture method. They used a new direct-indirect
separation of lens transport by selectively blocking glare-producing
light using a structured occlusion mask. Our approach differs in
terms of setup, applications, benefits and resynthesis. Their setup
requires a large number of photos. A large sized mask needs to be
displaced on an x − y rig and the mask needs to be in focus and
close to the scene. The size and focus requirements make it diffi-
cult to photograph a scene several meters away from the camera,
such as sunlit buildings. In contrast, ours is a handheld setup that
can be used like a traditional camera. In terms of applications, our
method is suited for isolated bright narrow area light sources (e.g.
bright sun or isolated room lights) while their method is best suited
for extended area sources and cannot handle point and small area
sources. Our method is tolerant of pixel saturation due to glare and
hence can work without multi-exposure HDR capture [Debevec and
Malik 1997]. We do not require geometric calibration in the scene
for different focus settings and it is not necessary to decrease the
aperture to increase the depth of field. In terms of analysis and
synthesis, we can partition glare into different types providing easy
resynthesis opportunities. As mentioned, the disadvantage is that
our method does not work well for extended area light sources and
it does not directly address situations where lenses are highly scat-
tering. Both methods fail to recover high frequency details near a
sharp luminance boundary.

2. Understanding Glare in Ray-Space

We first analyze the sources of glare in ray-space and explain their
impact in image space.

2.1. Sources of Glare: Reflection versus Scattering

Reflection glare appears as parasitic images when the sun or another
strong light source causes a complex series of reflections among
the lens surfaces. Fresnel reflection is the portion of incident light
reflected at a discrete interface between two media having different
refractive indices (4% to 8% for glass-air interface). For a lens with
n surfaces (i.e., glass air interfaces due to n/2 lens elements), the
number of parasitic ghost images equals n(n − 1)/2 [Ray 2002].
Ghosts appear as clearly defined aperture-shaped reflections in a

position symmetrically opposite the light source. Flare appears as
more uniform fogging of a large image area. Flare is most notice-
able for large aperture, wider field of view, shorter wavelength and
near the center of the image [Ray 2002]. The definition and dis-
tinction between ghost and flare varies in the literature. Glare is
additionally enhanced by filters, because they have flat profiles per-
pendicular to the optical axis. Reducing aperture size does not nec-
essarily reduce glare because the aperture diaphragm can in fact
contribute to reflections. As an extreme example, imagine an aper-
ture surface made of a mirror or some diffuse reflector.

Scattering glare is created by diffusion at the lenses. The optical el-
ements act as mild diffusers. However, the diffusion angular profile
is very narrow and scattering glare falls off very quickly away from
the image of a light source. Because reflection glare and scatter-
ing glare overlap in a 2D image, they are difficult to automatically
identify, classify, and remove. We show that in 4D the distinction
between the desired image and the two types of glare is clearer, and
that adding a mask to the camera makes image and glare computa-
tionally separable.

2.2. Glare Ray Spread Function

The 2D glare point spread function (GPSF) describes the amount
of glare intensity created by a point light source as a function of the
distance from the center of its ideal image. However, this charac-
terization is restrictive. Rays from the point light source reaching
all parts of the lens are assumed to have equal radiance. This GPSF
also combines multiple glare effects. We can re-define glare using
4D rays rather than 2D pixels. Glare is a result of the mapping
of a given light ray to one or more stray rays due to camera op-
tics. We can define a glare ray spread function (GRSF) as a 4D
function that describes how much radiance from a single incident
ray transfers to every other ray. The GRSF is then composed of
reflection-GRSF, R, and the scattering-GRSF, S. Using the two-
plane parametrization of the incident light field L(x, y, u, v) on the
sensor, where (x, y) denotes the sensor plane and (u, v) denotes the
main lens aperture plane, the light field L inside the camera can be
written as

L = L0 ∗ α(δ + R + S), (1)

where L0 is the original scene light field and α is a normalization
constant.

