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Abstract—Receive antenna selection (AS) reduces the hardware
complexity of multi-antenna receivers by dynamically connecting
an instantaneously best antenna element to the available radio fre-
quency (RF) chain. Due to the hardware constraints, the channels
at various antenna elements have to be sounded sequentially to
obtain estimates that are required for selecting the “best” antenna
and for coherently demodulating data. Consequently, the channel
state information at different antennas is outdated by different
amounts. We show that, for this reason, simply selecting the
antenna with the highest estimated channel gain is not optimum.
Rather, the channel estimates of different antennas should be
weighted differently, depending on the training scheme. We
derive closed-form expressions for the symbol error probability
(SEP) of AS for MPSK and MQAM in time-varying Rayleigh
fading channels for arbitrary selection weights, and validate
them with simulations. We then derive an explicit formula for
the optimal selection weights that minimize the SEP. We find
that when selection weights are not used, the SEP need not
improve as the number of antenna elements increases, which
is in contrast to the ideal channel estimation case. However, the
optimal selection weights remedy this situation and significantly
improve performance.

I. INTRODUCTION

Antenna selection (AS) is a popular technique to reduce
the hardware costs at the transmitter or receiver of a wireless
link [1]–[6]. It uses fewer radio frequency (RF) chains than
the actual number of antenna elements, and only processes
signals from a dynamically selected subset of antennas. This
is advantageous since antenna elements are typically cheap
and easy to implement, while the RF chains are expensive.
Consequently, many next generation wireless communications
standards such as IEEE 802.11n, 3GPP long term evolution
(LTE), and the IEEE 802.16m Advanced WiMax have stan-
dardized or are standardizing AS at the transmitter, receiver,
or both. In this paper, we concentrate on receive AS, and, in
particular, the case that a single antenna element is selected for
down conversion. While a receiver can have more RF chains,
the model we consider is practically relevant and analytically
insightful as it achieves the same full diversity order as one
with more RF chains under perfect channel state information
(CSI).

While the topic of receive AS has been explored extensively
in the literature, most papers assume perfect CSI at the
receiver. Imperfect CSI can lead to inaccurate selection and
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imperfect data decoding, both of which increase the symbol
error probability (SEP) or the packet error rate (PER). In
practice, the CSI needs to be acquired using a pilot-based
training scheme.

The low hardware complexity, which is a key motivator for
AS, imposes unique constraints on how training gets done for
AS: given the limited number of RF chains, only one antenna
can be activated at any instant. Consequently, the transmitter
needs to send pilot(s) multiple times to enable the receiver
to sequentially receive pilots with different antennas and esti-
mate their corresponding links to the transmitter. The receive
antenna is then selected based on these estimates. Depending
on the system design, the pilots can be several milliseconds
apart [7]. Thus, the CSI at the receiver is imperfect not just
because of noise in the channel estimates but also because of
training delays. Even more importantly, the CSI at different
antenna elements is outdated by different amounts.

In this paper, we analyze and optimize the performance
of AS over time-varying Rayleigh fading channels given a
practical training model. We show that imperfect CSI has
a significant impact on the AS performance, and argue that
the selection criterion should account for the training delays
(amount of outdatedness) encountered in any practical AS
system. The selection criterion we propose uses weighted
versions of the channel estimates to select the best antenna.

We derive general closed-form expressions for the symbol
error probability (SEP) of MPSK and MQAM as a function of
the selection weights and the antenna sounding pattern. While
receive AS with imperfect channel estimates has been explored
earlier, most papers consider only estimation errors due to
noise [8]–[10]. As we shall see, training delays coupled with
noisy estimates lead to an error floor in the SEP, which does
not occur when just noisy (or perfect) estimates are considered.
While [11], [12] consider outdated channel estimates, they
do not model the unequal outdatedness of the CSI of the
antennas. While [20] considers unequal outdatedness, it selects
the antenna with the highest estimated channel gain.

The paper is organized as follows. The system model is de-
veloped in Sec. II, followed by SEP analysis and optimization
in Sec. III. The results and conclusions follow in Sec. IV and
Sec. V, respectively.

