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Abstract

This paper investigates the transformability of an unforced multi-output nonlinear system to
a multi-output observer form. The existence conditions of an output transformation and a
change of state coordinates are presented in a more concise form than those given in litera-
tures. Given an output transformation, verifying these conditions can reveal if the unforced
system is transformable to the observer form. Necessary conditions on the output transfor-
mation are given for the single output and multi-output nonlinear systems. These necessary
conditions are stated as a set of first order partial differential equations, which are relatively
easy to solve and potentially useful to obtain the output transformation candidates.
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On the output transformation to an observer form

Yebin Wang, Alan F. Lynch, and Scott A. Bortoff

Abstract— This paper investigates the transformability of of an output transformation and a change of state coordinate

an unforced multi-output nonlinear system to a multi-output  which transform a multi-output system into the observer
observer form. The existence conditions of an output transfr- form are given in Section Ill. Necessary conditions for

mation and a change of state coordinates are presented in a L

more concise form than those given in literatures. Given an the outpqt transformation 'S_ presented to add_ress the non-
output transformation, verifying these conditions can reweal if ~ constructive nature of the existence conditions in Seduon

the unforced system is transformable to the observer form. The application of the proposed result to a perspectivesyst

Necessary conditions on the output transformation are give s jllustrated in Section V. Conclusion is made in VI.
for the single output and multi-output nonlinear systems. These

necessary conditions are stated as a set of first order partia [l. PROBLEM STATEMENT

differential equations, which are relatively easy to solveand A. Background and Notation

potentially useful to otain the output transformation candidates. i ]
Given a C° vector field f : R — R"™, and a C°

function o : R" — R, the functionL;a = 92 is the
Lie derivative of o along f. The differential or gradient
We consider observer design for uncontrolled multi-outpusf a C* function a : R* — R is denotedda and has

I. INTRODUCTION

systems in state space form local coordinate descriptioda = 42 = (§&,...,5%).
s Given a C° one-formw : R® — R"™ and a vector field
¢= 1), 1) f : R* — R, the inner productof w and f is the
y = h(C) function (w(¢), f(¢)) = > iy wi(¢) fi(¢), wherew;, f; are

where ¢ denotesd¢/dt, ¢ = (G, ,¢a)T € R™ is the the components ofv, f in local coordinates, respectively.

state, f : R® — R is a C° vector field, andh : R — Thg Lie bracketof two C>* vector fieldsf,g : R* — R" is

RP is a C° output function. The well-established exactde'c'ned as dg of

error linearization nonlinear observer design method ases [f.g] = acl ~ B_Cg'

(LTI) state estimate error dynamics in OF coordinates [14]; |\|/den twotr?m;)(ilth funcftionsyiﬁhan;j _tWO smooth vector
[2]. Significant effort has been placed on extending thi elds f, g, the following formula holds:
original work for single-output continuous-time systerbS]| laf, Bg) = af|f,g] + aLs(B)g — BLy(a) f.

[25], [7], [23], [18], [11], [13], [19], [16], [3]. Some of . i B o1
the extensions are achieved by eliminating constraints ﬁepeatgd L'eo brackets are def|nedaa1§g =1/, ad,f 9l,
> 1 with ad;g = 0. See [8], [21] for further details.

the target normal forms. For instance, the block triangul T g T > I identi i 5. 1 is the K K
observer form in [23] allows a more general dependence I(? Ik ((;n;)tes xR e|nt|ty mitm}(t' ik 1S the roTnecier
the system’s output injection vector. Other approachefyapp elta. Other notation include(-) = (h1(-), ..., hp())" 5 =

T — (= _\T . .
immersion techniques or dynamic error linearization [17]@1’---; Yp)', andy = (y1,...,yp)" . For simplicity, we
[22], [1]. abbreviateh(-) to h.