2.3. Higher Dimensional Effects of Glare

The glare spread in higher dimensional ray-space impacts the 2D
image intensities after angular integration on the sensor. For the
sake of explanation, we will consider a 1D sensor and a 2D light
field L(x, u) as shown in Figure 4. Here the vertical axis represents
the aperture coordinate (u) and the horizontal axis represents the
sensor pixel coordinates (x). A point light source (blue patch) is in
sharp focus at the sensor pixel i, and hence all entries of L(i, ·) are
equal. Due to the reflection glare, the blue patch maps to a range of
rays indicated by the purple lines. The set of rays focused at i also
create scattering glare spreading in x-direction, shown in cyan. The
rays can also bounce off the camera body (body glare) as shown in
green. A different dimmer scene point sharply imaged at pixel j, is
shown in orange.

The 1D image formed at the sensor is obtained by the integration
of the 2D light field (projection onto the x-axis). Figure 4 com-
pares the image formed by a traditional sensor with that formed by
our approach in which a mask is placed in front of the sensor. No-
tice that luminance values add up sharply at pixel i, but they also
contribute to glare shown in purple, cyan and green regions. High
frequency reflection glare (purple line) in ray-space emerges as a
low frequency profile (purple region) in the 1D image space for a
traditional camera. The scattering glare is large near the pixel i but
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Figure 4: Comparison of glare formation in ray-space and sensor
image for a traditional camera and our mask based camera. A fo-
cused blue scene patch could contribute to scattering (cyan), reflec-
tion (purple) and body glare (green). Since the sensor image is a
projection of the ray-space along angular dimensions, the sum of
these components creates a low frequency glare for a traditional
camera. However, by inserting a high frequency occluder (gray),
in front of the sensor, these components are converted into a high
frequency 2D pattern and can be separated.

drops off rapidly. The pixel j is simply overwhelmed by the re-
maining reflection glare. It is difficult to distinguish between the
contribution of the reflection or the scattering glare. However, by
inserting a high frequency occluder (mask) in front of the sensor,
glare in ray-space appears as a high frequency pattern in the cap-
tured sensor image. Thus, we can reduce the effects of glare by
outlier rejection. Figure 5 shows the photo of a projector in a dark
room captured with a pinhole mask inside the camera. Note that the
glare appears as high frequency noise in ray-space.

3. Reducing Glare

In the last section, we showed that glare is a 4D phenomenon. In
this section, we first describe a basic algorithm for reducing glare.
We then outline various design choices and tradeoffs in using masks
for ray sampling. We emphasize that it is not necessary to recon-
struct the scene light field but by appropriate ray sampling, glare
can be reduced.

3.1. A Basic Algorithm

One approach to reduce glare is to explicitly capture and reconstruct
the light field using light field cameras based on lenslets [Adelson
and Wang 1992; Ng et al. 2005; Levoy et al. 2006; Hanrahan and
Ng 2006] or sum-of-cosines masks [Veeraraghavan et al. 2007].
Methods that capture the light field outside the camera, using a
camera array [Levoy and Hanrahan 1996; Gortler et al. 1996] or
lens-array [Georgiev et al. 2006] are not applicable here. In that
case, the algorithm can be summarized as follows:

• Capture a 2D high dynamic range photo with a portable light
field camera.

• Reconstruct the corresponding 4D light field L(x, y, u, v).

• For each spatial sample of the light field, use robust statistics
to eliminate the outlier values among its corresponding angu-
lar samples.

u

u
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x

Captured Photo
Slice at fixed v, y

x

Figure 5: Glare visualization. (Top left) Captured photo of a projec-
tor in a dark room using uniform pinhole array mask. The captured
photo can be treated as 4D ray-space samples L(x, y, u, v). (Bot-
tom Left) Close up showing that glare appears as high frequency
noise in ray-space. Notice the coherence in the position of glare
among neighboring spatial samples of L. (Right) A slice of 4D ray-
space for fixed y and v (through the center of the captured photo).

• Reconstruct a low resolution 2D image i(x, y) by averaging
the remaining angular samples for each spatial sample.