II. MODEL

Consider a system with one transmit antenna, N receive
antennas, and one RF chain at the receiver. Let hk(t) denote
the frequency-flat channel between the transmitter and the
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kth receive antenna at time t. It is modeled as a circularly
symmetric complex Gaussian random variable (RV) with unit
variance. Furthermore, the channel gains for different receive
antennas are assumed to be independent and identically dis-
tributed (i. i. d.), which is the case when the receive antennas
are spaced sufficiently apart [13].

A. Channel Estimation

We consider a transmission format in which multiple pilot
symbols precede multiple symbols of the data packet, as shown
in Fig. 1. The transmitter transmits a pilot symbol pp (of
duration Ts) to each receive antenna sequentially so that all N
channels can be estimated and the optimum antenna selected
to receive the data symbols block. The kth receive antenna
is estimated at time Tk. Two consecutive pilot symbols are
separated in time by a duration Tp. Note that the order in
which antennas are trained does not matter since the channel
gains of different antennas are i. i. d.

Pilot based channel estimation is imperfect due to:
1. Noise-induced channel estimation errors: The pilot signal
received by the kth antenna is

rk(Tk) = pphk(Tk) + nk(Tk),

where the noise nk(t) is an ergodic stationary circularly
symmetric complex Gaussian process with zero mean and
power N0 that is independent of hk(t). Therefore, the channel
estimate for the kth receive antenna is

ĥk(Tk) =
p∗prk(Tk)

|pp|2
= hk(Tk) + ek, (1)

where the noise-induced channel estimation error ek = nk(Tk)

|pp|2
has a variance σ2

e = N0
Ep

. Here, Ep is the pilot symbol energy.
2. Outdated channel estimates: Due to the time-varying

nature of the wireless links, the N channels will have changed
by the time data transmission starts. Specifically, the channel
for receive antenna i at time t + δ can be written in terms of
the channel at time t as [14]

hi(t + δ) = ρi(δ)hi(t) +
√

1 − |ρi(δ)|2n′
i(t + δ), (2)

where ρi(δ) is the channel correlation coefficient. The vari-
ation n′

i(t + δ), i = 1, 2, . . . , N , is a circularly symmetric
complex Gaussian RV with unit variance that is independent
of hi(t). The channel correlation coefficient depends on the
time difference δ as well as the Doppler spectrum (which, in
turn, depends on the velocity, angular spectrum, and antenna
pattern of the mobile station [13]). Our derivations in Sec. III
are valid for arbitrary Doppler spectra; for the simulations in
Sec. IV, we use the classical Jakes spectrum [15] in which

ρi(δ) = J0(2πfdδ), (3)

where J0(.) is the zeroth order Bessel function of the first
kind [17] and fd is the maximum Doppler frequency.1

1The regressive model uses the simplifying assumption that the channel
realizations at different times can be computed based only on the correlation
with the channel at time t = 0, and not as a realization of a stochastic process
with a continuous correlation function. The approximation is good so long as
2πfdδ is smaller than 2.4, the first root of J0(.).

B. Weighted Antenna Selection

The standard selection criterion is to pick the antenna with
the highest (estimated) channel gain. However, this is not
optimal when the CSI of different antennas is outdated by
different amounts – it is possible that the antenna with the
highest channel gain could have severely outdated CSI and
should not be selected. We thus propose selecting the antenna
based on weighted channel gain estimates as follows:

[1̂] = argmax
1≤k≤N

wk

∣∣∣ĥk

∣∣∣2 . (4)

Antenna [1̂] is used for receiving entire data packet.

C. Data Reception

The pilots are followed by D data symbols, each of duration
Ts and average energy Es. When the ith data symbol, si, is
transmitted, the signal received by antenna [1̂] at time ti, after
matched filtering, is given by

y[1̂](ti) = h[1̂](ti)si + n[1̂](ti). (5)

The data symbols are equi-probable and are derived from
either the MPSK or MQAM constellations.

III. SEP ANALYSIS AND OPTIMIZATION

A. SEP for Given Antenna Selection Weights

We now analyze the SEP for an MPSK or MQAM symbol
transmitted at time ti for receive AS with imperfect and
outdated CSI. Henceforth, we simplify our notation as follows:
we denote ĥk (Tk) by ĥk, n′

k(t) by n′
k, ρi(tj − Ti) by ρ

(j)
i ,

and nk(t) by nk. E [A] and var [A] shall denote the expec-
tation and variance of event A, respectively. And, E [A|B]
and var [A|B] shall denote the conditional expectation and
variance of A given B, respectively.

