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Abstract

We present a computationally efficient track-before-detect algorithm that achieves more than
50% true detection at 0.000001 false alarm rate for pixel sized unknown number of multiple
targets when the signal-to-noise ratio is less than 7dB. Without making any assumptions on the
distribution functions, we select a small number of cells, so called as needles, and generate
motion hypotheses using the target state transition model. We accumulate cell likelihoods along
each hypothesis in the temporal window and append the accumulated values to the corresponding
queues of the cell position in the most recent image. We assign a target in case the queue
maximum is greater than a threshold that produces the specified false alarm rate.
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ABSTRACT

We present a computationally efficient track-before-detect algorithm that achieves more than 50% true detection
at 10−6 false alarm rate for pixel sized unknown number of multiple targets when the signal-to-noise ratio
is less than 7dB. Without making any assumptions on the distribution functions, we select a small number
of cells, so called as needles, and generate motion hypotheses using the target state transition model. We
accumulate cell likelihoods along each hypothesis in the temporal window and append the accumulated values
to the corresponding queues of the cell positions in the most recent image. We assign a target in case the queue
maximum is greater than a threshold that produces the specified false alarm rate.
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1. INTRODUCTION

Detection of very small targets in noisy measurements is a challenging task with critical applications including
high-end radar systems. Typically, the returning echoes of a radar emission are amplified then filtered to extract
a 2D image data where each cell corresponds to the received power in a particular spatial location on range
(bins) and azimuth (beams). In addition to potential target reflection signature, the image data also comprises
the receiver noise, electromagnetic interference and scene clutter.

Most simple schemes1,2 apply a threshold to the input image and label the cells exceeding this threshold value
as candidate targets. If this threshold is too low, then more targets will be detected at the expense of increased
numbers of false alarms. Conversely, if the threshold is too high, then fewer targets will be detected, but the
number of false alarms will also be low. Often the threshold is set in order to achieve a constant false alarm
rate (CFAR) by adaptively estimating the level of the noise floor around the cell using the background statistics.
This is acceptable as long as the signal-to-noise (SNR) and signal-to-clutter (SCR) ratios are sufficiently high.
However, for lower signal ratios where targets cannot be easily distinguished from the cluttered noisy background,
such cell thresholding approaches give high rates of false detections.

Instead of making a decision solely based on the current image, detectors can be supplied with a temporal
window of previous measurements to allow the detection of low signal ratio targets. Evidence of being a target
is accumulated by integrating individual cell likelihoods over time in the temporal window. In other words,
hypothetical targets are tracked even before they are detected. This class of algorithms is so often called as
track-before-detect3 (TBD).

Ideally, the evidence accumulation should be done by evaluating all possible states of the dynamic and
intrinsic evolution of the target. Here a target state may correspond, for instance, to the position and velocity
of the target in the image and the intensity of the underlying cell. For simplicity, the state evolution is usually
modeled by a linear process especially when the temporal window duration is short. However, the observed
image is a stochastically sampled process and has only a nonlinear relation with the target state albeit the
target distribution characteristics are assumed to be available. Besides, high intensity cell responses only weakly
correlated to the target locations. As a result, analytically intractable number of states can be spawned for most
basic specifications.

One way to render this problem feasible is to quantize the state space and use discrete valued target models.
Several grid methods have been developed to estimate the evidence in discrete space including Bayesian MAP
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estimator,4 ML estimator5 (e.g. Viterbi6), and statistical graph networks (e.g. hidden Markov models7). The
Bayesian estimator is an approximation to the posterior distribution of the target state based. On a uniformly
spaced set of states, which is augmented with a null state to indicate the possibility of no target case, it applies
the Bayes rule by imposing certain heuristics on the state transition probability and marginal likelihoods. Among
those, the parameters of the probability of target existence and probability of target discontinuation control the
detection performance and can be tuned to optimize detection performance. The selection of the quantization
steps is a trade off between estimation accuracy, which improves with finer resolution, and computational require-
ments. Bayesian estimator selects the state with the highest probability by recursively defining the probability
of the target occupying a particular location by the superposition of all of the possible paths to that position.
If the accumulated probability is higher than the null state probability, then a detection is reported. Rather
than accumulating the probability from alternate paths, an ML estimator selects the single best path. Within
the quantized state space Viterbi algorithm is designed to find the most likely sequence of states by maximizing
the joint posterior probability of the sequence of states. Propagating likelihoods through dynamic models on
the most likely state sequence leading into a current state and backtracking the Viterbi algorithm has linear
complexity in time. One advantage of this is that it always produces an estimate consistent with the dynamic
model.