Observer Form (OF) to obtain stable Linear Time—lnvarianf
i

Given the wide array of nonlinear observer design methods. Problem Statement
that have been developed, OF-based methods benefit from \ye first introduce the definition of observability. Diffeten

- a relatively straightforward design procedure based ofiotions of observability exist [6], [20], [23]. We take the
normal form coordinates definition which is based on uniquely defined observability
« potentially larger regions of attraction. indices and ensures a single normal form. We recite the
Albeit for a different class of systems, these attributesugdh ~ definition in [20].
be compared favorably with those of alternatives [11], [13] Definition 2.1: System (1) is locally observable i, with
[5]. observability indices\;, 1 < i < p, if
In Section Il we recall some fundament_al concepts fa_ndjlm(span{LJf"ldhi(C), 1<j<i:1<i<ph)=n, (2)
state the problem to be discussed. The existence conditions

for every( € Uy. O
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to be a global diffeomorphism, in addition to satisfying (2) 5) Lie bracket condition holds, i.e.,
for all { € R™, it also requires condition [24], [12]

1<i4,j<p;
dim IOl = o0 [ad® 5", ad 57| =0, Jo<k<n-1 (8
holds. O 0<I<N -1

Problem 2.3:Given the locally (globally) observable un- 1o output transformatiot (y)
forced nonlinear system (1), find the existence conditions
of an output transformatiop = ¥(y) and a local (global) oV (y)

is obtained by solving PDEs

. . ) — =1I,. 9
diffeomorphismz = ®({) s.t. system is locally (globally) Ay aly) =1y ©)
transformable to Observer Form (OF) The state transformatio®(¢) is obtained by solving PDEs

z2=Az+~(9),

- @ 92O (o1 el

y=Cz, 6—§(ad_f g,-~-,g,-~-,ad_f g,...,g)—fn-
where matricesd € R"*", C' € RP*™ are block diagonal (10)

Remark 3.2:There exists a global diffeomorphism if, and

_ H 1
A = blockdiag A, . .., AP), () only if, Conditions (1)~(5) holds i®" and, in addition, the

C = blockdiagC?, ..., C?), vector fields
and each pair oF, 1<k<p,
010 -0 ad® g', 0<k<\-L1<i<p
001 - 0 - TEES T
A= o o | erNN are complete. O
(') O O ' 1 ’ Remark 3.3:Condition 4) in Theorem 3.1 ensures that an
00 0 0 output transformation?(y) can be solved. Particularly, (7)
. Lox guarantees the solvability of the PDE system (10), and (6)
C'=(1 0 0 --- 0)eR™N is necessary for = ®(¢) to be a local diffeomorphism]
is in dual Brunovsky Form, and\;,1 < i < p are Th_e_introduction of an output tzansformation changes the
observability indices in [20]. def|n!t!on of the starting vectoy . and results in extra
conditions (6) and (7). The following proof therefore only
[11. EXISTENCE CONDITIONS shows the necessity of these additional conditions. For the
We introduce two co-distribution§);, Q [25] proof of the rest conditions, readers are referred to [Z4]].[

Proof: Assume system (1) is transformed into (3) by

R k _
Qi = spaddLh,(¢),0 <k <X\ —1,1 <r <p} a change of state coordinates= ®(¢) and an output trans-

\{dL’f\f‘_lhi(C)}, 1<i<p, formationy = ¥(y). The original output, inz-coordinates,
Q = spar{dLkh,(¢),0 <k < A\ — 1,1 <r < p}. is expressed as
The existence conditions of (3) are given by the following y =081, Tp) = Bz1,...,2}).

theorem. . B o o _
Theorem 3.1:There exists an output transformatign=  Evidently, 3(y) = ¥~'(y). This implies that in thez-

¥(y) and a local diffeomorphism = &(¢), transforming Ccoordinates 5 5 5

system (1) into an OF (3) if, and only if, ifY, y_ [ Y _y] ,

1) the system is locally observable and,--- , )\, are 0z 02! 0z
constant; wherez! = (z},...,2} )", and
2) Qi=Q:iNQ. ,
3) the vector fieldg?, - - - , g” satisfying oy a; 0 .
. : PXA;
Lo LEh; = ()8 ;6pr,— 1<4,j<p FEC € R (11)
gt = QIO g < < — 1, aj 0
(5) It is clear that (11) implies conditions about the starting
4) The matrix vector ¢, We rewrite (11) as
Oz} . 0/1) 8 ) a
a(y): Z(al,...,ap) (6) <dy1,8—zi>—ai, <dy1’8—z}€> =0, 2<k< A\,
ozzlj c.ooab
is nonsingular, and the Lie bracket condition holds P ' } o
i . Yp, =— ) = Q) Ypy = =0, 2<k<N
[a ,oﬂ] =0, 1<4,j<p. (7 < P 8zi> P < P 8Z}€>



