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Abstract

Scalar quantization is the most practical and straightforward approach to signal quantization.
However, it has been shown that scalar quantization of oversampled or Compressively Sensed
signals can be inefficient in terms of the rate-distortion trade-off, especially as the oversampling
rate or the sparsity of the signal increases. Recent theoretical work has provided some insights on
improving this trade-off, using non-monotonic quantization functions. This paper builds upon
this work to provide a practical hierarchical quantization scheme that enables efficient recon-
struction through a hierarchy of convex optimization problems. Our approach generalizes the bit
hierarchymost to least significant bitof classical multi-bit scalar quantization. We demonstrate
experimental results both for dense and sparse signals that demonstrate significant gains and
confirm our theoretical analysis.
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ABSTRACT

Scalar quantization is the most practical and straightforward approach
to signal quantization. However, it has been shown that scalar quantiza-
tion of oversampled or Compressively Sensed signals can be inefficient
in terms of the rate-distortion trade-off, especially as the oversampling
rate or the sparsity of the signal increases. Recent theoretical work
has provided some insights on improving this trade-off, using non-
monotonic quantization functions. This paper builds upon this work
to provide a practical hierarchical quantization scheme that enables ef-
ficient reconstruction through a hierarchy of convex optimization prob-
lems. Our approach generalizes the bit hierarchy—most to least signif-
icant bit—of classical multi-bit scalar quantization. We demonstrate
experimental results both for dense and sparse signals that demonstrate
significant gains and confirm our theoretical analysis.

Keywords— scalar quantization, randomization, oversampling, ro-
bustness

1. INTRODUCTION

Digital signal acquisition comprises of two discretization steps: sam-
pling (or measurement) and quantization. Sampling, acquires linear
measurements of the signal, such as the signal’s instantaneous value
or the signal’s inner product with a measurement vector. Quantiza-
tion, maps the continuous-valued measurements of the signal to a set
of discrete values, referred to as quantization points. Overall, this dis-
cretization process is lossy, i.e., does not preserve all the information
in the signal.

While sampling can be designed to preserve all information in the
signal, quantization always results to distortion. Several sampling re-
sults demonstrate that as long as sufficient samples are obtained, given
a class of signals, exact recovery is possible. For example, the Nyquist
theorem provides the sampling rate necessary for bandlimited signals,
while Compressive Sensing theory provides sampling-rate conditions
for exact recovery of sparse signals [1]. However, once the samples
are quantized, exact signal recovery is impossible. Thus, the main goal
of quantizer design is to reduce the distortion on the signal as much as
possible given the available bit-rate.

The most popular quantization method is scalar quantization in
which each measurement is quantized independently of the others.
This approach is simple and has good performance. It is especially ap-
pealing for distributed sensor applications in which each sensor quan-
tizes its own measurement before communicating it to other sensors or
to a central node. Unfortunately, present approaches to scalar quantiza-
tion are suboptimal if the signal is oversampled [2–5]. Specifically, the
trade-off between the number of bits used to represent an oversampled
signal and the representation error worsens as oversampling increases.
In terms of the rate vs. distortion, it is more efficient to allocate more
bits per coefficient in a critically sampled representation as opposed to
fewer bits per coefficient in an oversampled representation.

Recent theoretical work provides the basis to overcome this trade-
off using a non-monotonic quantizer [6]. This work demonstrates that
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Fig. 1. Examples of Quantization Functions. (a) Typical binary (1-bit)
quantization function. (b) Non-monotonic binary quantization func-
tion, used in this work.

non-monotonic quantizers achieve exponential error decay in the over-
sampling rate using consistent reconstruction. However, reconstruction
from such a quantization method is not straightforward. The resulting
optimization problem is non-convex and seems to have combinatorial
complexity.

This paper exploits the theoretical results in [6] to provide a prac-
tical hierarchical scheme for distributed oversampled scalar quantiza-
tion. At every level of the hierarchy we use the non-monotonic quan-
tizer in [6] in a way that ensures that reconstruction at that level be-
comes a convex problem. Reconstruction at that level reduces the error
and the ambiguity in the reconstructed signal, which, in turn, allows
the problem in the next level to become convex.

Our approach can be thought of as a generalization of the hierar-
chy of bits in multi-bit scalar quantization. The hierarchy levels are
equivalent to the bit-levels in a multi-bit scalar quantizer, starting from
the most significant bit (MSB), all the way to the least significant bit
(LSB). Similar to multi-bit scalar quantization, the LSB provides very
little information without the context of the more significant bits of the
coefficient.

