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Abstract

Virtual view synthesis is one of the most important techniques to realize Free viewpoint Tele-
Vision (FTV) and Three-Dimensional (3D) video. In this paper, we propose a view synthesis
method to generate high quality intermediate views in such applications and new evaluation met-
rics named as SPSNR and TPSNR to measure spatial and temporal consistency, respectively. The
proposed view synthesis method consists of five major steps: depth preprocessing, depth-based
3D warping, depth-based histogram matching, base plus assistant view blending, and depth-
based hole-filling. The efficiency of the proposed view synthesis method has been verified by
evaluating the quality of synthesized images with various metrics such as Peak Signal-to-Noise
Ratio (PSNR), Structural SIMilarity (SSIM), DCT-based Video Quality Metric (VQM), and the
newly proposed metrics. We have also confirmed that the synthesized images are objectively and
subjectively natural.
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Abstract— Virtual view synthesis is one of the most important techniques to realize Free viewpoint TeleVision (FTV) 

and Three-Dimensional (3D) video. In this paper, we propose a view synthesis method to generate high quality 

intermediate views in such applications and new evaluation metrics named as SPSNR and TPSNR to measure spatial and 

temporal consistency, respectively. The proposed view synthesis method consists of five major steps: depth preprocessing, 

depth-based 3D warping, depth-based histogram matching, base plus assistant view blending, and depth-based hole-filling. 

The efficiency of the proposed view synthesis method has been verified by evaluating the quality of synthesized images 

with various metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural SIMilarity (SSIM), DCT-based Video Quality 

Metric (VQM), and the newly proposed metrics. We have also confirmed that the synthesized images are objectively and 

subjectively natural.  

 
Index Terms—View synthesis, free viewpoint television (FTV), 3D video, image-based rendering (IBR), evaluation of virtual view 

I. INTRODUCTION 

hree-Dimensional (3D) video provides users with a realistic 3D impression of the scene and is now considered a key 

technology that could spur the next wave of multimedia experiences such as 3D cinema, 3D broadcasting, 3D displays, and 3D 

mobile services [1]-[4].  

The key technical building blocks of the 3D processing chain are coding and rendering. The role of efficient coding becomes 

much more important for 3D systems due to the drastic increase in the volume of data. Some of the past research and 

standardization efforts to address this issue include MPEG-2 Multiview Video Profile (MVP) [5], MPEG-4 Multiple Auxiliary 

Component (MAC) [6], and MPEG/JVT Multiview Video Coding (MVC) [7]-[12]. Recently, MPEG has initiated a work aimed 

specifically towards 3D video applications. While the previous MPEG/JVT standardization activities for MVC was focused on 

compression efficiency improvement for generic multiview coding scenarios, this activity will target a broader technical scope 

including issues such as depth estimation, coding, and rendering. One of the current underlying key design assumptions is the use 

of depth maps along with camera parameters for rendering intermediate views for either free viewpoint navigation or 3D displays.  
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On the other hand, given the ever increasing diversity in 3D services and displays, proper rendering of 3D views is indispensable. 

In other words, it becomes necessary to resample the views and resize each view depending on the number of views and resolutions 

required by the display, respectively. For applications such as FTV [13]-[15] and the case when there are more views to be 

rendered at the display than are actually coded, resampling means generation of virtual views based upon the actual views. The 

problem of generating an arbitrary view of a 3D scene has been heavily addressed in the area of computer graphics. Among the 

techniques for rendering, Image-Based Rendering (IBR) techniques have received much attention lately for rendering real world 

scenes.  These techniques use image rather than geometry as primitives for rendering virtual views and often are classified into 

three categories depending on how much geometric information is used [16]: rendering without geometry, with explicit geometry, 

and with implicit geometry. Techniques such as plenoptic modeling [17], light-field rendering [18], lumigraph [19], and ray-space 

[20], [21] belong to the rendering without geometry. In this approach, the quality of view synthesis usually depends on the baseline 

distance and the synthesis quality increases with the number of available views within a restricted viewing angle. On the other hand, 

an IBR system with depth maps which uses techniques such as 3D warping and Layered-Depth-Images (LDIs) belongs to the 

second category while view morphing and view interpolation as in [22]-[27] belong to the third category as they use the point 

correspondences. Obviously the quality of view synthesis in these explicit/implicit geometry-based rendering approaches largely 

depends on the accuracy of the geometry information.  