For each spatial sample (x, y), we can also use operators based
on order statistics such as min or median to eliminate the out-
lier angular samples: i(x, y) = minu,v L(x, y, u, v) or i(x, y) =
medianu,vL(x, y, u, v). Figure 1 shows an example where we av-
erage the bottom 20% of the angular samples for each spatial sam-
ple to reduce the glare. Let us refer to this image as igr . For fair
comparison (Figure 1(middle)), we take the average of all the angu-
lar samples for each spatial sample (without removing the outliers)
as this would be equivalent to capturing an image with a traditional
low resolution 2D camera. The glare component can be extracted as
glare(x, y) = imax(x, y)−igr(x, y). The glare enhanced image
can be obtained by modifying the glare component and adding it to
the glare reduced component (Figure 1(left)). This type of analysis
is similar to Nayar et al. [2006] and Vaish et al. [2006].

This strategy works well when the glare outliers are well below
50%. The drawback with this approach is that all light field cam-
eras suffer loss in spatial resolution to achieve angular sampling and
computing the outliers could be non-trivial in some cases. Next, we
discuss our pinhole array mask based designs that exploit tradeoffs
between loss of light, resolution and outlier rejection.

3.2. Design Choices

We choose a pinhole array mask due to the following considera-
tions.

HDR Capture: In a pinhole array mask based design (or a lenslet
array design), ignoring blooming, saturation of one pixel does not
impact neighboring pixels. Sum-of-cosines mask-based methods
sample linear combinations of rays and hence assume a linear re-
sponse. Under/over exposure makes the linear inversion and de-
coding unstable. In addition, the decoding process amplifies noise.
Thus, a strength of our pinhole array based design is that it could
be used without HDR capture, an advantage in outdoor scenarios.

Ray Sampling versus Light Field Reconstruction: All pre-
viously described light field cameras are targeted towards explic-
itly reconstructing the scene light field. Our goal is to obtain a
glare reduced 2D image as opposed to reversibly re-bin or encode
the projection of 4D ray-space onto the 2D sensor. Pinhole array
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Figure 6: Recovering a full resolution image. (Left) Without mask, three scene patches create a focused image. With mask, for scene parts in
focus, at least a subset of rays reach the sensor, creating the same (but less bright) image of the three scene patches. (Right) By dividing the
captured photo with a calibration photo, we can recover the scene parts in focus at full resolution. Out of focus scene parts, however, exhibit
aliasing as shown by the resolution chart in the back.

masks allow us to explore non-uniform ray sampling (using ran-
domized pinhole array masks) and larger aperture size (which leads
to aliased light fields). Non-uniform ray sampling also provides
visually pleasing results as opposed to uniform ray sampling.

Loss of Spatial Resolution: The biggest win in using masks is
that we can avoid the loss of spatial resolution common to all light
field cameras. We attempt to get a full resolution image for the in-
focus parts of the captured photo. In our setup, we keep the scene
in sharp focus on the sensor as a photographer would do, compared
to Ng et al. [2005] where the scene is focused on the lenslet array.

Consider a scene point in focus at the sensor. The cone of rays
emerging from the scene point are refracted through the lens and
fall on a single sensor pixel. Introducing a mask simply blocks
some of these rays without changing the pixel position. As long as
a part of any sub-aperture contributes rays to this pixel, the sensor
can record it. Thus, for in-focus scene parts, the captured image
is dimmer but full spatial resolution can be recovered. However,
for out of focus scene parts, every neighboring scene point is cap-
tured by a slightly different center of projection. Thus, out of focus
parts exhibit artifacts. Figure 6 shows proof of concept on in-focus
and out of focus resolution charts. Note that the out of focus res-
olution chart shows a stair-step like aliasing effect, but for the in-
focus chart, full resolution can be obtained. In practice, one needs
to divide the captured photo with a calibration photo of a uniform
Lambertian light box to account for variations in the mask.

As stated earlier, our assumption is that the entire scene lies within
the depth of field of the lens. Thus, for the purpose of removing
glare, we can avoid the loss of spatial resolution. However, when
the number of glare rays is ‘sufficiently large’ (as described later),
we revert back to a low resolution 2D output.

