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Abstract
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a multi-output observer form. The existence conditions of an output transformation and a
change of state coordinates are presented in a more concise form than those given in litera-
tures. Given an output transformation, verifying these conditions can reveal if the unforced
system is transformable to the observer form. Necessary conditions on the output transfor-
mation are given for the single output and multi-output nonlinear systems. These necessary
conditions are stated as a set of first order partial differential equations, which are relatively
easy to solve and potentially useful to obtain the output transformation candidates.
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On the output transformation to an observer form

Yebin Wang, Alan F. Lynch, and Scott A. Bortoff

Abstract— This paper investigates the transformability of
an unforced multi-output nonlinear system to a multi-output
observer form. The existence conditions of an output transfor-
mation and a change of state coordinates are presented in a
more concise form than those given in literatures. Given an
output transformation, verifying these conditions can reveal if
the unforced system is transformable to the observer form.
Necessary conditions on the output transformation are given
for the single output and multi-output nonlinear systems. These
necessary conditions are stated as a set of first order partial
differential equations, which are relatively easy to solveand
potentially useful to otain the output transformation candidates.

I. I NTRODUCTION

We consider observer design for uncontrolled multi-output
systems in state space form

ζ̇ = f(ζ),

y = h(ζ)
(1)

where ζ̇ denotesdζ/dt, ζ = (ζ1, · · · , ζn)T ∈ R
n is the

state,f : R
n → R

n is a C∞ vector field, andh : R
n →

R
p is a C∞ output function. The well-established exact

error linearization nonlinear observer design method usesan
Observer Form (OF) to obtain stable Linear Time-Invariant
(LTI) state estimate error dynamics in OF coordinates [14],
[2]. Significant effort has been placed on extending this
original work for single-output continuous-time systems [15],
[25], [7], [23], [18], [11], [13], [19], [16], [3]. Some of
the extensions are achieved by eliminating constraints in
the target normal forms. For instance, the block triangular
observer form in [23] allows a more general dependence in
the system’s output injection vector. Other approaches apply
immersion techniques or dynamic error linearization [17],
[22], [1].

Given the wide array of nonlinear observer design methods
that have been developed, OF-based methods benefit from

• a relatively straightforward design procedure based on
normal form coordinates

• potentially larger regions of attraction.

Albeit for a different class of systems, these attributes should
be compared favorably with those of alternatives [11], [13],
[5].

In Section II we recall some fundamental concepts and
state the problem to be discussed. The existence conditions
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of an output transformation and a change of state coordinates
which transform a multi-output system into the observer
form are given in Section III. Necessary conditions for
the output transformation is presented to address the non-
constructive nature of the existence conditions in SectionIV.
The application of the proposed result to a perspective system
is illustrated in Section V. Conclusion is made in VI.

II. PROBLEM STATEMENT

A. Background and Notation

Given a C∞ vector field f : R
n → R

n, and a C∞

function α : R
n → R, the functionLfα = ∂α

∂ζ
f is the

Lie derivative of α along f . The differential or gradient
of a C∞ function α : R

n → R is denoteddα and has
local coordinate descriptiondα = ∂α

∂ζ
= ( ∂α

∂ζ1

, . . . , ∂α
∂ζn

).
Given a C∞ one-formω : R

n → R
n and a vector field

f : R
n → R

n, the inner product of ω and f is the
function 〈ω(ζ), f(ζ)〉 =

∑n
i=1

ωi(ζ)fi(ζ), whereωi, fi are
the components ofω, f in local coordinates, respectively.
The Lie bracketof two C∞ vector fieldsf, g : R

n → R
n is

defined as
[f, g] =

∂g

∂ζ
f −

∂f

∂ζ
g.

Given two smooth functionsα, β and two smooth vector
fields f, g, the following formula holds:

[αf, βg] = αβ[f, g] + αLf (β)g − βLg(α)f.

Repeated Lie brackets are defined asadk
fg = [f, adk−1

f g],
k ≥ 1 with ad0

fg = 0. See [8], [21] for further details.
Ik denotes ak × k identity matrix.δj,k is the Kronecker

delta. Other notation includeh(·) = (h1(·), . . . , hp(·))
T , y =

(y1, . . . , yp)
T , and ȳ = (ȳ1, . . . , ȳp)

T . For simplicity, we
abbreviateh(·) to h.