In this paper, we propose a new view synthesis algorithm within the aforementioned scope of the FTV and 3D video activities 

[28] and new evaluation metrics to measure the spatial and temporal consistencies of the synthesized views. The proposed view 

synthesis method consists of five major steps: depth preprocessing, depth-based 3D warping, depth-based histogram matching, 

base plus assistant view blending, and depth-based hole-filling. First, a preprocessing is performed on the acquired scene depth 

data in order to correct errors and enhance the spatial and temporal consistencies of depth values. Second, a depth-based 3D 

warping technique is adopted to avoid the discontinuity problem in the direct warping of textures caused by round-off errors. Third, 

a depth-based histogram matching algorithm is employed to reduce the illumination difference between two reference views. 

Fourth, a base plus assistant view blending is introduced to blend two 3D warped reference images in a robust manner against the 

inaccuracy of the depth and camera parameters. Finally, a depth-based hole-filling technique is used to fill the remaining holes 

using a depth-based in-painting technique. The synthesized view is evaluated by Peak Signal-to-Noise Ratio (PSNR), Structural 

SIMilarity (SSIM) [29], DCT-based Video Quality Metric (VQM) [30] [31], and the newly proposed spatial PSNR (SPSNR) and 

temporal PSNR (TPSNR).  

The rest of this paper is organized as follows. In Section 2, we describe the basics of view synthesis. We explain the details of the 

proposed view synthesis algorithm and the evaluation metrics in Sections 3 and 4, respectively. We then demonstrate and evaluate 

the performance of the proposed scheme in Section 5, and conclude the paper in Section 6.  
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II. BACKGROUND 

This section briefly reviews the camera geometry model and the general idea of depth-based view synthesis.  

A. Camera Geometry Model 

A general pinhole camera is modeled by its optical center C and its image plane I. A 3D point W is projected into an image point M 

given by the intersection of I with the line containing C and W. The line containing C and orthogonal to I is called the optical axis 

(Z) and its intersection with I is the principal point (p). The distance between C and I is the focal length.  

 

Let w = [x y z]T be the coordinates of W in the world reference frame (fixed arbitrarily) and m = [u v]T the coordinates of M in the 

image plane (pixels). The mapping from 3D coordinates to 2D coordinates is perspective projection, which is represented by a 

linear transformation in homogeneous coordinates. Let m = [u v 1]T and w = [x y z 1]T be the homogeneous coordinates of M and W, 

respectively; then, the perspective transformation is given by the matrix P:  

 

(1) 

 

where  is a scale factor called projective depth.  becomes the true orthogonal distance of the point from the focal plane of the 

camera. The camera is therefore modeled by its perspective projection matrix (henceforth simply camera matrix) P, which can be 

decomposed, using the QR factorization, into the product 
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Fig. 1.  The pinhole camera model 
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where u = –fku, v = –fkv are the focal lengths in horizontal and vertical pixels, respectively (f is the focal length in millimeters, ku 

and kv are the effective number of pixels per millimeter along the u and v axes), (u0, v0) is the coordinate of the principal point given 

by the intersection of the optical axis with the retinal plane as shown in Fig. 1, and  is the skew factor that models non-orthogonal 

u – v axes.  

The camera position and orientation (extrinsic parameters) are represented by the 3 x 3 rotation matrix R and the translation 

vector t , respectively, corresponding to the rigid transformation that brings the camera reference frame onto the world reference 

frame [32]-[34]. 