4. Exploring Masks for Glare Reduction

In this section, we describe several approaches for glare reduction
using uniform and randomized pinhole array masks in the camera.
We first outline the terminology (see Figure 7) for describing the
subsequent approaches. We discretize the captured ray-space into
a finite number of ‘sub-aperture’ bins denoted by (u, v) and a fi-
nite number of sensor pixels (x, y). We will refer the union of the
rays passing through a given sub-aperture and contributing a single
sensor pixel as one ‘ray’ of the system. A ‘tile’ refers to the maxi-
mum size of the non-overlapping aperture image formed by a single
pinhole. The size of the tile depends on the distance of the mask
from the sensor and restricts the maximum aperture size allowing
non-overlapping aperture images on the sensor. In our setup, this
maximum aperture size corresponds to f/8. Smaller f/# (larger
aperture) will lead to aliased light fields but are useful for glare re-
duction as shown later. The tiles are uniform for uniform pinhole
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Figure 7: Capturing a photo by placing a pinhole mask near the
sensor. ‘Tile’ refers to the maximum size of the non-overlapping
aperture image formed by a single pinhole. For small apertures
(utop ↔ ubottom ), the image of the aperture is restricted to a ‘spot’
within the tile. (Middle) An orange colored vertically striped object
is focused on the sensor. The purple dot indicates an outlier corre-
sponding to the reflection glare. (Right) Scatter-glare (cyan) creates
bias making the orange colored scene object look more greenish.
Body glare (green dot) is contributed from a ray outside the view
cone towards the aperture.

mask and the notion of a tile remains the same for the randomized
pinhole mask, while being non-uniform in spacing. Depending on
the f/# of the main lens, the image under each pinhole may not
cover the entire tile and is referred to as an aperture-shaped ‘spot’.
The image created by a sub-aperture is referred to as a ‘sub-view’.
Figure 7 also shows the representation of a spot under a pinhole for
different types of glare. Reflection glare appears as a bright outlier
and scatter glare appears as a bias, reducing contrast. For larger
f/# (smaller lens aperture), body glare appears outside the spot.
Reflection glare is caused by stray rays and can be removed using
outlier analysis. Scattering glare adds a bias which is handled by de-
convolution after removing the reflection glare. Body glare formed
by scattering of rays after the last lens element appears outside the
spot and can be removed by using a smaller aperture.

Our approach can also handle saturation. In a traditional camera,
glare contributes to all the pixels in a neighborhood potentially sat-
urating or biasing all of them. In our camera, reflection glare con-
tributes to a few pixels in a tile. If those pixels are saturated, their
intensity is clamped at the maximum without affecting the neigh-
bors. By using a non-linear response camera, such as a logarithmic
sensing camera, one might achieve even better noise and quantiza-
tion behavior despite saturating glare.

4.1. 2D Image Analysis

We first describe a method that works entirely in the 2D image do-
main without any ray-space analysis. This approach is useful for
both uniform and non-uniform pinhole array masks and can mini-
mize the loss of resolution if the reflection glare contributes to less
than 50% of the pixels in each spot. Figure 8 shows an example,
where we captured a photo with a randomized pinhole array mask
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Figure 8: Glare removal without loss of spatial resolution. We captured the photo shown on the left using a randomized pinhole array mask in
the camera at f/4. A projector on the top-right corner in the scene (not shown) causes glare. By dividing the captured photo with a calibration
photo, the mask effects are removed. Note, however, that the mask makes glare appear as high frequency 2D noise. A glare outlier stencil is
obtained by comparing the ratio image with its median filtered output. The glare is reduced by interpolating the pixels in outlier stencil from
neighboring pixels. All processing is done in 2D image domain.

at f/4. The randomized pinhole array mask is obtained by perturb-
ing the location of each pinhole randomly compared to a uniform
grid. A projector in top-right corner of the scene causes reflection
glare. We first divide the captured photo with the photo of a uniform
intensity Lambertian lightbox (referred to as the calibration photo).
Any brightness variation in overlapping spots is thus normalized.
Then we use a tile-sized moving window and compute the median
at every pixel. If the current pixel value is brighter and differs from
the tile median by some threshold, we mark it for removal as an
outlier. For the removed pixels, we interpolate to fill in the values
from neighboring pixels and recover a full resolution glare reduced
image. Glare free pixels remain untouched and the resolution is
decreased only by the percentage of glare pixels removed.