B. Problem Statement

We first introduce the definition of observability. Different
notions of observability exist [6], [20], [23]. We take the
definition which is based on uniquely defined observability
indices and ensures a single normal form. We recite the
definition in [20].

Definition 2.1: System (1) is locally observable inU0 with
observability indicesλi, 1 ≤ i ≤ p, if

dim(span{Lj−1

f dhi(ζ), 1 ≤ j ≤ λi; 1 ≤ i ≤ p}) = n, (2)

for everyζ ∈ U0. �

Remark 2.2:System (1) is globally observable if
Lj−1

f hi, 1 ≤ j ≤ λi, 1 ≤ i ≤ p are globally defined
coordinates onRn. For the mapping

x = T (ζ) = (h1, · · · , L
λ1−1

f h1, · · · , L
λp−1

f hp)
T



to be a global diffeomorphism, in addition to satisfying (2)
for all ζ ∈ R

n, it also requires condition [24], [12]

lim
‖ζ‖→∞

‖T (ζ)‖ = ∞

holds. �

Problem 2.3:Given the locally (globally) observable un-
forced nonlinear system (1), find the existence conditions
of an output transformation̄y = Ψ(y) and a local (global)
diffeomorphismz = Φ(ζ) s.t. system is locally (globally)
transformable to Observer Form (OF)

ż = Az + γ(ȳ),

ȳ = Cz,
(3)

where matricesA ∈ R
n×n, C ∈ R

p×n are block diagonal

A = blockdiag(A1, . . . , Ap),

C = blockdiag(C1, . . . , Cp),
(4)

and each pair

Ai =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















∈ R
λi×λi ,

Ci =
(

1 0 0 · · · 0
)

∈ R
1×λi

is in dual Brunovsky Form, andλi, 1 ≤ i ≤ p are
observability indices in [20].

III. E XISTENCE CONDITIONS

We introduce two co-distributionsQi, Q [25]

Qi = span{dLk
fhr(ζ), 0 ≤ k ≤ λi − 1, 1 ≤ r ≤ p}

\{dLλi−1

f hi(ζ)}, 1 ≤ i ≤ p,

Q = span{dLk
fhr(ζ), 0 ≤ k ≤ λr − 1, 1 ≤ r ≤ p}.

The existence conditions of (3) are given by the following
theorem.

Theorem 3.1:There exists an output transformationȳ =
Ψ(y) and a local diffeomorphismz = Φ(ζ), transforming
system (1) into an OF (3) if, and only if, inU0

1) the system is locally observable andλ1, · · · , λp are
constant;

2) Qi = Qi

⋂

Q.
3) the vector fieldsg1, · · · , gp satisfying

LḡiLk
fhj = αi

j(y)δi,jδk,λi−1,

{

1 ≤ i, j ≤ p;

0 ≤ k ≤ λi − 1,
(5)

4) The matrix

α(y) =







α1
1 . . . αp

1

...
. . .

...
α1

p . . . αp
p






= (α1, . . . , αp) (6)

is nonsingular, and the Lie bracket condition holds
[

αi, αj
]

= 0, 1 ≤ i, j ≤ p. (7)

5) Lie bracket condition holds, i.e.,

[

adk
−f ḡ

i, adl
−f ḡ

j
]

= 0,











1 ≤ i, j ≤ p;

0 ≤ k ≤ λi − 1;

0 ≤ l ≤ λj − 1.

(8)

The output transformationΨ(y) is obtained by solving PDEs

∂Ψ(y)

∂y
α(y) = Ip. (9)

The state transformationΦ(ζ) is obtained by solving PDEs

∂Φ(ζ)

∂ζ

(

adλ1−1

−f ḡ1, · · · , ḡ1, · · · , ad
λp−1

−f ḡp, . . . , ḡp
)

= In.

(10)
Remark 3.2:There exists a global diffeomorphism if, and

only if, Conditions (1)–(5) holds inRn and, in addition, the
vector fields

αk, 1 ≤ k ≤ p,

adk
−f ḡ

i, 0 ≤ k ≤ λi − 1; 1 ≤ i ≤ p

are complete. �

Remark 3.3:Condition 4) in Theorem 3.1 ensures that an
output transformationΨ(y) can be solved. Particularly, (7)
guarantees the solvability of the PDE system (10), and (6)
is necessary forz = Φ(ζ) to be a local diffeomorphism.�

The introduction of an output transformation changes the
definition of the starting vectorgi, and results in extra
conditions (6) and (7). The following proof therefore only
shows the necessity of these additional conditions. For the
proof of the rest conditions, readers are referred to [25], [20].