B. Depth-based View Synthesis 

The schematic diagram of a typical depth-based view synthesis system is shown in Fig. 2. The goal of such a system is to 

synthesize a virtual view from its neighboring views using the camera parameters, texture images, and depth images.  

The Three-Dimensional image warping (3D warping) is the key technique in depth-based view synthesis. In 3D warping, pixels 

in the reference image are back-projected to 3D spaces, and re-projected onto the target viewpoint as shown in Fig. 3.  
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Fig. 2.  Depth-based virtual view synthesis 
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Fig. 3.  General concept of 3D warping 
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Equations (4) and (5) represent the back-projection and the re-projection processes, respectively. 
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where A, R, and t are camera parameters and d represents the depth value of a point in the 3D space that needs to be 

back-/re-projected. The coordinate (l, m, n) in (5) is normalized to (l/n, m/n, 1) and then represented as an integer-coordinate (U, V) 

in the virtual view.  

III. PROPOSED VIEW SYNTHESIS ALGORITHM 

The proposed view synthesis algorithm consists of five steps: depth preprocessing, depth-based 3D warping, depth-based 

histogram matching, base plus assistant view blending, and depth-based hole-filling. Fig. 4 shows a diagram of the proposed view 

synthesis scheme and each sub-algorithm will be detailed in the following subsections.  
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Fig. 4.  Diagram of the proposed view synthesis scheme 
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A. Depth Preprocessing 

In general, the depth data can be obtained by a special depth camera system and computer graphics tools or mathematically 

calculated by depth estimation algorithms. Currently depth estimation is the most popular approach and actively studied since the 

depth camera is too expensive and computer graphic images cannot represent real scenes.  

However, mathematically calculated depth data tend to have erroneous values in certain regions in the image or have 

inconsistent values across spatial or temporal neighbors due to the local nature of depth-estimation process. These problems 

associated with depth could lead to various visual artifacts in the synthesized images. To resolve these issues, we propose to 

preprocess the depth data. The proposed depth preprocessing consists of three steps: temporal filtering, initial error compensation, 

and spatial filtering. Basically we apply a median filtering instead of averaging filter because averaging filter results in new pixel 

values which do not exist in the initial depth image, which degrades rendering quality. 

As a first step, we apply a 1D median filter along the co-located pixels of consecutive depth image frames. It aims to reduce the 

temporal inconsistency of depth values belonging to the same object or background. In this paper, we apply a median filter as 

follows: 

otherwiseX

JminJmaxforJmedian
Y

tji

tjitjitji

tji
,

)()(),(

,,

,,,,,,

,,                           (6) 

 

where tjiX ,,
 is the value of a pixel at the spatial location (i,  j) at time t , 

tjiJ ,,
 is a set of pixels in a 3 3 window centered 

around the spatio-temporal location (i, j, t), and   is a threshold value to determine whether or not the filter will be applied. 

The next step has to do with compensating for the initial error which is caused by an erroneous merge of foreground and 

background in the typical depth estimation process. Usually, it occurs when the foreground and the background have similar 

textures. The human eyes can easily distinguish them but it is often a difficult task for an automated algorithm. In this paper, we 

correct the initial errors by using image dilation and erosion as in (7) and (8) respectively [35]. Since the quality of a synthesized 

image will be worse in case the foreground has a background's depth value than the other way around, image dilation is conducted 

prior to image erosion in the proposed scheme. 
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where A represents the image and B is structuring element which operates on the A. The AB is a masked region with B and (x, y) is 

a pixel in the image A. In this paper, we use a disk-shaped structuring element with disk radius set to five.  

The final step has to do with smoothing outliers in an estimated depth image using a 2D median filter. It smoothes out the outlier 

of objects in a depth image and removes the unwanted noises. In this paper, we employ a 5 5 median filter for every pixel at (i, j) 

as follows: 

)( ,, jiji JmedianY                                                                               (9) 

 

where Ji,j is a set of pixels in a 5 5 window centered around the location (i, j).  