The imperfect channel estimates that are used for selection
are also used for data decoding. Therefore, the decision
variable, D, for the signal received by antenna [1̂] is:

D = ĥ∗
[1̂]

y[1̂](ti).

Using (1) and (2), we can write the channel at time ti in terms
of its estimate. Hence,

D = ĥ∗
[1̂]

(
ρ
(i)

[1̂]

(
ĥ[1̂] − e[1̂]

)
si+

√
1 −

∣∣∣ρ(i)

[1̂]

∣∣∣2n′
[1̂]

si+n[1̂]

)
. (6)

Thus, the decision variables for symbols transmitted at differ-
ent times will be different, and so will their error probabilities.

We first state the following Lemma about the statistics of
D, which shall be useful in the rest of the paper.

Lemma 1: Conditioned on {ĥl}N
l=1 and si, D is a complex

Gaussian RV with conditional mean and variance given by

E
[
D
⏐⏐⏐{ĥl}N

l=1, si

]
=
∣∣∣ĥ[1̂]

∣∣∣2 ρ
(i)

[1̂]
siq

2, (7)

var
[
D
⏐⏐⏐{ĥl}N

l=1, si

]
=
(

1 −
∣∣∣ρ(i)

[1̂]

∣∣∣2) |si|2
∣∣∣ĥ[1̂]

∣∣∣2
+
∣∣∣ĥ[1̂]

∣∣∣2 ∣∣∣ρ(i)

[1̂]

∣∣∣2 |si|2 σ2
eq2 +

∣∣∣ĥ[1̂]

∣∣∣2 N0, (8)
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Fig. 1. Training for antenna selection

where q2 � 1/(1 + σ2
e).

Proof: The proof uses standard results on Gaussian RVs,
and is omitted due to space constraints.

We are now ready to derive the SEPs for MPSK and MQAM
in the following two theorems. Let γ � Es

N0
(average SNR per

branch) and ε � Ep

Es
.

Theorem 1: With training delays and noisy channel esti-
mates, the SEP for the ith MPSK symbol received at time ti
is2

P MPSK
i (γ) =

1
π

N∑
k=1

N−1∑
r=0

N∑
l0,...,lr=1

l0=1,l1 �=···�=lr �=k

(−1)r

r!
(
1 +

∑r
j=1

wk

wlj

)[M − 1
M

π

−
tan−1

(√
α

(i)
k (γ,wl1 , . . . , wlr ) tan

(
M−1

M π
))

√
α

(i)
k (γ,wl1 , . . . , wlr )

]
, (9)

where

α
(i)
k (γ,wl1 , . . . , wlr ) �

1+

(
1 +

∑r
j=1

wk

wlj

)
ε
∣∣∣ρ(i)

k

∣∣∣2sin2
(

π
M

)
(
ε

(
1 −

∣∣∣ρ(i)
k

∣∣∣2)+
1 + ε

γ
+

1
γ2

)
. (10)

Proof: The proof is relegated to Appendix A.
Theorem 2: With training delays and noisy channel esti-

mates, the SEP for the ith MQAM symbol received at time ti
is given by equation (12) (next page), where

β
(i)
k (γ,wl1 , . . . , wlr ) �

1 +

(
1 +

∑r
j=1

wk

wlj

)
ε
∣∣∣ρ(i)

k

∣∣∣2( 3
2(M−1)

)(ε

(
1−

∣∣∣ρ(i)
k

∣∣∣2)+
1 + ε

γ
+

1
γ2

)
. (11)

Proof: The proof is given in Appendix B.

2For notational compactness,
∑N

l0,...,lr=1
l0=1,l1 �=···�=lr �=k

will henceforth denote∑1
l0=1

∑N
l1=1

(l1 �=k)

∑N
l2=1

(l2 �=k,l2 �=l1)

· · ·∑N
lr=1

(lr �=k,lr �=l1,··· ,lr �=lr−1)

.