Proof: Assume system (1) is transformed into (3) by
a change of state coordinatesz = Φ(ζ) and an output trans-
formation ȳ = Ψ(y). The original output, inz-coordinates,
is expressed as

y = β(ȳ1, . . . , ȳp) = β(z1
1 , . . . , z

p
1).

Evidently, β(ȳ) = Ψ−1(ȳ). This implies that in thez-
coordinates

∂y

∂z
=

[

∂y

∂z1
, . . . ,

∂y

∂zp

]

,

wherezi = (zi
1, . . . , z

i
λi

)T , and

∂y

∂zi
=







αi
1 0
...

...
αi

p 0






∈ R

p×λi . (11)

It is clear that (11) implies conditions about the starting
vector ḡi. We rewrite (11) as

〈

dy1,
∂

∂zi
1

〉

= αi
1,

〈

dy1,
∂

∂zi
k

〉

= 0, 2 ≤ k ≤ λi,

...
〈

dyp,
∂

∂zi
1

〉

= αi
p,

〈

dyp,
∂

∂zi
k

〉

= 0, 2 ≤ k ≤ λi.



According to the expression of (3), it is easy to verify that

∂

∂zi
λi

= ḡi, · · · ,
∂

∂zi
1

= adλi−1

−f ḡi.

Applying [20, Thm. A.3.1], we conclude

LḡiLλi−1

f y1 = αi
1, LḡiLk

fy1 = 0, 0 ≤ k ≤ λi − 2,

...

LḡiLλi−1

f yp = αi
p, LḡiLk

fyp = 0, 0 ≤ k ≤ λi − 2,

which implies that (5) holds inz-coordinates. Since (5) is
independent of coordinates, we therefore prove the necessity
of (5).

As for the necessity of (6), since

(z1
1 , . . . , z

p
1)T = Ψ(y) = ȳ,

we have

∂Ψ(y)

∂y

∂y

∂ȳ
= Ip.

Evidently,α(y) = ∂y
∂ȳ

, we have

∂Ψ(y)

∂y
α(y) = Ip.

Hence, it is necessary forα(y) to be nonsingular, and the
output transformation is solved from (9). To solve the output
transformation from (9), it is equivalent to rectify the vector
fieldsαi into unit vectors in thep-dimensional output space.
According to the Simultaneous Rectification Theorem [21],
it requires that the vector fieldsαi commute, i.e., (7) should
hold.

Remark 3.4:When applying Theorem 3.1 to transform
system (1) into (3), the key is to construct the starting vector
ḡk, 1 ≤ k ≤ p. Due to Condition 2) in Theorem 3.1, the local
observability of system (1) does not guarantee the solvability
of the starting vectorgi, which is defined by

LgiLk
fhj = δi,jδk,λi−1,

{

1 ≤ i, j ≤ p;

0 ≤ k ≤ λi − 1,

When gi is well-defined,ḡi can be expressed as a linear
combination ofgk, 1 ≤ k ≤ p. We discuss the expression of
ḡi for the caseλ1 = · · · = λp. To simplify the presentation,
we assume system (1) is expressed in observable coordinates

ẋ = f(x),

y = h(x).

In x-coordinates, the equations to solve the starting vector

ḡk can be written as




































dh1

...
dLλi−1

f h1

...

dhp

...
dLλi−1

f hp







































































∗
...
ḡi
1

...

∗
...
ḡi

p



































=



































0
...
αi

1

...

0
...
αi

p



































,

from which we know the starting vector takes the form of
ḡi =

∑p

k=1
ḡi

k
∂

∂xk
λk

. Hence,ḡi can be solved from

Λ







ḡi
1

...
ḡi

p






=







αi
1

...
αi

p






= αi,

where

Λ =













∂L
λ1−1

f
y1

∂x1

λ1

. . .
∂L

λ1−1

f
y1

∂x
p

λp

...
.. .

...
∂L

λ1−1

f
yp

∂x1

λ1

. . .
∂L

λ1−1

f
yp

∂x
p

λp













= Ip.