Fig. 5 illustrates the result of each step of the proposed depth-preprocessing for “Breakdancers” provided by MicroSoft 

Research (MSR) [36]. The effect of the proposed scheme is noticeable especially around the faces of the two men standing behind 

on the left side of the dancer as well as around the boundaries of the dancer on the floor. The proposed depth preprocessing method 

  
                                    (a)                                                                                                                     (b) 

 

  
                                    (c)                                                                                                                     (d) 

 

Fig. 5.  An example of depth-preprocessing for “Breakdancers” sequence: (a) temporal filtered image (b) dilated image (c) eroded image (d) spatial filtered image



 8

not only compensates for the initial depth errors efficiently, but also recovers the spatial and temporal consistency [37]. Hence the 

preprocessed depth will lead to significantly improved objective and subjective qualities of the synthesized images.   

B. Depth-based 3D Warping 

Most previous view synthesis algorithms warp the texture images using the corresponding depth maps. However, a direct 3D 

warping of texture images of neighboring views into the virtual image plane often causes false black-contours in the synthesized 

image as shown in Fig. 6 (b). These contours are caused by round-off errors involved with the integer representation of the virtual 

view’s coordinate as well as by spurious initial depth values. 

However, once the depth image corresponding to the virtual view is obtained, we can use it to always find, by inverse warping, 

the proper texture values from its neighboring view without generating false black-contours in the synthesized view. In order to 

obtain the depth image corresponding to the virtual view, we first warp the depth values of the reference view. Note that the false 

black-contours appear in the warped depth image as shown in Fig. 7 (a) for the exactly same reason as with the texture warping. In 

order to remove these erroneous contours, we apply a median filtering [38].  Fig. 7 illustrates the above procedures. 

   

                                                             (a)                                                                                                                       (b) 

 

Fig. 6.  3D warping with erroneous blanks: (a) depth image, (b) 3D warped texture image using (a) 

  
                                       (a)                                                                                (b)                                                                                (c) 

 

Fig. 7.  3D warping without erroneous blanks: (a) 3D warped depth image, (b) median filtered depth for (a), (c) 3D warped texture image using (b) 
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C. Depth-based Histogram Matching 

In case we have two reference views for the virtual view synthesis as shown in Fig. 2, we can first synthesize two 3D warped views, 

i.e., one from each view. Before blending these two warped images, we apply a histogram matching to reduce the illumination and 

color differences between the two images which may cause inconsistency of the synthesized image. Based on previous histogram 

matching algorithm [39], we modify the mapping condition considering the distributions of cumulative histograms and then apply 

this modified histogram matching regionally using depth-based segments.  

The histograms of the two 3D warped images for reference views are analyzed and those 3D warped images are adjusted to have 

a similar distribution. The whole procedures of histogram matching are as follows. The first step is to modify the two 3D warped 

images to have same holes and then to apply a median filter for noise reduction as shown in Fig. 8. By using the modified images 

instead of original 3D warped images, the accuracy of the histogram matching is improved. 

The second step is to compute the histograms of the left image and the right image. Let yL[m,n] denote the amplitude of the left 

image. Then its histogram is given as follows: 
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In (10), w denotes the image width and h is the image height. The value of v ranges from 0 to 255. The histogram matching is 

done by mapping the left and right images to a virtual image. Two steps are necessary to generate the mapping function M. First, 

the cumulative histogram CL[v] of the left image is created: 
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LL ihvC
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Fig. 8.  Image modification for histogram matching: (a) 3D warped view 3, (b) 3D warped view 5, (c) modified view 3, (d) modified view 5 
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The histogram hR[v] and cumulative histogram CR[v] of the right image are calculated in the same manner. Both the left and right 

images, which are already warped into the virtual view position, are median-filtered and modified to have the same holes as shown 

in Fig. 8 (c) and (d) so that the two views have almost identical textures except for slight differences in their illuminations.  