According to the expression of (3), it is easy to verify thatg* can be written as

a ) a N dh/l %] i 0 )
_—g ... _— adM g .
028 gor 0zt Ay 9 : : :
i Ai— —1 7

ALy 'h | | g ol

Applying [20, Thm. A.3.1], we conclude
LyLY gy =al, LyuLhy, =0, 0< k< —2 RSy
g Hf Y1 = Qq, gt fyl — Y, = = A\ T4y
: dhy, * 0
Ly Ly 'yp=oab, LuLhy,=0,0<k<\ -2, A? ) : :

ALy hy | Lgp) L]
which implies that (5) holds in-coordinates. Since (5) is from which we know the starting vector takes the form of
independent of coordinates, we therefore prove the neyessgji — i:1 %% Hence,j* can be solved from
of (5). 2k

As for the necessity of (6), since gt at
1 T M=l =a
(. ) =) =7 M
we have where
oLt oLt
(‘*)\IJ_(y)B_% — Ip_ gmiiyl e gwiiyl
ay 8y 1 P
A= : : =1,
. P A1—1 A1—1
Evidently, a(y) = 3%, we have 6ng§ . 6L51§ Yp
1 P

Hence, it is necessary far(y) to be nonsingular, and the

Therefore, givem!, g’ is uniquely defined in this special
case. O
Remark 3.5:Theorem 3.1 is not constructive because

1) Solving (5) may lead to a starting vectgt which

output transformation is solved from (9). To solve the otitpu depends on}.

transformation from (9), it is equivalent to rectify the t@c
fields o into unit vectors in the-dimensional output space.

2) ol is non-unique, because (6) and (7) are not sufficient
to grantee the uniqueness.

According to the Simultaneous Rectification Theorem [21]'I'his non-constructive feature of Theorem 3.1 is result from

it requires that the vector fields' commute, i.e., (7) should

hold.

the lack of necessary connection betweeand the system
dynamicsf (z). O

Remark 3.4:When applying Theorem 3.1 to transform

system (1) into (3), the key is to construct the starting @ect

IV. NECESSARYCONDITIONS ONOUTPUT

g",1 < k < p. Due to Condition 2) in Theorem 3.1, the local TRANSFORMATIONS

observability of system (1) does not guarantee the soitsabil

of the starting vectoy?, which is defined by

1<4,j<p;

LoiLEh; =6 6k x._1,
g Hflh 3Ok Ai—1 {OSkS)\i_L

When ¢* is well-defined,g* can be expressed as a lineal

To address the weakness of the existence conditions in
constructing the output transformation, we make use of the
Lie bracket condition (8), which implies conditions en
in term of f(z), to establish the necessary conditions on
a. These necessary conditions take the form of first order
PDEs and therefore relatively easy to check and solve. We
rﬁrst consider the single output (SO) case.

combination ofg”, 1 < k < p. We discuss the expression of A Conditions or: the SO Case

g' for the case\; = --- = \,. To simplify the presentation,
we assume system (1) is expressed in observable coordinaé%

g\/ithout loss of generality, we assume the SO system in
servable coordinates

1 T2

’ (12)

In z-coordinates, the equations to solve the starting vector Y=



is transformable to an OF with a state transformaign)  wherez = (z1,...,2,)7, and A, C are in Brunovsky Form.
and output transformation = ¥ (y). That is the new system This implies that the following equations hold

= f(x), oW =ad j(“)W 2<j<n, (16a)
_— / Ly (13) 9zj1 0z;’
y=%y) = — 4y
a(y) %—V:ai(Az+7( 7)) _ad_f%”,, (16b)
1

admits an OF. The necessary conditionsois given in the
following proposition.
Proposition 4.1: A locally observable single output sys-

whereW = ®~1(z), andOW/dz, is the starting vectog.
In z-coordinates, (16b) is rewritten as

tem (13) admits an OF with a state transformatioa ®(z) 9 A — ad™ .7 17
and an output transformatiah= ¥(y) only if, locally 021 95, A2+ () = adZg. (7
n do The left hand side is
dLgLyy = g, dbsy mod {v}, (14) OvoW(y) dy _ dvo(y)
whereg is defined byL, L%y = ad 0<k<n-1 % % O
g ) Ylglpy = QOkn-1, DS ES D= 1 The Lie derivatives of; along the vector fields in both sides
Remark 4.2:To show Proposition 4.1, we verify that
of (17) are
ad™*!g = aad™lg — (i + 1)Ly (a)ad’ " n—
g=o0adZyg =i+ Dly(a)edsg (15) pl) = (dy.0ad” yg —nLs()ad"'g)
mod{adffg,ngSz—l},Ogign—l, (18)