Note that a larger aperture (f/4) is useful in this case, as it leads
to overlapping spots, which avoid issues of dark pixels at the cor-
ner of the tiles if the aperture is small. A larger aperture makes the
calibration photo non-zero at all pixels, ensuring that the division
by the calibration photo is stable. Also, such large apertures would
have lead to aliasing if a light field was recovered from the captured
photo. Thus, appropriate ray sampling (even non-uniform) is suffi-
cient for glare reduction without explicit light field reconstruction.
An additional advantage of using a randomized pinhole array is that
visually pleasing results are obtained after division by the calibra-
tion photo. In case of a uniform pinhole array, such a division leads
to visually strong vertical and horizontal grid like pattern due to
uniformity of tiles.

4.2. 4D Ray-Space Analysis

The 2D processing fails when a single tile contains multiple outlier
elements covering more than 50% of the tile. Flare and ghosts have
a characteristic structure in 4D because they are created by highly
symmetric elements of optics, resulting in high coherence among
glare rays in 4D ray-space. We exploit this spatio-angular coher-
ence of glare in neighboring tiles for better segmentation of glare
rays. Figure 9 shows an example. Note that since we utilize the
spatial structure of tiles, this analysis only applies to uniform ray
sampling.

For 4D ray-space analysis, we treat the captured photo as a 4D lat-
tice L(x, y, u, v). The captured photo may not correspond to an
un-aliased light field due to the large aperture size (small f/#) of
the main lens. Each tile at (x, y) corresponds to the angular samples
of L(x, y, u, v). We perform a 4D segmentation via a 2-way clus-
tering to partition the 4D ray-space into glare and non-glare parts
as follows.

• Create a 4D graph from L(x, y, u, v). The nodes of the graph

u

v

x

y

Captured Photo Glare Outliers

Result

Figure 9: Glare reduction using 4D ray-space analysis. Top left
shows captured photo with a uniform pinhole array at f/8. After
4D clustering, we mark the 4D samples corresponding to one clus-
ter as white (glare) and other cluster as black (glare-free). Note that
since each 4D sample corresponds to a 2D pixel, we can visualize
the segmentation in 2D as shown in top right. The aperture rings
are clearly segmented although they are not seen strongly in the
captured photo. We recover a low resolution result by averaging
non-glare pixels in each tile.

correspond to the samples of L(x, y, u, v). Each node (except
on the boundary) is connected to 34 − 1 = 80 neighbors1.

• If nodes i and j are connected, assign edge weights wij =
exp(−(L(xi, yi, ui, vi) − L(xj , yj , uj , vj))

2)/(2σ2)),
where σ is a constant.

• Assign a few bright pixels as source nodes of the graph
and perform 2-way clustering using a maxflow (mincut)
algorithm [Boykov and Kolmogorov 2004] to segment
L(x, y, u, v) into glare and non-glare components2.

• Since each pixel in the captured 2D photo corresponds to a
sample in L(x, y, u, v), mark the glare pixels in 2D photo.

The 4D analysis allows us to separate the glare pixels in 2D photo.
These could be interpolated as before to recover glare reduced out-

1This is similar to 2D planar graphs where each node is connected to
32 − 1 = 8 neighbors.

2We modified the graph cut software from
http://www.cs.cornell.edu/People/vnk/software.html.



Figure 10: Reflection glare in regions far from the light source. (Left) Captured photo using uniform pinhole array at f/8. (Middle) Notice
the dominance of outliers indicating reflection glare even at regions away from the light source. (Right) Glare reduced low resolution result
showing improved contrast, especially in shadows.
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Figure 11: Contrast improvement. (Top Left) Photo of glare ob-
scured contrast charts with inset shown in bottom left (uniform pin-
hole array at f/8). (Right) Improvement in contrast after outlier
rejection (top) and further reduction in fog via 2D deconvolution
(bottom). The plots show the luminance profile along the contrast
chart, before (red) and after (green) 2D deconvolution.

put. However, when the number of glare pixels are large, we obtain
a more reliable low resolution result as follows. For each tile, we
ignore the glare pixels and simply average the remaining pixels to
recover one intensity value per tile. The resolution is thus reduced
by the number of angular samples as in a traditional light field cap-
ture.