The problem with using a discrete state space is that it leads to high computation and memory requirements.
An alternative is to use a sequential analogue of the Markov chain Monte Carlo (MCMC) batch method such
as particle filter8,9 to accumulate the evidence within the Bayesian framework. It is a numerical approximation
technique that uses randomly placed samples instead of fixed grid. The key idea is to represent the required
posterior density function by a set of random samples with associated weights and to compute estimates based
on these samples and weights. As the number of samples becomes very large, this characterization becomes an
equivalent representation to the usual functional description of the posterior pdf, and the particle filter approaches
the optimal Bayesian estimate. Despite the particle filtering may achieve similar estimation performance for lower
cost by using less sampling points than would be required for a discrete grid, it usually requires a considerable
amount of particles to effectively approximate the continuous probabilistic distributions, thus, computational
burden for high dimensional state spaces, e.g. where acceleration and non-linear motion are parameterized,
becomes an issue.

Instead of using a numerical model for the target distribution, the multiple-hypothesis tracker (MHT) imposes
a parametric representation to reduce the computational load. It allows a hypothesis to be updated by more
than one consecutive state at each update, spawning multiple possible hypotheses. With each received image, all
existing hypotheses are updated and unlikely ones are removed to upper bound the computational complexity.
The probabilistic MHT10 (PMHT) uses a recursive expectation maximization such as Kalman filter to compute
in an optimal way the associations between the measurements and targets instead of measurement-to-hypothesis
assignment. The probability that each measurement belongs to each hypothesis is estimated using a maximum a
posteriori method. In other words, the PMHT uses soft posterior probability associations between measurements
and targets. These soft associations can be considered as mapping the problem from discrete (i.e. of combinatorial
complexity) to continuous (i.e. amenable to iterative algorithms). In histogram PMHT (H-PMHT) version3 the
received energy in each cell is quantized, and the resulting integer is treated as a count of the number of
measurements that fell within that cell. The sum over all of the cells is the total number of measurements taken.
The probability mass function for these discrete measurements is modeled as a multinomial distribution where
the probability mass for each cell is the superposition of target and noise contributions. Rather than using the
whole image, maximum likelihood joint probabilistic data association11 (JPDA) reduces the threshold to a low
level and then applies a grid-based state model for estimation to avoid track coalescence. Another approach to
detect targets in a TBD fashion is to apply a state parameter mapping, so called as Hough transform,12 after
quantizing the parameters.

In addition to being computationally expensive, above approaches assume the signal, clutter, and noise
distribution functions to be known beforehand due to their dependency on the likelihood ratio function itself.
Furthermore, they impose single-stage Markovian updates (as particle filters) for the computation of the cell
likelihoods even though a larger portion of the previous measurements is often available.

Here, we present a computationally efficient, grid based TBD algorithm that can utilize all available measure-



Figure 1. Four sample snapshots of the measurements when SNR=20dB and SCR=7dB. There is a single target in the
center of each image. Even for these very small 21×21 images the target signal cannot be easily identified easily by eye.
Typically image size is 1000×100, which means targets will be even less distinguishable from the background.

ments in the given temporal window without imposing any assumptions on the probability distributions. Our
goal is to achieve at least 50% true detection rate at only 10−6 false alarm rate for the pixel sized multiple targets
when the overall signal-to-noise and signal-to-clutter ratios are less than 7dB. A snapshot of sample images under
these settings is given in Fig. 1. In addition, the number of multiple targets is unknown and should be estimated
from the measurements. By picking a small number of cells, so called as needles due to the mutually independent
nature of individual cell measurements for targets smaller than the physical cell coverage, our method collects
potential footprints of targets in each image. Using the state transition models, it generates a set of hypotheses
and aggregates the cell likelihoods along each hypothesis. In the streaming mode, needle selection only applies
to the current image by updating the hypotheses for the needles in the temporal window.

In the following sections we discuss the details of the needle picking algorithm and present quantitative
performance evaluation results.

2. NEEDLE PICKING

The observed image It comprises noise nt and clutter ct in addition to target signal zt

It : zt + nt + ct (1)

where clutter refers to echoes returned from background objects such as ground, sea, atmospheric conditions
(including rain, snow, hail, sand storms, clouds, and turbulence), man-made objects such as buildings, etc. These
constituents are assumed to be independent random variables. Noise is typically present in the communication
channel and appears as random variations superimposed on the desired echo signal received in the radar receiver.