Therefore, givenαi, ḡi is uniquely defined in this special
case. �

Remark 3.5:Theorem 3.1 is not constructive because

1) Solving (5) may lead to a starting vectorḡi which
depends onαi

j .
2) αi

j is non-unique, because (6) and (7) are not sufficient
to grantee the uniqueness.

This non-constructive feature of Theorem 3.1 is result from
the lack of necessary connection betweenα and the system
dynamicsf(x). �

IV. N ECESSARYCONDITIONS ON OUTPUT

TRANSFORMATIONS

To address the weakness of the existence conditions in
constructing the output transformation, we make use of the
Lie bracket condition (8), which implies conditions onα
in term of f(x), to establish the necessary conditions on
α. These necessary conditions take the form of first order
PDEs and therefore relatively easy to check and solve. We
first consider the single output (SO) case.

A. Conditions onα: the SO Case

Without loss of generality, we assume the SO system in
observable coordinates







ẋ1

...
ẋn






=







x2

...
ϕ(x)






,

y = x1

(12)



is transformable to an OF with a state transformationΦ(x)
and output transformation̄y = Ψ(y). That is the new system

ẋ = f(x),

ȳ = Ψ(y) =

∫

1

α(y)
dy

(13)

admits an OF. The necessary conditions onα is given in the
following proposition.

Proposition 4.1:A locally observable single output sys-
tem (13) admits an OF with a state transformationz = Φ(x)
and an output transformation̄y = Ψ(y) only if, locally

dLḡL
n
fy =

n

α

dα

dy
dLfy mod {y}, (14)

whereḡ is defined byLḡL
k
fy = αδk,n−1, 0 ≤ k ≤ n− 1.

Remark 4.2:To show Proposition 4.1, we verify that

adi+1

−f ḡ = αadi+1

−f g − (i+ 1)Lf (α)adi
−fg

mod {adk
−fg, 0 ≤ k ≤ i− 1}, 0 ≤ i ≤ n− 1,

(15)

whereg is the starting vector of systems (12), and defined
as: for0 ≤ k ≤ n− 1,

LgL
k
fy =δk,n−1.

From the definitions of̄g, g, we can verify

ḡ = αg.

We use induction to show (15). Whenk = 1, the vector field

ad−f ḡ =[−f, αg]

=αad−fg − Lf(α)g.

Similarly, we have

ad2
−f ḡ =[−f, αad−fg − Lf (α)g]

=αad2
−fg − 2Lf(α)ad−fg + L2

f (α)g

=αad2
−fg − 2Lf(α)ad−fg mod {g}

Assuming for3 ≤ i ≤ n− 2,

adi
−f ḡ =αadi

−fg − iLf(α)adi−1

−f g

mod {adk
−fg, 0 ≤ k ≤ i− 2},

we computeadi+1

−f ḡ

adi+1

−f ḡ =[−f, αadi
−fg − iLf (α)adi−1

−f g]

[−f, mod {adk
−fg, 0 ≤ k ≤ i− 2}]

=αadi+1

−f g − (i+ 1)Lf(α)adi
−fg

mod {adk
−fg, 0 ≤ k ≤ i− 1}.

We therefore verify that (15) holds. �

The proof of Proposition 4.1 is given as follows.
Proof: Assume system (13) is transformed into an OF

ż =Az + γ(ȳ),

ȳ =Cz,

wherez = (z1, . . . , zn)T , andA,C are in Brunovsky Form.
This implies that the following equations hold

∂W

∂zj−1

= ad−f

∂W

∂zj

, 2 ≤ j ≤ n, (16a)

∂W

∂z

∂

∂z1
(Az + γ(ȳ)) = ad−f

∂W

∂z1
, , (16b)

whereW = Φ−1(z), and∂W/∂zn is the starting vector̄g.
In z-coordinates, (16b) is rewritten as

∂

∂z1
(Az + γ(ȳ)) = adn

−f ḡ. (17)

The left hand side is

∂γ ◦ Ψ(y)

∂y

∂y

∂ȳ
=
∂γ ◦ Ψ(y)

∂y
α.