=aly,Lty —nLi(a),
where g is the starting vector of systems (12), and deflneq/here
as: for0 <k <n-1,

p(y) = <dy7a87275(y)> :

Here we apply [8, Lem. 4.1.2] to obtain

<dy, adffg> = L,LY%y.
g =g Taking the differential of (18), we have
We use induction to show (15). Whén= 1, the vector field

LyLky =8n1.

From the definitions ofj, g, we can verify

do
adL, Ly = nd—deh mod {y}
a’d—fg :[_fa Oég]

—aad_sg— Ly(a)g. We therefore show that the condition (14) is necessam.

B. Conditions omx: the MO Case

Similarly, we have A locally observable system (1) does not admit an OF

adﬁfg =[—f,0ad_;g — Lf(c)g] because of the following ‘two reasons:
:aadz_fg —2Ly(a)ad_;g + L?«(Oz)g ;) The stairtlng vect_ogl, 1<4 g p cannot be sql_ved.
5 ) Giveng* well-defined, the Lie bracket condition does
=aad” jg — 2Ly(a)ad_rg mod {g} not hold.
Assuming for3 <i <n — 2, The introduction of an output transformation might lead to
S ‘ the solvability of the start vectors or ensure the Lie bracke
ad’ ;g =aad’ ;g — z'Lf(a)adl:flg condition satisfied. To simplify the problem, we make the
mod {ad'ifg,o <k<i-2), following a§sumptlor_1.
Assumption 4.3Given a locally observable system (1),
we computead”l* the starting vectorg®,1 < i < p are well-defined.
_ _ Proposition 4.4: Given Assumption 4.3, a locally observ-
ad ™! =[-f,aad’ ;g —iLs(a)ad} g] able multi-output system (1) admits an OF with a state
[~f, mod {ad’jfg, 0<k<i—2} transformationz = ®(¢) and an output transformation=

. X W (y) only if, locall
—aad*!g — (i + 1)Ls(a)ad’ ;g (y) only y

; 0
mod {ad]ifg’OSkSZ_l}‘ Zade Lf Yi =N ZZ akd Ly,

k=1r=1
We therefore verify that (15) holds. O ,
" L <i<
The proof of Proposition 4.1 is given as follows. ‘ mod {dy}, 1<i<p,
Proof: Assume system (13) is transformed into an ORvhereg’ is defined by

(19)

1<4,j<p;
0<k<\-—1.

2 =Az +~(y),

LyiLEhj = 8; j0pn 1,
J—C=. gi gl jOF,



By Assumption 4.34° are well-defined. Hence, the start-where we abuse the notatign Taking the differential of

ing vectorsg® can be expressed as above equation, we have
% )
—1 % a
9 = Zakgk. Zade Lf Yi =N\ ZZ defyr mod {dy}.
k=1 k=1r=1
Remark 4.5:Similarly to Remark 4.2, we can verify that We therefore show the necessary conditions:én -
p
ad™lg' = (ajad g’ — (14 1)Ly(a})ad’ ;g V. A PERSPECTIVESYSTEM EXAMPLE

1 ' (20)

mod {ad’ifgi,o <k<i—1}), 0<I<X—1 A perspective dynamic system with three states and two

outputs, derived assuming a calibrated pinhole camera and

When! =1, we have observations of feature points on a rigid object, can be
P written as
i1 ik
ad_g" =| f,;ozkg] . air a2 013 by T
. (= |az azx as|(+ |ba|, y=[0/¢ C/G] .
_ i i iy i as1 az2 ass b3
;(O‘kad—fg Ly(ag)g")- 23)

wherea;;,b;,1 < 4,5 < 3 are constant ands > 0 [10].