4.3 Reducing Scattering Glare

Glare depends highly on the position of the light source and mod-
eling it as a 2D point spread function is difficult. Thus, convolution
based techniques fail in the presence of strong reflection glare. But
after removing the outliers corresponding to the reflection glare, the
remaining low frequency scattering glare behaves in a more pre-
dictable way. Similar to [Talvala et al. 2007], we model the scatter
glare PSF in 2D as a mixture of 2D Gaussians and deconvolve the
reflection glare reduced output to remove the scattering glare. Fig-
ure 11 shows an example.

5. Applications

We show several examples of contrast enhancement including out-
door scenes, strong aperture ghosts, and multiple lights in the scene.

Contrast Enhancement: The sunlit scene in Figure 1 spans a
wide dynamic range. We took just one photo with uniform pin-
hole array at f/8. Parts of the scene, such as the sun and the sky
are saturated. Although this example involves a relatively extended
light source, we note that the majority of glare on the indoor por-
tions of the image is reflection glare. Another example is shown
in Figure 10. However, the visible aperture rings overlap so that
several tiles have more than 50% glare values. We use the basic
algorithm explained in Section 3.1 to recover low resolution glare
reduced output.

Lens Smudges: Dust specks, fingerprints and water droplets on
lenses or filters introduce unwanted diffusion and/or refraction.
This causes a localized reduction in contrast, appearing as a low fre-
quency smudge. If the distorting element is limited to a narrow area
of the lens or filter, we can eliminate its effect via ray-space anal-
ysis. There are no bright lights sources or saturation, in this case.
An example is shown in Figure 12. Imagine replacing the distort-
ing element by an opaque black surface. Given the finite aperture,
blocking a part of the lens will only nullify certain rays making the
image dimmer. We want to eliminate those rays in software so that
we can remove the artifact and recover a slightly dimmer image.
This elimination is a blind estimation problem because we do not
have information to model the distorting element. We assume that
the distorting element (on the lens) is highly out of focus while the
scene is in sharp focus. We compute the sub-aperture views and
reconstruct a low resolution image by choosing pixels from views
that maintain the highest spatial contrast in a small neighborhood.

Body Glare: Body glare is caused by reflections occurring in the
space between the last lens element and the sensor. Rays from ob-
jects outside the field of view, rays blocked by the anti-reflective
coating or aperture eventually end up on the camera body. High-
end cameras use baffles to prevent their impact. To demonstrate
body glare effects, we intentionally placed a diffusing reflector in-
side the lens and used a small aperture (f/11) so that the rays due
to body glare fall outside the spots. Figure 13 shows an example,
where the red cloth causes glare on the green region on the left as
evident by the close up of tiles. To reduce body glare, we eliminate
pixels outside the spot to remove the contribution of red cloth to the
green region. Our method is also applicable to more ad hoc imag-
ing arrangements where it may be difficult to create high quality
baffles to attenuate stray light. By giving up a small percentage of
resolution, the stray light can be trapped outside the spot.
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Figure 12: A water drop on the lens creates localized smudging.
(Top Left) Rays passing through a distorter at e diffuses or refracts
light in multiple directions. (Top Right) A water drop on the lens.
(Bottom Left) The color chart before and after glare removal.
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Figure 13: Reducing body glare. (Left) Photo of reddish wash on
green cloth before and after outlier removal. (Top Right) Insets
show the red values outside the spots, which we remove. (Bottom
Right) The intensity profile of contrast chart shows dramatic im-
provement.

Rendering and Synthesis: Photographers intentionally use
glare for artistic effects and to create illusion of bright light sources.
Glare is rendered via software image filters or raytracing to cre-
ate visually compelling flare effects [Knoll Light Factory ; Kaki-
moto et al. 2005; Spencer et al. 1995]. But, at the capture time,
photographers do not have much control over the glare formation.
In addition, glare is difficult to examine through optical or digital
viewfinder. We use the decomposed glare components in several
interesting and physically realistic ways for digital glare manipu-
lation. For example, the rejected outlier component in a tile pro-
vides an estimate of reflection glare. In Figure 1, we show enhanced
glare. We also easily change the color of glare. From a single pho-
tograph, we create animations of an apparently moving light source
generating dramatic flare (video).