Let st be the target state at time t consisting of position and velocity in the image

st = [xt ẋt yt ẏt]
′

(2)

and the state transition is modeled by linear motion

st =

[
M 0
0 M

]
st−1, M =

[
1 k
0 1

]
(3)

between consecutive images where the time is uniformly sampled at k = 1. This model does not contain the
target signal zt and its noise process, which is mainly due to the swelling case assumptions of the target as the
formulation here will not require its estimation. Note that, each target has its own speed [ẋt ẏt]

′, which is
unknown to the algorithm, in the range of [ẋmax, ẏmax].

The number of the images within the temporal window is T such that t= 1 corresponds to the most recent
frame and IT to the earliest. Nr and Nb are the number of cells along the range and beam axes respectively. Nn
stands for the total number of needles.

In the streaming (moving temporal window) mode, the needle picking algorithm proceeds by sorting the cells
q1i : (xi, yi)

1 in the new image I1 according to their intensity values I1(q1i ). Note that I1(q1i ) ≥ I1(q1i+1). Nn/T



Figure 2. In the streaming mode, for the newly added needles (red dots) the new hypotheses are constructed (red lines).
The coverage of these new hypotheses in the most earliest frame is shown in red ovals. The hypotheses (blue lines) of the
existing needle (blue dot) are extended to the current image (yellow lines) and the part of the hypotheses now outside
the temporal window (black lines) are subtracted. The hypotheses belongs to outside the temporal window (green lines)
and the corresponding needle (green dot) are removed.

cells having the highest values are added to the current set of needles A1 : {q1i ∣i = 1, .., Nn/T}. For the newly
added cells q1i , all possible hypotheses H1

i,1, ...,H
1
i,J are generated by the state transition model (Eqn. 3) and its

maximum limits. This means that we apply a grid (gx, gy)i,u,v,T to the earliest image IT in the window around
the needle q1i coordinates (xi, yi)

1 to determine the extend of the hypotheses, e.g. their coverages. The grid
generates a fixed number J of hypotheses

(gx, gy)i,u,v,T =

(
xi−u

ẋmax
U

T, yi−v
ẏmax
V

T

)
(4)

where −U ≤ u ≤ U , −V ≤ v ≤ V with J is the total number of grid locations that have (ẋ2max + ẏ2max)0.5

distance from the center of the grid. We choose U, V to obtain subpixel resolution. Note that, a hypothesis
corresponds to a motion trajectory in the spatiotemporal window passing through the needle it belongs Hi,j :
{q1i , .., (gx, gy)i,u,v,t, .., (gx, gy)i,u,v,T . We accumulate the likelihood of each hypothesis L(Hi,j) by traversing

backwards in time along the motion trajectory L(Hi,j) =
∑T
t=1(gx, gy)i,u,v,t. The accumulated likelihoods are

either the underlying cell intensity values or their individual likelihood scores obtained from the likelihood ratio
in case the distribution parameters are known. Finally, we append the likelihoods to the queue of likelihoods
Ql of the corresponding cell position in I1. A queue stores the hypotheses reaching to that cell position and
their likelihoods. Since the newly added hypotheses already in the same image, their location l = q1i for them.
The appending operation is only done for the cell locations at the current image I1 as the final detection will be
evaluated in this image.

For the existing needles qti in the previous sets At, 1 < t ≤ T , we compute the forward motion on the
corresponding hypotheses, we update the hypotheses and update their likelihoods. Due to this update, the final
appending locations l may change, so we reassign such hypotheses to the correct queues. While updating the
existing hypotheses, we subtract the contribution of the cells that are no longer in the current temporal window,
in other words, the cells in IT+1 along the trajectory. The needles of the IT+1 are removed, and the hypotheses
generated for them are deleted from the queues to keep a constant number of needles. Figure 2 illustrates the
streaming mode updates.

After the above accumulation steps are applied, the queue of likelihoodsQl, which indicate the target existence
in I1 are thresholded to detect the target locations. The threshold is set such that the detection performance
achieves the specified false alarm rate.

In the batch mode, all Nn needles for the whole temporal window is selected at the same time either by



sorting all cells and choosing the highest valued ones or sorting cells within each image as above. All hypotheses
are generated at the same time and the likelihoods and queues constructed accordingly.

Note that, in general, a target may not exactly coincide to the underlying integer indexed cell locations on
the uniformly quantized imaging grid because of the world to imaging plane mapping. For instance, a target at
(4.49, 3.51) will appear at the cell (4, 4) due to quantization. Since all hypotheses pass through the integer valued
needle locations in the above picking step, there is a chance that some hypotheses to contain a few inaccurate
cells along their trajectories. This may become observable for extremely low false alarm rates and very large
temporal window sizes. To prevent this, we assign multiple needles at subpixel proximity to the chosen cell
instead of assigning a single needle to that cell.