Based on the cumulative histograms, we make a cumulative histogram CV[v] for virtual: 

 

)()1()()( vCvCvC RLV                                                              (12) 

 

where CL and CR are the cumulative histograms for left and right images. Generally, the weighting factor  is calculated based on 

the baseline distance as follows:  
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where t is a translation vector for each view. 

 The mapping function between the left image and the virtual image is obtained by matching the number of occurrences in the 

reference image to that of occurrences in the virtual image as in (14) and as shown in Fig. 9 as an example. 

 
M[v] = u

1 u+1uv i

Amplitude of the luminance

CV[u]

CL[v]

CV[u+1]

S
u
m

 o
f 

o
cc

u
rr

en
ce

s

CL[i] CV[i]

M[v] = u
1 u+1uv i

Amplitude of the luminance

CV[u]

CL[v]

CV[u+1]

S
u
m

 o
f 

o
cc

u
rr

en
ce

s

CL[i] CV[i]

M[v] = u
1 u+1uv i

Amplitude of the luminance

CV[u]

CL[v]

CV[u+1]

S
u
m

 o
f 

o
cc

u
rr

en
ce

s

CL[i] CV[i]

1 u+1uv i

Amplitude of the luminance

CV[u]

CL[v]

CV[u+1]

S
u
m

 o
f 

o
cc

u
rr

en
ce

s

CL[i] CV[i]

 

1 u+1 v
M[v] = u+1

i

Amplitude of the luminance

CL[v]
CV[u]

CV[u+1]

S
u

m
 o

f 
o

cc
u

rr
en

ce
s

CV[i] CL[i]

u1 u+1 v
M[v] = u+1

i

Amplitude of the luminance

CL[v]
CV[u]

CV[u+1]

S
u

m
 o

f 
o

cc
u

rr
en

ce
s

CV[i] CL[i]

u

 
                                                             (a)                                                                                                                    (b) 

 
 

Fig. 9.  Mapping algorithm using cumulative histograms: (a) CV[v] <= CL[v], (b) CV[v] > CL[v], 
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The calculated mapping function is applied to the left image yL[m, n], resulting in the histogram-matched image yHML[m, n] as in 

(15). The histogram yHMR[m, n] of the right image is calculated in the same manner.  

 

]],[[],[ nmyMnmy LHML                                                                        (15) 

 

In general, we assume that the difference of volume of light for each camera causes the illumination and color differences and 

differently affects each object and color component. By considering the above assumption, we apply the histogram matching 

regionally and the regions are divided using depth. Fig. 10 shows an example of rough region division for the image in Fig. 8 (d).  

While the previous histogram matching converts one view to the other to have a similar histogram, the proposed histogram 

matching modifies the both views to have similar histogram as that of the virtual view which is defined by considering baseline 

distances. In addition, the proposed histogram matching maps the indices differently for the two cases in Fig. 9. 

 Fig. 11 shows an example for proposed histogram matching. In this case, histograms of the 3D warped left and right views have 

similar shapes but different distributions caused by illumination and color differences. By mapping these two reference view to 

have a similar cumulative histogram with that of the virtual view, we can reduce the illumination differences between two views. 

The proposed histogram matching is independently applied to each color component of RGB format.  

  
                                                           (a)                                                                                                                      (b)                             

 

Fig. 10.  Rough region division by depth: (a) foreground region, (b) background region 



 12

D. Base plus Assistant View Blending 

The boundary errors around the big holes are usually caused by inaccuracy of the camera parameters and inaccurate boundary 

matching between texture images and depth images. To remove these visible errors we extend the hole boundaries by using image 

dilation as shown in Fig. 12. These extended holes can be filled by the other 3D warped view and we expect more natural 

synthesized view by removing this kind of errors.  

The next step is view blending to combine 3D warped views to the virtual view and the simplest way would be taking a weighted 

sum of the two images as below:  

 

),()1(),(),( vuIvuIvuI RLV                                                              (16) 

 

where IL and IR are the 3D warped reference texture images and IV is an image to be blended. Generally, the weighting factor  is 

calculated based on the baseline distance as in (13).  