6. Analysis and Implementation

Using a probabilistic analysis, we can analyze the number of pixels
in a tile and the pinhole spacing for removing glare as outliers. For
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Figure 14: (Left) Plot showing the probability that at least 50%
of the sensor pixels are not corrupted by glare as a function of the
number of pixels within each tile for β = 0.6. (Right) Multiple pin-
holes contribute to a single pixel if the spacing between the pinholes
is reduced.

uniform sampling, let us assume that the probability that a pixel is
not affected by glare is β. Let M be the number of pixels in a tile.
Then the probability that r out of M pixels in a tile are not affected
by glare is given by

(
M
r

)
βr(1 − β)(M−r). For outlier detection to

work well, r ≥ M/2. Thus, the probability that at least 50% of
pixels are not affected by glare is given by

p(M) =

r=M∑

r=M/2

(
M

r

)
βr(1− β)(M−r). (2)

Figure 14 shows the plot of p(M) versus M assuming β = 0.6. For
reasonable fidelity (p(M) = 0.98), we need ≈ 95 pixels within
each tile. In our implementation, we used a tile size of 11 × 11,
accounting for modeling errors.

As discussed earlier, we also used non-uniform sampling and larger
apertures so that the tiles overlap. This means that compared to
uniform sampling, here every pixel could receive contribution from
more than one glare ray. Let us analyze how much overlap can be
allowed. Let α be the probability that a ray is affected by glare and
N be the average number of rays contributing to a pixel. Then the
probability that a pixel does not receive contribution from any glare
affected rays is (1 − α)N . For this to be greater than β, we could
increase N to log(β)/ log(1−α). Assuming a 5% probability of a
ray getting affected by glare (α = 0.05), N could be increased to
9.959. Thus, in 2D, on an average the spacing between the pinholes
could be reduced by

√
N = 3.16 times, or the size of the aperture

could be increased by the same factor keeping the same spacing.

Implementation: We used a Mamiya 645ZD medium format dig-
ital camera with a 22 mega-pixel sensor digital back having a
36 × 48mm2 Dalsa CCD imaging sensor. The sensor resolution
is 5344 × 4008 pixels. A 1.2mm thick glass protects the sen-
sor. We printed a pinhole array mask of the same size and simply
dropped it on top of the sensor protective glass. We used an addi-
tional glass piece to push and flatten the mask to hold it in place.
We used 50mm, 80mm and 210mm fixed focal length lenses. The
maximum aperture size which avoids the overlap between tiles is
f/8, but we used larger apertures as explained earlier. Figure 2
shows the medium format camera, lens, mask and digital back. We
printed the transparency mask at a resolution of 25µm with pinhole
size 25µm× 25µm. For the randomized mask, the location of the
pinholes were uniformly distributed within a range of 50µm. We
obtain 242×182 tiles and 22×22 angular samples per tile. Instead
of Bayer interpolation, we down-sampled the raw Bayer pattern by
two to obtain a color image resulting in 11× 11 angular samples in
each tile. A single A4 sized transparency holding 20 masks can be
printed for $100, making the additional cost of our setup just $5.

A disadvantage of the pinhole array based design is that it allows
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Figure 15: Reducing reflection glare and recovering full resolution
image. The projector in the scene causes reflection glare on the
resolution chart which is removed by identifying outlier pixels and
interpolating from neighboring values. The bias due to scatter glare,
however, remains.

≈ 2% average light throughput, forcing longer exposure times:
0.5sec in sun-light scenes (Figure 1) and up to 30sec indoors.
One may improve the light efficiency using a sum-of-cosines pat-
tern [Veeraraghavan et al. 2007]. Smarter patterns that require lin-
ear inversion will not work for a single shot approach in presence
of saturation and will require HDR capture. Although each expo-
sure time will be short and arguably one can take several exposure
bracketed photos in the same time, we take only one photo with
pinhole array masks.