B. Optimal Selection Weights

The optimal weights
{
wopt

k

}N

k=1
that minimize the SEP for

MPSK and MQAM at an SNR γ are then given as follows.
Theorem 3: For 1 ≤ k ≤ N , the optimal selection weights

that minimize the SEP of an MQAM or MPSK symbol
transmitted at time ti are given by

wopt
k,i(γ) =

∣∣∣ρ(i)
k

∣∣∣2(
ε

(
1 −

∣∣∣ρ(i)
k

∣∣∣2) + 1+ε
γ + 1

γ2

) . (13)

Proof: The proof is given in the Appendix C.
The optimal weights depend on the channel correlation coeffi-
cients, which further depend on the geometry of the antennas
and the scattering environment. Since these change on a much
slower time scale than small-scale fading, the correlation
coefficients can be accurately estimated and used [16]. Notice
that the optimal weights are inversely proportional to the
training delays. When the training delays are the same, i.e.,
ρ
(i)
k = ρ, the optimal weights do not depend on k and i, which

is equivalent to selection without weighting. For large training
delays, i.e., ρ

(i)
k � 1, the optimal weights, after removing

common factors, simplify to wopt
k,i(γ) =

∣∣∣ρ(i)
k

∣∣∣2. Note that
the result above implies that the optimal selection weights
– and, hence, the selected antenna – can be different for
data symbols transmitted at different times. When decoding a
packet consisting of multiple symbols, an additional practical
constraint that the receive antenna is the same for all symbols
may need to be imposed. However, this is beyond the scope
of this paper.

C. Asymptotic Behavior of SEP with Optimal Weights

We now consider the asymptotic behavior of our SEP
expressions in (9) and (12) as the SNR, γ, increases. Let
P MPSK

i,asm � limγ→∞ P MPSK
i (γ), P MQAM

i,asm � limγ→∞ P MQAM
i (γ),

limγ→∞ α
(i)
k (γ,wl1 , . . . , wlr ) � α

(i)
k,asm(wl1 , . . . , wlr ), and

limγ→∞ β
(i)
k (γ,wl1 , . . . , wlr ) � β

(i)
k,asm(wl1 , . . . , wlr ).

When training delays are absent, ρ
(i)
k = 1, for all k and

i. From (10) and (11), we can see that α
(i)
k,asm(.) = 1 and

β
(i)
k,asm(.) = 1, for all k and i. Using these asymptotic values

in (9) and (12), we get P MPSK
i,asm ≡ 0 and P MQAM

i,asm ≡ 0.

For non-zero training delays, we have ρ
(i)
k < 1. From (13),

we can see that the optimal weights (after removing common

factors) equal limγ→∞ wopt
k,i(γ) =

∣∣∣ρ(i)
k

∣∣∣2/(
1 −

∣∣∣ρ(i)
k

∣∣∣2),

α
(i)
k,asm(.) = 1 − csc2

(
π
M

)(
r + 1 − 1∣∣∣ρ(i)

k

∣∣∣2 −∑r
j=1

1∣∣∣ρ(i)
lj

∣∣∣2
)

,

β
(i)
k,asm(.) = 1 − 2(M−1)

3

(
r + 1 − 1∣∣∣ρ(i)

k

∣∣∣2 −∑r
j=1

1∣∣∣ρ(i)
lj

∣∣∣2
)

.

Upon substituting the asymptotic values in the SEP formulae
for MPSK and MQAM, it can be shown that P MPSK

i,asm and
P MQAM

i,asm are not identically 0. Hence, an irreducible error floor

exists at high SNR, and depends on the correlations {ρ(i)
k }N

k=1.
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P MQAM
i (γ) = 2

(
1 − 1√

M

) N∑
k=1

N−1∑
r=0

N∑
l0,...,lr=1

l0=1,l1 �=···�=lr �=k

⎛⎝1− 1√
β

(i)
k (γ,wl1 , . . . , wlr )

⎞⎠ (−1)r

r!
(
1 +

∑r
j=1

wk

wlj

)

−
(

1 − 1√
M

)2 N∑
k=1

N−1∑
r=0

N∑
l0,...,lr=1

l0=1,l1 �=···�=lr �=k

(−1)r

r!
(
1+

∑r
j=1

wk

wlj

)
⎛⎜⎜⎝1−

4 tan−1

(√
β

(i)
k (γ,wl1 , . . . , wlr )