  
 

                                        (a)                                                                                                                  (b) 

 

 
 
 

                                                                   (c)                                                                                                                  (d) 

 

Fig. 11.  Histogram matching: (a) histograms (b) histograms after histogram matching (c) cumulative histograms (d) cumulative histograms after histogram 

matching 
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                                                             (a)                                                                                                                       (b) 

 

Fig. 13.   View blending methods: (a) weighted sum method (b) base and assistant method 

However, a drawback of this method is that inconsistent (due to, for e.g., camera parameters, inconsistent depth values etc.) 

pixel values from both views can contribute to the warped image and often leads to an unnaturalness such as double edge artifacts 

and smoothing as shown in Fig. 13. In order to avoid such a problem, we define a base view and an assistant view for view blending. 

The base view is the main reference view from which most of the pixel values are warped, and the assistant view is used as a 

supplementary reference view for hole-filling. Then (16) can be rewritten as (17), where  is 1 for non-hole regions and 0 for hole 

regions in the 3D warped base view. In other words, most regions of the blended view come from the base view and some 

remaining holes are filled from the assistant view. We choose a closer view from the virtual view as the base view. 

 

              ),()1(),(),( vuIvuIvuI ABV                                                                    (17) 

where IB is the base view and IA is the assistant view.  

 

  

                                                             (a)                                                                                                                       (b) 

 

Fig. 12.   Hole extension: (a) before extension (b) after extension 
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E. Hole-Filling using Depth-based In-painting 

The last step of the proposed view synthesis is depth-based hole-filling. Even though view blending efficiently fills up most 

disoccluded regions, some holes still remain. In general, these remaining holes are caused by still remaing disocclusion regions and 

wrong depth value. Disocclusion regions are defined as areas that cannot be seen in the reference image, but exist in the 

synthesized one. Many existing hole-filling methods use image interpolation or in-painting techniques and fill up the remaining 

holes using neighboring pixels solely based upon geometrical distance. However, observe that it make more sense to fill up the 

holes using the background pixels rather than the foreground ones as the disoccluded area usually belongs to the background by 

definition. Therefore we propose a hole-filling algorithm which prefers the background pixels over the foreground ones in addition 

to considering the existing in-painting technique.  

The general in-painting problem is as follow [40]: the region to be in-painted  and its boundary  are defined and the pixel p 

belong to  would be in-painted by its neighboring region B (p) as shown in Fig. 14 .  

This concept is quite reasonable for common image in-painting but it should be changed to be applied to hole-filling in view 

synthesis because  of a certain hole can belong to both the foreground and the background. In this case, we replace the boundary 

region facing the foreground with the corresponding background region located on the opposite side as depicted in (18). That is, we 

intentionally manipulate the hole to have neighborhood belonging only to the background as shown in Fig. 15.  

 

              
)()( bgfg

bgbgfgfg

pBpB

pp
                                                                            (18) 

 

where fg and bg represent the foreground and the background, respectively.  
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Fig. 14.  General in-painting circumstance 
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To distinguish the foreground and the background, we use the corresponding depth data. In other words, for the two pixels 

horizontally opposite to each other on the hole boundary, we regard the pixel having the larger depth value as belonging to the 

foreground and vice versa. Fig. 16 shows the results from the previous in-painting and the proposed depth-based in-painting 

techniques. 

 

hole 
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region

background

region

known

neighborhood

B (Pbg)

hole 
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Fig. 15.  Manipulation of hole to have neighborhood only come from background 

  

                                                             (a)                                                                                                                       (b) 
 

  
                                                             (c)                                                                                                                       (d) 

Fig. 16.   In-painting procedure: (a) image with holes, (b) boundary region copy from background, (c) previous in-painting, (d) proposed depth based in-painting
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IV. SELF EVALUATION METRICS 

To evaluate the performance of the view synthesis algorithm, generally we measure the similarity between the synthesized view 

and the existing original one. The PSNR, SSIM [29], and VQM [30] are widely used but these are only useful when the original 

view is available for virtual view. In addition, they cannot evaluate temporal consistency which is susceptible to illumination 

changes and the focus-mismatch and to which human eyes are quite sensitive. 