A summary of the needle picking are given in the following steps.

Given I1, .., IT

Add new needles

∙ Sort cells q1i : I1(q1i , ) ≥ I1(q1i+1)

∙ Choose needles A1 : {q1i ∣i = 1, .., Nn/T}
∙ Generate hypotheses ∀ q1i ∈ A1, Hi,j : {q1i , .., (gx, gy)i,u,v,t, .., (gx, gy)i,u,v,T } by Eqn. 4

∙ Update likelihoods L(Hi,j) =
∑T
t=1(gx, gy)i,u,v,t

∙ Append queues Ql ← {Hi,j , L(Hi,j)}

Update existing hypotheses

∙ Compute forward motion for Hi,j ∈ qi,t, 1 < t ≤ T
∙ Update likelihoods L(Hi,j)

∙ Update queues Ql

Remove old needles

∙ Remove needles qT+1
i ∈ AT+1

∙ Remove hypotheses Hi, j of qT+1
i

Update time

∙ It ← It−1, At ← At−1, qti ← qt−1i

2.1 Number of Needles

The probability of target existence given the measurement intensity may have different correlation as demon-
strated in figure 3. Consider a measurement scenario where cell intensity values It are not correlated with the
probability of being a target. In other words, the conditional probability function of target existence given the
cell intensity is uniformly distributed imposing all intensity values to have the same probability. Since there is no
direct relation between the observed cell intensities and target probability, we can only select needles randomly
at the current frame, hoping one would hit the target, and generate hypotheses based on those selections. An
expected true detection rate for the N images can be derived as

PTtd = 1−
T∏
t=1

P 1
miss = 1−

(
1− Nn

NbNr

)T
(5)

where P 1
miss is the probability of miss at single image. For instance, to obtain an expected true detection rate

0.5 for the Nr=1000, Nb=100 and T =10, we will need to pick Nn=6697 needles at each frame.



Figure 3. (Left) the target is not correlated with the intensity, (middle) linearly correlated, (right) higher intensity values
much more likely to represent a target.

The target signal is additive to the noise and clutter, thus higher the intensity of a cell gets more likely the
target becomes at that location. For the scenario of the intensity is linearly correlated with the probability of
being target, the probability of miss at a single image is

P 1
miss =

(
1− Nn

NbNr

)2

(6)

When we choose the highest intensity valued cells, we will need Nn=3406 needles (3% of all cells in the image)
at each image to achieve the same PTtd above. Yet, the correlation is much stronger in actual systems resembling
Heaviside function 0.5+�−1 arctan(�[It−I�]) where the equilibrium point I� is defined by the likelihood functions
L(ℎ0∣I�)=L(ℎ1∣I�) and �≈0.01. As an example, using the likelihood computation in the following section, we
require only Nn=70 needles (0.07% of all cells in the image).

2.2 Likelihood Ratio Computation

Our method does not require signal distributions to be known beforehand and a likelihood ratio to be employed.
Still, certain systems assume noise nt to be a Rayleigh distribution as it corresponds to the Euclidean distance
between two orthogonal, normally distributed random variables, and clutter ct to be a Weibull random variable.
Except the SNR of the target signal often the other distribution parameters are not fully specified.

The likelihood ratio is the ratio of the null and target existence hypotheses functions. The null hypothesis
ℎ0 represents the probability of no target exists in a given cell. This can be modeled as the distribution of the
sum of Rayleigh and Weibull random variables corresponding to the clutter and channel noise

p(ℎ0) : p(c+ n) (7)

where we assumed random variables ct and nt maintain their distribution properties between the measurements,
thus we drop the t index (clutter, or course, may change in time). Given two independent random variables c
and n with densities p(c) and p(n), the probability distribution density for the random variable r = c + n is
defined as the convolution operator

p(r) = p(n) ∗ p(c). (8)

However, neither of the noise and clutter distribution parameters are known to the system and we cannot directly
apply the convolution operator. It is possible to approximate this summed distribution as we are given relatively
large amount of data (1000×100 cells) where possible targets may have only insignificant statistical contribution
in it. Hence, an arbitrary shape envelope can be fit to the measurements exploiting the strong law of large
numbers by kernel density estimation in terms of Gaussian kernels

p(r) =
1

K�

K∑
k=1

 

(
r − rk
�

)
,  

(
r − rk
�

)
=

1√
2�
e−

(r−rk)2

2�2 (9)

where  is a zero mean Gaussian kernel, and K is the total number of kernels used. This type of kernel fitting,
in general, can model any nonlinear distributions.