The Lie derivatives ofy along the vector fields in both sides
of (17) are

ρ(y) =
〈

dy, αadn
−fg − nLf(α)adn−1

−f g
〉

=αLgL
n
f y − nLf(α),

(18)

where

ρ(y) =

〈

dy, α
∂γ ◦ Ψ(y)

∂y

〉

.

Here we apply [8, Lem. 4.1.2] to obtain
〈

dy, adn
−fg

〉

= LgL
n
f y.

Taking the differential of (18), we have

αdLgL
n
fy = n

dα

dy
dLfh mod {y}

We therefore show that the condition (14) is necessary.

B. Conditions onα: the MO Case

A locally observable system (1) does not admit an OF
because of the following two reasons:

1) The starting vectorgi, 1 ≤ i ≤ p cannot be solved.
2) Givengi well-defined, the Lie bracket condition does

not hold.
The introduction of an output transformation might lead to
the solvability of the start vectors or ensure the Lie bracket
condition satisfied. To simplify the problem, we make the
following assumption.

Assumption 4.3:Given a locally observable system (1),
the starting vectorsgi, 1 ≤ i ≤ p are well-defined.

Proposition 4.4:Given Assumption 4.3, a locally observ-
able multi-output system (1) admits an OF with a state
transformationz = Φ(ζ) and an output transformation̄y =
Ψ(y) only if, locally

p
∑

k=1

αi
kdLgiLλi

f yi =λi

p
∑

k=1

p
∑

r=1

∂αi
k

∂yr

dLfyr

mod {dy}, 1 ≤ i ≤ p,

(19)

wheregi is defined by

LgiLk
fhj = δi,jδk,λi−1,

{

1 ≤ i, j ≤ p;

0 ≤ k ≤ λi − 1.



By Assumption 4.3,gi are well-defined. Hence, the start-
ing vectorsḡi can be expressed as

ḡi =

p
∑

k=1

αi
kg

k.

Remark 4.5:Similarly to Remark 4.2, we can verify that

adl+1

−f ḡ
i =

p
∑

k=1

(αi
kadl+1

−f g
i − (l + 1)Lf(αi

k)adl
−fg

i)

mod {adk
−fg

i, 0 ≤ k ≤ l− 1}, 0 ≤ l ≤ λi − 1.

(20)

When l = 1, we have

ad−f ḡ
i =[−f,

p
∑

k=1

αi
kg

k]

=

p
∑

k=1

(αi
kad−fg

i − Lf(αi
k)gi).

Assuming

adl
−f ḡ

i =

p
∑

k=1

(αi
kadl

−fg
i − lLf(αi

k)adl−1

−f g
i)

mod {adk
−fg

i, 0 ≤ k ≤ l − 2},

we verify that (20) holds for thel + 1 case. �

We are ready to give the proof of Proposition 4.4.
Proof: The proof follows the same procedure as the

SO case. Since system (1) is transformable to an OF by a
change of coordinatesz = Φ(ζ) and an output transformation
ȳ = Ψ(y), we know the following conditions hold

∂W

∂zi
j−1

= ad−f

∂W

∂zi
j

, 2 ≤ j ≤ λi, (21a)

∂W

∂z

∂

∂zi
1

(Az + γ(ȳ)) = ad−f

∂W

∂zi
1

, (21b)

whereW = Φ−1(z), and∂W/∂zi
λi

is the starting vector̄gi.
This fact has been shown in [25]. According to Remark 4.5,
(21b) in z-coordinates is written as

∂

∂zi
1

(Az + γ(ȳ)) =

p
∑

k=1

(αi
kadλi

−fg
i − λiLf (αi

k)adλi−1

−f gi)

mod {adk
−fg

i, 0 ≤ k ≤ λi − 2},

which gives

∂γ ◦ Ψ

∂y

∂y

∂zi
1

=

p
∑

k=1

(αi
kadλi

−fg
i − λiLf (αi

k)adλi−1

−f gi)

mod {adk
−fg

i, 0 ≤ k ≤ λi − 2}.

(22)

The Lie derivatives ofyi along the vector fields on both sides
of (22) are

ρ(y) =

p
∑

k=1

(αi
kLad

λi
−f

giyi − λiLf (αi
k)L

ad
λi−1

−f
giyi)

=

p
∑

k=1

(αi
kLgiLλi

f yi − λiLf(αi
k)),

where we abuse the notationρ. Taking the differential of
above equation, we have

p
∑

k=1

αi
kdLgiLλi

f yi =λi

p
∑

k=1

p
∑

r=1

∂αi
k

∂yr

dLfyr mod {dy}.