The next section, provides an overview of scalar quantization. It
serves as a quick reference and establishes the notation. In Sec. 3 we
present our hierarchical quantization approach and our reconstruction
algorithm, together with some discussion and connections with clas-
sical scalar quantization. Finally, Sec. 4 presents experimental results
that verify our approach.

2. BACKGROUND

2.1. Scalar Quantization

A scalar quantizer operates directly on individual scalar signal mea-
surements without taking into account any information on the value or
the quantization level of nearby measurements. Specifically, the gen-
eration of the mth quantization bit from the quantized signal x ∈ RK

is performed using

ym = 〈x, φm〉 (1)

qm = Q

„
ym

∆m
+ wm

«
= Q (pm) , (2)



where φm is the measurement vector used to produce a scalar mea-
surement ym, which is subsequently scaled by a precision parameter
∆m, dithered by the additive dither wm and quantized by the quanti-
zation function Q(·). The intermediate variable pm denotes the scaled,
dithered measurement before the quantization. The measurements are
index by m = 1, . . . , M , where M is the total number of quantized
coefficients acquired. The precision parameter is usually not explicit
in the literature but is incorporated as a design parameter of the quan-
tization function Q(·). We make it explicit here in anticipation of our
development.

A more compact, vectorized form of (1) and (2) will often be more
convenient in our discussion

y = Φx (3)

q = Q
`
∆−1y + w

´
= Q (p) , (4)

where y, w p and q are vectors containing the measurements, the
dither coefficients, the intermediate and the quantized values, respec-
tively, ∆ is a diagonal matrix with the precision parameters ∆m in
its diagonal, Q(·) denotes the scalar quantization function, applied
element-by-element on its input, and Φ is an M × K measurement
matrix that contains the measurement vectors φm in its rows.

For a binary 1-bit quantizer, the focus of this paper, the quantiza-
tion function Q(·) is typically the one shown in Fig. 1(a). The scaling
performed by the precision parameter ∆m controls the trade-off be-
tween quantization accuracy and the number of quantization bits. The
non-monotonic quantizer discussed in [6] is shown in Fig. 1(b). Here
∆m controls the precision width of each quantization interval. Smaller
∆m increases the precision but requires more measurements to guar-
antee reconstruction and makes the reconstruction significantly more
complex.

2.2. Reconstruction from Quantized Measurements

A reconstruction algorithm, denoted R(·), uses the quantized represen-
tation generated by the signal to produce a signal estimate bx = R(q).
The performance of the quantizer and the reconstruction algorithm is
measured in terms of the reconstruction distortion, typically measured
using the `2 distance: d = ‖x−bx‖2. The goal of the quantizer and the
reconstruction algorithm is to minimize the average or the worst case
distortion given a probabilistic or a deterministic model of the acquired
signals.

While the simplest reconstruction approach is to substitute the
quantized value in standard reconstruction approaches for unquantized
measurements, it is in general suboptimal [3–5]. A better approach is
to use consistent reconstruction, a method that enforces that the recon-
structed signal quantizes to the same value as the acquired one, i.e.,
satisfies

q = Q
`
∆−1Φbx + w

´
(5)

Consistent reconstruction was originally proposed for oversampled
frames in [4], where it was shown to outperform linear reconstruction.
Subsequently consistent reconstruction, or approximations of it, have
been shown in various scenarios to improve Compressive Sensing re-
construction from quantized measurements [6–14].

2.3. Reconstruction Rate and Distortion Performance

The performance of scalar quantizers is typically measured by their rate
vs. distortion trade-off, i.e., how increasing the number of bits used by
the quantizer affects the distortion on the measurement signal due to
quantization. In this paper we focus on the worst-case distortion, i.e.,

d = max
x

‚‚x−R
`
Q

`
∆−1Φx + w

´´‚‚
2
, (6)
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Fig. 2. Quantization convexity. To ensure the problem is convex, the
projection of the ball of ambiguity around the estimated signal through
the measurement process should incorporate at most one transition of
the quantization function.

where bx = R
`
Q

`
∆−1Φx + w

´´
is the signal reconstructed from the

quantization of x.
Under this sampling model, there are two ways to increase the bit-

rate and reduce the quantization distortion: increase the number of bits
used per quantized coefficient or increase the number of measurements
at a fixed number of bits per coefficient. Using the former, exponential
reduction in the reconstruction error is possible as a function of the
bit-rate

d = O(cr), c ≤ 1, (7)

where r = MB is the total rate used to represent the signal at M
measurements and B bits per measurement. Using the latter with the
scalar quantizer in Fig 1(a), the distortion cannot reduce at a rate faster
than linear with respect to the oversampling rate. At a fixed number of
bits per measurement, this is proportional to the bit-rate

d = Ω(1/M), (8)

much slower than the rate in (7). This rate is achieved by consistent
reconstruction but not by linear reconstruction [3–5].