Figure 4. Single target detection curves for SNR + SCR less than 7 dB.

The second hypothesis, ℎ1, corresponds to the probability of observing a target

p(ℎ1) : p(s+ c+ n) = p(s+ ℎ0) (10)

which corresponds to the distribution of sum of two Rayleigh and one Weibull random variables in case the
target random variable is Rayleigh distributed. Once the distribution function of the null hypothesis is obtained,
it is numerically convoluted with the target density function where the value of this parameter comes from the
working operating point. After both distributions of the null and target hypotheses are estimated, a log likelihood
decision rule is applied to compute the likelihood ration for a cell.

3. DETECTION PERFORMANCE

We tested various scenarios to fully investigate the target detection performance of the needle picking algorithm.
Note that, detection of the targets also provides target motion trajectories.

To generate the signal we adopted the following settings (none is known by the detection algorithm): target
Swerling case is 1 (target response varies from image to image and along the range), both clutter and noise are
apparent in the signal, clutter is Weibull distributed, noise is Rayleigh distributed, SNR is 20 dB, and SCR: 7
dB (overall signal to clutter plus noise ratio is much less than 7 dB). Targets move linearly at random velocities
that is upper bounded to [ẋmax, ẏmax], which is set to [2, 2] cell/image. Target direction is randomly assigned.

In our experiments, the image size [Nr×Nb] to [1000×100]. We used Nsets = 100 ∼ 1000 different, non-
overlapping temporal windows, each containing T =10 images. In other words, the false alarm rate can go down
to 1 over Nsets×Nr×Nb, i.e. to 10−8.The number of targets is chosen randomly for each set from 1 to 5.

Note that, target speed, target direction, the number of targets, noise and clutter parameters, as well as their
shapes are unknown to the needle picking method. We applied the same threshold all sets to obtain objective
and practically applicable results. We generated the detection performance curves by changing the threshold
value. For comparisons, we implemented an adaptive CFAR technique.

Figure 4 shows the performance graphs of the needle picking, the particle filter,9 and CFAR when there is
a single target in the measurements. As visible, the needle picking achieves 55% detection rate at 10−6 false
alarm rate while the adaptive CFAR can only provide 8%. The particle filter has many parameters to fine
tune. Its performance deteriorates for the low false alarm rates by constructing false trajectories in very low
SNR measurements. Figure 5 gives the performance graphs of both algorithms for the multiple targets in the



Figure 5. Multiple target detection curves for SNR + SCR less than 7 dB.

measurements. As visible, the needle picking achieves 51.5% detection rate at 10−6 false alarm rate while the
adaptive CFAR 5%.

We also observed that the performance may be higher for vertical (on range) and horizontal (on beam) target
motions. Since we accumulate the hypotheses along the candidate trajectories, our candidate hypotheses do not
change the trajectory points when the motion is vertical or horizontal regardless of the speed. However, for
random directions, the chosen points may be slightly different than the round operator response (using bilinear
interpolation this issue can be resolved). We use a quantized grid in to accumulate likelihoods, there is a chance
that we may choose the hypotheses one or two points off from the actual trajectory, which may reflect on the
performance curve. For random direction and speed, the hypothesis space covers all possible motions, thus, the
grid resolution may be increased.

3.1 Computational Load

The Bayesian estimator is recursively defines the probability of the target occupying a particular location by
the superposition of all of the possible paths to that position. The complexity of constructing the values for
this space of motion trajectories is O((NrNb)

T ) for the brute force application and O(NrNb(K
T )) for sparse

solution, where M is the bins of the quantized grid K ≪ NrNb without considering the cost of finding the
maxima in this space. Besides, imposing linear or other motion models is difficult in Bayesian estimator, and
the algorithm may not fit into memory either. The dynamic programming is a batch processor that finds the
most likely sequence of states by forward propagation through states followed by backward linkage. The cost is
approximately O(NrNbTM).

On the other hand, the needle picking requires O(NnT
2K) computations.The load of the PMHT depends

on the number of alive tracks (thousands), which is comparable to the needle picking. For K = 25, Nn = 100,
Bayesian estimator involves 2510×105, the dynamic programming 5×107, and the needle picking 2.5×105 opera-
tions. In addition both Bayesian and dynamic programming are recursive, however to our advantage, the needle
picking is parallelizable, thus, it enables GPU implementations. The algorithm runs at 250 windows/second on
a NVIDIA ATX GPU using CUDA.
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