In order to overcome the limitations of the existing evaluation measure, we propose new evaluation metrics named as Spatial 

PSNR (SPSNR) and Temporal PSNR (TPSNR). The SPSNR measure the spatial consistency by checking spatial noise caused by 

view synthesis. Generally, the view synthesis increases the high frequency components since the 3D warped images and holes have 

a lot of high frequency component. Thus, we can evaluate the spatial consistency by checking the degree of the volume of the 

increased high frequency components. From the above concept, the S-PSNR is defined as follows :  
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where h and w denote image height and width. We apply the 5 5 median filter as a LPF to remove spatial noise and its difference 

image with the original image only contains the high frequency components. We define the volume of the high frequency 

components as SMSE similar to MSE in PSNR and develop the SPSNR similar to existing PSNR. 

The TSPNR to evaluate the temporal consistency is similar with the SPSNR except for its input image is replaced with the 

difference image between two temporally successive frames in (20). The TPSNR measure the high frequency components of the 

temporal changes. The main merit of the proposed measures is it only uses the synthesized view itself.  
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V. EXPERIMENTAL RESULTS AND ANALYSIS 

We have tested the proposed algorithm on two test sequences: “Breakdancers” and “Ballet”. Among the 8 views, view 3 and view 

5 were selected as reference views and view 4 is set as the virtual view to be synthesized. Each major sub-algorithm of the proposed 

method is evaluated by existing objective evaluation measures, such as PSNR, SSIM [29], VQM [30], and the proposed SPSNR 

and TPSNR. While a larger value means a better quality for PSNR, SPSNR, and TPSNR, the opposite is ture for VQM. In the case 

of SSIM, the closer the value is to 1, the better is the quality. The proposed view synthesis algorithm was compared to the view 

synthesis software version 2.3 [41] released by Nagoya University which is currently used as a reference software in MPEG 

FTV/3D video standardization activity. The default view blending method in the reference SW was replaced with the proposed 

base plus assistant method to make a more meaningful comparison.  

A. Experimental Results for Depth Preprocessing 

The results for depth preprocessing are given in Table I and their corresponding samples of synthesized images are shown in Fig. 

17. The depth preprocessing does not provide noticeable quality improvements in terms of the existing evaluation measures, but it 

shows some gains for SPSNR and TPSNR. Especially, we can confirm that the temporal consistency of the “Ballet” sequence is 

enhanced by depth preprocessing. In addition, we can confirm some improvements such as natural smooth boundary for the dancer 

on the floor and the shapes of the heads of the two dancers standing on the left.  

   

                                                             (a)                                                                                                                       (b) 

 

Fig. 17.   Synthesized images: (a) without depth preprocessing (b) with preprocessing 

TABLE I 

EXPERIMENTAL RESULTS FOR “DEPTH PREPROCESSING”  

Evaluation Measures 

Breakdancers Ballet 

without preprocessing with preprocessing without preprocessing with preprocessing 

PSNR 31.7300 31.6421 31.7773 31.7935 

SSIM 0.8381 0.8379 0.8736 0.8739 

VQM 3.9973 4.0984 2.6134 2.5351 

SPSNR 38.8363 38.9236 38.3793 38.5004 

TPSNR 37.8345 38.0415 39.6727 40.7091 
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B. Experimental Results for Depth-based Histogram Matching 

As shown in Table II and sample images in Fig. 18, the proposed histogram matching improves the subjective quality by reducing 

the illumination and color changes. However, its objective quality is slightly degraded.   

 

C. Experimental Results for Proposed Depth-based In-painting 

The experimental results for depth based in-painting are given in Table III and their corresponding synthesized sample images are 

in Fig. 19. The proposed depth-based in-painting fills up the remaining holes using only the pixels located in the background when 

the holes border with both the foreground and the background. We can confirm the proposed method improves both the subjective 

and the objective qualities.  