Contrast and Resolution: Figure 11 shows a glare-obscured
contrast chart. The plot shows the 1D intensity profile without and
with glare correction. In our case the ratio between white and black
region of the chart improves from 2.1 : 1 to 4.6 : 1, an improve-
ment of a factor of two. For in-focus portions, there is a minimum
impact on resolution. Figure 15 shows resolution chart captured
using randomized pinhole array at f/5.6 and recovered glare re-
duced result at full resolution. Glare impacts certain pixels and
their values can only be hallucinated. At 25µm pinhole opening,
the diffraction for green light is 0.0240 radians, and after 1.2mm
propagation, the diffraction blur size is 28µm, which is roughly 3
pixels.

Failure Cases: Our method is not suited for extended area light
sources. Reflection glare is convolved with the area of the light
source and each tile receives stray light from multiple directions,
which appears as scattering glare. Figure 16 shows the failure cases.
The tiles appear washed out. With bright car-headlights, the con-
trast ratio of our mask is also a limitation. Our mask has a contrast
ratio of only 1000 : 1 for blocking light in opaque mask regions,
while the dynamic range close to the light source is 3 × 106 : 1.
Bleeding through the mask creates significant saturation close to
the light source and we fail to reliably reduce reflection glare.

7. Future Directions

4D Analysis: Our 4D analysis of glare offers a more detailed rep-
resentation of glare based on glare ray spread function. This can
support improved lens designs as well as physically valid filters for
glare deconvolution and rendering. It can support analysis of cam-
era body or lens barrel reflections. We can decompose glare com-
ponents generated by a single light source, but more powerful tech-
niques may allow us to decompose multiple light glare contribu-

Figure 16: Failure cases: (Left) Extended area light source can
cause multiple reflection glare components to mix so as to create
a bias at each pixel. (Right) Overwhelming light bleeds through the
mask leaving no unpolluted pixels.

tions from a single image. We used the 4D analysis for distortions
inside a camera. A similar statistical approach may be interest-
ing for studying and minimizing lens aberrations such as chromatic
aberrations.

Mask Pattern and Hardware: Talvala et al. [2007] used direct-
global separation to partition direct rays from glare causing re-
flected and scattered rays. We have instead used a 4D analysis.
Both methods use high frequency masks close to either the scene
or the sensor. By combining the two, we may be able to deal
with high as well as low frequency glare. Further, a hybrid of in-
side/outside mask could be a promising approach to deal with a
range of other direct-global separation problems. We have demon-
strated the use of planar masks for 4D ray-space sampling. How-
ever, other types of masks such as volumetric masks may allow
further control over accepting and rejecting a subset of 4D sam-
ples. One can use high-contrast spatial light modulators or LCDs to
create dynamic masks. Since the mask resolution is close to pixel
resolution, Bayer mosaics used for color filtering could be com-
bined with 4D sampling. One might imagine a consumer camera
with an aperture shape bracketing mode to support intelligent re-
shaping over multiple photos. The effective aperture shape could
then be varied on a pixel-by-pixel basis to form a composite image
in which glare and distortion effects are reduced.

8. Conclusions

We believe that we have presented the first system to exploit statis-
tical properties of 4D ray-space distortions inside a camera. Ours is
the only single-shot optical mechanism for glare reduction. It works
with minimal changes to the camera, is portable and produces re-
sults in many practical challenging scenarios. Glare-producing
scenes inherently span a large dynamic range. Even with unavoid-
able saturation, our method works in a single shot without a need
for multi-exposure HDR capture. Appearance of high frequency 4D
glare as a low frequency 2D image pattern has traditionally con-
founded glare analysis. We have studied the phenomenon in ray-
space allowing us to classify, visualize and, possibly for the first
time, decompose glare into meaningful sub-components. We have
shown results on traditional problems due to bright illumination as
well as problems that have not been explored such as lens smudges
and body-induced glare.

Light field applications using uniform 4D sampling have so far been
limited to digital refocusing, view interpolation and shape recovery.



We have extended it to non-uniform sampling and have presented
glare analysis as a new opportunity. Glare is a common problem in
several other fields, such as X-ray based tomography [Goszczynska
et al. 2000; Skinner 1988], lithography, fluorescent microscopy and
in astronomy for isolating dim light sources appearing near bright
stars. In the majority of the cases, noise is removed by deconvo-
lution in software. We hope that our approach exploiting higher
dimensional sieving will inspire new designs and support better
recording probes.
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