)
π

√
β

(i)
k (γ,wl1 , . . . , wlr )

⎞⎟⎟⎠ . (12)

IV. SIMULATIONS

We now present graphically the results derived in Sec. III
and study the effect of N , fdTp, and {wk}N

k=1 on the SEP.
We also compare these with Monte Carlo simulations (with
104 samples generated for each SNR (γ � Es/N0)), and use
the simulator of [19] to generate the time-varying Rayleigh
channels. From (3), the correlation values for k = 1, 2, . . . , N ,
i = 1, 2, . . . ,D, equal ρ

(i)
k = J0 (2πfd((N − k)Tp + iTs)).

The figures are plotted for Tp = 10Ts and Ep = Es. Unless
mentioned otherwise, SEP of the first data symbol is plotted.

Figures 2 and 3 plot the SEP as a function of the SNR
for MPSK and MQAM, respectively, with N = 4 antennas.
One can see that the SEP always decreases to 0 as the
SNR increases when fdTp = 0, even with noisy estimates.
On the other hand, an error floor exists when fdTp > 0,
which increases as fdTp increases. Also shown is the effect
of different selection weights on the SEP. For fdTp ≈ 0,
wopt

k ≈ 1, and, hence, all the six curves coincide. For large
fdTp, wopt

k,i(γ) = |ρk|2 performs almost as well as optimal
weighting, which follows from Sec.III-B. Notice the excellent
match between analytical and simulation results.3 Given the
unequal outdatedness of the CSI, it is instructive to get an
idea of how often each antenna is selected after optimal
weighting. At an SNR of 12 dB and fdTp = 0.06, antenna 1
(ρ1 = 0.6866) and antenna 4 (ρ4 = 0.9996) get selected 1.4%
and 58.8% of the time, respectively.

Figure 4 compares the SEP of MPSK for N = 2, 4, and 8
receive antennas as a function of SNR at fdTp = 0.01 for the
no-weighting and optimal weighting selection schemes. In the
no-weighting scheme, we can see that increasing the number
of receive antennas can lead to worse performance. This can
be understood as follows. As the training delays increase,
selection becomes more inaccurate (and unequally so) due to
more outdated estimates. However, the optimal weights, which
account for this, remedy this problem. Furthermore, they also
reduce the error floors by one to two orders of magnitude.

An alternative view is presented in Figure 5, which com-
pares the MPSK SEP of N = 2, 4, and 8 antennas at an SNR
of 10 dB as a function of the Doppler spread. As in Figure 4,
Tp is fixed. For no-weighting, N = 8 outperforms others when
0 ≤ fdTp ≤ 0.017. However, for 0.017 ≤ fdTp ≤ 0.044,
and fdTp ≥ 0.044, N = 4 and N = 2, respectively, are

3The small mismatch between analytical and simulation results for MQAM
is explained in Appendix B.

the best choices. In contrast, for optimal weighting, N = 8 is
always best choice.4 However, for higher Doppler spreads, the
performance difference between smaller and larger number of
antennas decreases.

We also compared the SEP of 8PSK data symbols transmit-
ted at different times. At fdTp = 0.06 and 12 dB SNR, the
SEP of the 1st, 5th, and 10th data symbols calculated from (9)
are 0.1741, 0.2155, and 0.2910 respectively. The difference
is more significant at higher values of SNR. A figure is not
shown for want of space.

V. CONCLUSIONS

In this paper we analyzed receive AS with channel estimates
that are affected both by noise and the time variations of the
fading channel. For training (pilot) structures that are typical
for AS systems, the channel estimates of different antenna
elements are outdated by different amounts. This has important
consequences for the selection criteria and the overall system
performance. Our most important results and insights are the
following: (i) We propose a new selection scheme that weights
the channel estimates before antenna selection; (ii) We provide
closed-form equations for the SEP in such a system; and (iii)
We find that selecting the antenna with the highest estimated
channel gain is not optimum, and leads to a high error floor.
But, the optimal selection weights do drastically reduce the
error floor. Increasing the number of antenna elements can
worsen performance when unweighted AS is used, while,
optimal selection weighting does remedy this effect.