TABLE II 

EXPERIMENTAL RESULTS FOR “HISTOGRAM MATCHING”  

Evaluation Measures 

Breakdancers Ballet 

without histogram matching with histogram matching without histogram matching with histogram matching 

PSNR 31.7300 31.8754 31.7773 31.5912 

SSIM 0.8381 0.8367 0.8736 0.8714 

VQM 3.9973 3.9729 2.6134 2.7049 

SPSNR 38.8363 38.7442 38.3793 38.0913 

TPSNR 37.8345 37.7891 39.6727 39.5653 

 

    
                                                             (a)                                                                                                                       (b) 

 

Fig. 18.   Histogram matching: (a) without histogram matching, (b) with histogram matching 

TABLE III 

EXPERIMENTAL RESULTS FOR “HOLE FILLING USING IN-PAINTING”  

Evaluation Measures 

Breakdancers Ballet 

previous in-painting depth-based in-painting previous in-painting depth-based in-painting 

PSNR 31.7300 31.7484 31.7773 32.4967 

SSIM 0.8381 0.8384 0.8736 0.8740 

VQM 3.9973 3.9852 2.6134 2.5131 

SPSNR 38.8363 38.8448 38.3793 38.3821 

TPSNR 37.8345 37.8458 39.6727 39.8938 
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D.  Experimental Results for the Proposed View Synthesis Method 

The proposed view synthesis method consists of various sub algorithms such as depth preprocessing, depth-based 3D warping, 

depth-based histogram matching, base and assistant view blending, and hole-filling using depth-based in-painting. In this section, 

the proposed view synthesis method is compared to the reference view synthesis software [41]. The main tools of the reference 

software are depth-based 3D warping, hole-filling using in-painting, and weighted sum based view blending. In this experiment, 

we replace the view blending method in reference view synthesis software with the base plus assistant method.  

The experimental results are given in Table IV and their corresponding synthesized sample images in Fig. 20 and Fig. 21. We 

could confirm that the synthesized images by the proposed view synthesis method is both subjectively and objectively better than 

those of  the reference software.   

 

 

 

 

TABLE IV 

EXPERIMENTAL RESULTS FOR “PROPOSED VIEW SYNTHESIS METHOD”  

Evaluation Measures 

Breakdancers Ballet 

reference software proposed method reference software proposed method 

PSNR 31.6292 31.8150 32.1825 32.2854 

SSIM 0.8341 0.8365 0.8664 0.8718 

VQM 3.9273 4.0628 2.7430 2.5351 

SPSNR 38.4073 38.8319 37.8048 38.2107 

TPSNR 37.3941 38.0104 39.2467 40.6742 

  
                                                             (a)                                                                                                                       (b) 

 

Fig. 19.   In-painting: (a) previous in-painting (b) depth-based in-painting 
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VI. CONCLUSIONS 

In this paper, we have proposed a virtual view synthesis method and self evaluation metrics for FTV and 3D video. The 

proposed method consists of four steps : depth preprocessing, depth-based 3D warping, illumination and color difference 

compensation with a depth-based histogram matching, and hole filling by a depth-based in-painting technique. In addition, a base 

plus assistant view blending method was introduced for better subjective quality compared to the weighted-sum based view 

blending. The effectiveness of the proposed method was confirmed by evaluating the quality of the synthesized image using 

various quality measures including the newly proposed self-evaluation metrics SPSNR and TPSNR. We observed that the 

proposed method produced both subjectively and objectively better results compared with those by the current reference software 

being used in the MPEG FTV/3D video standardization activities.  

  
                                                             (a)                                                                                                                       (b) 

 

Fig. 21.   Synthesized images for “Ballet” sequence: (a) reference software (b) proposed method 

  
                                                             (a)                                                                                                                       (b) 

 

Fig. 20.   Synthesized images for “Breakdancers” sequence: (a) reference software (b) proposed method 
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