Assuming System (23) is observable with observability indices =
L P o ) ) 1 2, =1 proyided(bl—b3§1/C3)2+(b2—b3§2/<_3_)2 75 0.The
ad ;g' = (ajad’ ;9" —1Ls(a})ad' "} g) outputy making system (23) lose observability is called the
k=1 ‘ focus of expansiof®]. Since Condition 2) in Theorem 3.1 is
mod {ad’ifg’, 0<k<Il-2} violated for the casé= 1, g* does not exist. Proposition 4.4
we verify that (20) holds for thé + 1 case. -~ is not directly applicable. We first need to solve an output

transformationy = (1 (), ¥2(y))? such thay! is solvable.

We are ready to give the proof of Proposition 4.4. Condition 2) in Theorem 3.1 yields a PDE

Proof: The proof follows the same procedure as the

SO case. Since system (1) is transformable to an OF by a O 92 (4 — ) + o 992 () — byya) = 0 (24)
change of coordinates= ®(¢) and an output transformation Gy L BT 2 T Osl2) =
7 = ¥(y), we know the following conditions hold Solving (24) gives a solution
ow ow
T:adff—iv 2§j§)\za (213) b3y2—b2
aZj—l sz (o> (y17y2) balbavs —b1)
3(b3y1 — b1)
ow 9 ow
S L (Az+7(p) = ad_; o, (21b) . _
0z 0% 102 With new outputy = (y1, 12), the observable form of system
whereW = ®~'(z), andoW/9z4_ is the starting vectog’. (23) takes the expression
This fact has been shown in [25]. According to Remark 4.5, xd 1
(21b) in z-coordinates is written as = |pi(x)|, y= LC%} ,
9 =~ i i i Vo qXhi—1 i e2(7) 1
-(Az +~v(y)) = arad?,g" — N\, Le(al)ad™ i " ¢* ) ) )
621( 7®) ;( KG9 Flei)adzyg') where the notatiory is reused. GiverL.y; = o1, Ly =

o, applying Proposition 4.4 leads to the following condi-

koo
<k<N\— :
mod {adZg",0 <k < A; — 2}, tions onaj, af, k = {1,2}

which gives
DyoW dy & (o1 +O‘5)agglfpl dz
g y. :Z(aiadii gi—/\iLf(Oéi )adiiilgi) T5
dy 0zt RS k f (22) dal ol dad dad
( h=t =2(=—Ldad + —Ldps + —2da + —2dgps) mod {dy},
mod {ad]ifgi,o <k<\-—2) r oy 0y2 oy Oy
1+ drL,
The Lie derivatives of); along the vector fields on both sides( ;2) 29028 ) 5 )
of (22) are ald M9 %d an d{d
(22) ) (ay1 2+ 5, %2 g, At 5 ¢2) mod {dy},
ply) = Z(a?gLadegiyi - /\iLf(aZ)Ladx?lgi i) Sincey, depends om only, the above conditions are reduced
k=1 ) ) to
p
= Z(aZ;LglL‘?ly/L — /\lLf(O(;C)), (OL} + a%)aLgl (29 9 aa]i aa% Oa? B

oy~ 2o Taw ) am

el
Il
—



Further computation giveg'
4b3/(y1b3 — b1). Denotinga' =

9/0z%, and Ly =
al + o, we have a PDE

2% 1oal
(ylbg — bl) 5[1 81]1 '
Solving the PDE gives
C
A= ———— . CeR\{0}.
s — 1) MOp

From simplicity, we taker} = o? = 0, a3 = 1 s.t.« satisfies
(6) and (7). Solving (9) gives the output transformatian=
1/(by — bsy1). Work [4] has shown that system (23) admits
an OF (3) with the output transformatign= (v, )7 and
a local diffeomorphism: = ®(().

VI. CONCLUSION

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

This paper discussed the existence conditions under whigl)
an unforced multi-output nonlinear system can be trans-
formed into a multi-output observer form by an outpu,g;
transformation and a change of state coordinates. Differen
from the existing work without considering output trans{21]
formation, Lie bracket conditions in the output space arg,
imposed to ensure the solvability of output transformation
candidates. Given an output transformation, verifyingséhe
conditions can reveal if the unforced system is transfotmab'?’
to the observer form. Existence conditions however are ngts]
constructive in the sense that the output transformation ca
not be solved explicitly. Necessary conditions on the outpy,s

transformation candidates are given for the single outpdt a
multi-output nonlinear systems. These necessary conditio
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