Our work thus provides useful insights into optimum selec-
tion in the presence of channel estimation errors. Future work
will include an analysis of block or packet error rates, and the
analysis of different distributed pilot patterns.

APPENDIX

A. Proof of Theorem 1

Using Lemma 1 and [18, eq.(40)], the SEP for MPSK,
conditioned on {ĥl}N

l=1, is given by

Pi

(
Err

⏐⏐⏐{ĥl}N
l=1

)
=

1
π

∫ M−1
M π

0

exp

⎛⎜⎝−
∣∣∣ĥ[1̂]

∣∣∣2b(i)

[1̂]

sin2 θ

⎞⎟⎠dθ, (14)

4Note that the conclusions would be different if one assumed a fixed overall
energy budget, so that using more pilot tones reduces the available energy for
the payload data. In that case, a very large number of antennas is not optimum
even when weighted selection is used.
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where b
(i)
k �

Es

∣∣∣ρ(i)
k

∣∣∣2q4 sin2( π
M )∣∣∣ρ(i)

k

∣∣∣2Esσ2
eq2+N0+

(
1−

∣∣∣ρ(i)
k

∣∣∣2)Es

. This simplifies to

b
(i)
k =

ε
∣∣∣ρ(i)

k

∣∣∣2 sin2( π
M )

(1+ 1
γε )

(
ε

(
1−

∣∣∣ρ(i)
k

∣∣∣2)+ 1+ε
γ + 1

γ2

) .

From (1), the probability density function, f(x), and the

cumulative distribution function, F (x), of
∣∣∣ĥk

∣∣∣2 are given

by f(x) = 1
1+σ2

e
exp

(
−x

1+σ2
e

)
and F (x) = 1 − exp

(
−x

1+σ2
e

)
.

Therefore, the SEP averaged over {ĥi}N
i=1 equals

Pi (Err) =
1
π

N∑
k=1

∫ ∞

0

∫ M−1
M π

0

exp

(
−xb

(i)
k

sin2 θ

)

× f(x)
N∏

l=1
l �=k

F

(
wkx

wl

)
dθdx .

Expanding
∏N

l=1
l �=k

F
(

wkx
wl

)
and simplifying,

Pi (Err) =
1

π (1 + σ2
e)

N∑
k=1

N−1∑
r=0

N∑
l0,...,lr=1

l0=1,l1 �=···�=lr �=k

(−1)r

r!

×
∫ M−1

M π

0

(
b
(i)
k

sin2 θ
+

1 +
∑r

j=1
wk

wlj

1 + σ2
e

)−1

dθ. (15)

Using the following identity, which follows from [17, 2.562],
and simplifying further yields the desired expression.

For a, b > 0,

∫ ζ

0

(
a

sin2 θ
+ b

)−1

dθ

=
1
b

[
ζ −

√
a

a + b
tan−1

(√
a + b

a
tan ζ

)]
. (16)

B. Proof of Theorem 2

Using Lemma 1 and [18, eq. (48)], the SEP for MQAM,
conditioned on {ĥi}N

i=1, is given by5

Pi

(
Err|{ĥi}N

i=1

)
=

4
π

(
1− 1√

M

)∫ π
2

0

exp

⎛⎜⎝−
∣∣∣ĥ[1̂]

∣∣∣2 c
(i)

[1̂]

sin2 θ

⎞⎟⎠dθ

− 4
π

(
1 − 1√

M

)2 ∫ π
4

0

exp

⎛⎜⎝−
∣∣∣ĥ[1̂]

∣∣∣2 c
(i)

[1̂]

sin2 θ

⎞⎟⎠ dθ, (17)

where c
(i)
k =

ε
∣∣∣ρ(i)

k

∣∣∣2( 3
2(M−1) )

(1+ 1
γε)

(
ε

(
1−

∣∣∣ρ(i)
k

∣∣∣2)+ 1+ε
γ + 1

γ2

) . Using steps simi-

lar to Theorem 1, we can derive P MQAM
i (γ).

5This expression implicitly assumes that the variance of D is the same for
all MQAM symbols. However, with imperfect estimation, this is no longer
the case, as can be seen from (8). However, this approximation is quite good
and is commonly used [8].