We therefore show the necessary conditions onαi.

V. A PERSPECTIVESYSTEM EXAMPLE

A perspective dynamic system with three states and two
outputs, derived assuming a calibrated pinhole camera and
observations of feature points on a rigid object, can be
written as

ζ̇ =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 ζ +





b1
b2
b3



 , y =
[

ζ1/ζ3 ζ2/ζ3
]T
,

(23)
whereaij , bi, 1 ≤ i, j ≤ 3 are constant andζ3 > 0 [10].
System (23) is observable with observability indicesλ1 =
2, λ2 = 1 provided(b1−b3ζ1/ζ3)2+(b2−b3ζ2/ζ3)

2 6= 0. The
outputy making system (23) lose observability is called the
focus of expansion[9]. Since Condition 2) in Theorem 3.1 is
violated for the casei = 1, g1 does not exist. Proposition 4.4
is not directly applicable. We first need to solve an output
transformation̄y = (ψ1(y), ψ2(y))

T such thatg1 is solvable.
Condition 2) in Theorem 3.1 yields a PDE

∂ψ2

∂y1
(b1 − b3y1) +

∂ψ2

∂y2
(b2 − b3y2) = 0. (24)

Solving (24) gives a solution

ψ2(y1, y2) =
b3y2 − b2

b3(b3y1 − b1)
.

With new outputy = (y1, ψ2), the observable form of system
(23) takes the expression

ẋ =





x1
2

ϕ1(x)
ϕ2(x)



 , y =

[

x1
1

x2
1

]

,

where the notationy is reused. GivenL2
fy1 = ϕ1, Lfy2 =

ϕ2, applying Proposition 4.4 leads to the following condi-
tions onα1

k, α
2
k, k = {1, 2}

(α1
1 + α1

2)
∂Lg1ϕ1

∂x1
2

dx1
2

= 2(
∂α1

1

∂y1
dx1

2 +
∂α1

1

∂y2
dϕ2 +

∂α1
2

∂y1
dx1

2 +
∂α1

2

∂y2
dϕ2) mod {dy},

(α2
1 + α2

2)dLg2ϕ2

= 2(
∂α2

1

∂y1
dx1

2 +
∂α2

1

∂y2
dϕ2 +

∂α2
2

∂y1
dx1

2 +
∂α2

2

∂y2
dϕ2) mod {dy},

Sinceϕ2 depends ony only, the above conditions are reduced
to

(α1
1 + α1

2)
∂Lg1ϕ1

∂x1
2

= 2(
∂α1

1

∂y1
+
∂α1

2

∂y1
),

∂α2

∂y1
= 0.



Further computation givesg1 = ∂/∂x1
2, and Lg1ϕ1 =

4b3/(y1b3 − b1). Denotingᾱ1 = α1
1 + α1

2, we have a PDE

2b3
(y1b3 − b1)

=
1

ᾱ1

∂ᾱ1

∂y1
.

Solving the PDE gives

ᾱ1 =
C

(y1b3 − b1)2
, C ∈ R\{0}.

From simplicity, we takeα1
2 = α2

1 = 0, α2
2 = 1 s.t.α satisfies

(6) and (7). Solving (9) gives the output transformationψ1 =
1/(b1 − b3y1). Work [4] has shown that system (23) admits
an OF (3) with the output transformation̄y = (ψ1, ψ2)

T and
a local diffeomorphismz = Φ(ζ).

VI. CONCLUSION

This paper discussed the existence conditions under which
an unforced multi-output nonlinear system can be trans-
formed into a multi-output observer form by an output
transformation and a change of state coordinates. Different
from the existing work without considering output trans-
formation, Lie bracket conditions in the output space are
imposed to ensure the solvability of output transformation
candidates. Given an output transformation, verifying these
conditions can reveal if the unforced system is transformable
to the observer form. Existence conditions however are not
constructive in the sense that the output transformation can
not be solved explicitly. Necessary conditions on the output
transformation candidates are given for the single output and
multi-output nonlinear systems. These necessary conditions
are in the form of first order PDEs and relatively easy to
verify and solve, thus potentially useful to solve the output
transformation.
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