C. Proof of Theorem 3

Let w = {wk}N
k=1. Let w̃i = {w̃i,k}N

k=1 denote the optimal
w for the ith data symbol as per (13). We outline below the
key steps that show that ∂

∂wp
P MPSK

i (γ)
⏐⏐⏐

w=w̃i

= 0.

Appropriately clustering the terms in the integrand of (15),
and differentiating with respect to wp, we get

∂

∂wp
Pi (Err)

⏐⏐⏐
w=w̃i

= −
N−1∑
r=1

N∑
l1,...,lr=1

l1 �=···�=lr �=p

(−1)r

r!

⎛⎝ b
(i)
p

sin2 θ
+

1 +
∑r

j=1
w̃i,p

w̃i,lj

1 + σ2
e

⎞⎠−2

×
⎛⎝∑r

j=1
1

w̃i,lj

1 + σ2
e

⎞⎠+
N∑

k=1
k �=p

N−1∑
r=1

r∑
q=1

N∑
l1,...,lq−1,lq+1,...,lr=1

l1 �=···�=lq−1 �=p�=lq+1···�=lr �=k

(−1)r

r!

×

⎛⎜⎝ b
(i)
k

sin2 θ
+

1 + w̃i,k

w̃i,p
+
∑r

j=1
j �=q

w̃i,k

w̃i,lj

1 + σ2
e

⎞⎟⎠
−2

w̃i,k

w̃2
i,p (1+σ2

e)
. (18)

Using b
(i)
k w̃i,p = b

(i)
p w̃i,k, the second term in (18) becomes

N−1∑
r=1

r∑
q=1

N∑
k=1
k �=p

N∑
l1,...,lq−1,lq+1,...,lr=1

l1 �=···�=lq−1 �=p�=lq+1···�=lr �=k

(−1)r

r!w̃i,k(1 + σ2
e)

×

⎛⎜⎝ b
(i)
p

sin2 θ
+

1 + w̃i,p

w̃i,k
+
∑r

j=1
j �=q

w̃i,p

w̃i,lj

1 + σ2
e

⎞⎟⎠
−2

.

Replacing the variable k with lq and clubbing summations, the
above expression simplifies to

N−1∑
r=1

r∑
q=1

N∑
l1,...,lr=1

l1 �=···�=lr �=p

(−1)r

r!w̃i,lq (1 + σ2
e)

⎛⎝ b
(i)
p

sin2 θ
+

1+
∑r

j=1
w̃i,p

w̃i,lj

1 + σ2
e

⎞⎠−2

.

Upon interchanging the second and third summations, the
above expression can be shown to be exactly equal to the first
term in (18). Hence, ∂

∂wp
P MPSK

i (γ)
⏐⏐⏐

w=w̃i

= 0. Similarly, one

can also show that ∂
∂wp

P MQAM
i (γ)

⏐⏐⏐
w=w̃i

= 0.

We now give an alternate proof for the optimal selection
weights for MQAM. The proof uses physical arguments and
is therefore quite succinct. A similar approach can also be
used for MPSK. Let antenna k be selected and used for data
reception. Equation (17) can be rewritten as

Pi

(
Err|ĥk

)
=

4
π

(
1 − 1√

M

)∫ π
2

0

ξ(θ) exp

⎛⎜⎝−
∣∣∣ĥk

∣∣∣2c(i)
k

sin2 θ

⎞⎟⎠dθ,

where ξ(θ)=1/
√

M for 0≤θ<π/4, and ξ(θ)=1, for π/4≤
θ≤π/2. From this special form of the SEP, it follows that the
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Fig. 2. Effect of normalized Doppler spread and weights (8PSK and N = 4).
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Fig. 3. Effect of normalized Doppler spread and weights (16QAM and
N=4).

minimum SEP obtained by selecting the best antenna equals
4
π

(
1 − 1√

M

) ∫ π
2

0
ξ(θ)mink=1,...,N exp

(
−|ĥk|2c

(i)
k

sin2 θ

)
dθ.

Thus, the optimal antenna to use for data reception is the

one that maximizes arg maxk

(∣∣∣ĥk

∣∣∣2 c
(i)
k

)
.
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