Exponential error decay in the oversampling rate can be achieved
using the non-monotonic quantizer in Fig 1(b). Specifically, [6]
demonstrates that with very high probability the worst-case reconstruc-
tion error satisfies

d ≤ C

„
3

4

«M/2K

, (9)

where C depends on the desired confidence and the size of the set of
signals of interest. The decay is achieved by assuming all the measure-
ments use the same quantization precision parameter ∆, which is set
as a function of the desired accuracy. Unfortunately, as ∆ becomes
smaller compared to the size of the set of signals of interest the recon-
struction problem becomes significantly harder.

3. HIERARCHICAL SCALAR QUANTIZATION

3.1. Quantization Hierarchy

Our approach in this paper is to use the scalar quantizer in Fig. 1(b)
hierarchically, such that the reconstruction of each level requires the
solution of a convex problem and provides guarantees for reconstruc-
tion error at that level.

At each level, l, we measure and quantize the signal according to (3)
and (4) using the quantizer in Fig. 1(b).

ql = Q
`
∆−1

l Φlx + wl

´
= Q (pl) (10)

Similar to [6], Φl contains i.i.d., normally distributed entries with zero
mean and variance 1/

√
K, and the dither wl contains uniformly dis-

tributed entries in [0, 1]. However, at each level we ensure the problem
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Fig. 3. Decomposition of the multi-bit quantization hierarchy. The
most significant bit (MSB, left) provides coarse information. The least
significant bit (LSB, center) provides refinement information, but in
a non-convex, ambiguous, set. The LSB becomes a convex set when
restricted by the convex set defined by the MSB, and the information
can be easily decoded (right).

is convex by selecting the precision parameter ∆l according to the re-
construction guarantees of the previous level.

Assume that each level l provides a worst-case error guarantee of
dl. Then the signal of interest x is within a ball of radius dl from
the signal bxl reconstructed at that level: x ∈ Bdl (bxl),where Bd(x) ≡
{x′ |‖x− x′‖2 ≤ d} denotes the ball of radius d around x. We denote
the diameter of this ball, as projected through the measurement vectors
φ at level l + 1, using ρl+1:

ρl+1 ≡ max
x1,x2∈Bdl

(bxl )
|〈φ,x1 − x2〉|. (11)

It is straightforward to show that the reconstruction problem is con-
vex at level l if the precision parameter at that level, ∆l, is set such that
ρl < ∆l. This is because at most one transition of the quantization
function will occur within this projection, as shown in Fig. 2. Our goal
in this paper is to obtain a sufficient number of measurements at each
level l such that we can guarantee convexity when setting

∆l+1 = α∆l, (12)

for some scaling factor α < 1.
Since the measurement vectors are i.i.d., normally distributed, ran-

dom vectors with variance 1/
√

K, their norm is concentrated around
1. In particular,

P (‖φ‖2 ≥ 2) = γ

„
K

2
, K

«
, (13)

where γ(·, ·) is the regularized upper incomplete gamma function. This
probability decreases extremely fast and becomes negligible for any
reasonable value of K. Therefore, it is safe to assume that the projec-
tion will at most double the radius of Bdl (bxl), i.e., that

ρl+1 ≤ 4dl. (14)

Of course, for large values of K, we can tighten this bound signifi-
cantly. To ensure convexity, we set ∆l such that dl ≤ α∆l/4; we
choose equality, i.e.,

∆l = 4dl/α. (15)

To guarantee the convexity is maintained though all levels of the
hierarchy, we desire to scale dl at every level linearly, similar to ∆l,

dl+1 ≤ αdl. (16)

We determine the number of measurements necessary to achieve this
scaling using the results in [6]. Specifically, we can show that after Ml

measurements, the probability that (16) holds, is greater than

P(16) ≥ 1− (3c)K

„
1

2
+

1

2
e
− πα2

4
√

2K +
α

c
+ γ

„
K

2
, K

««Ml

, (17)

for any constant c. For the right choice of c this probability approaches
1 exponentially fast in the number of measurements at each level, Ml.

This hierarchical process can be though of as the distributed gener-
alization to multi-bit scalar quantization. Consider the 2-bit represen-
tation for the binary coefficient 10, as dissected in Fig. 3. The coarse-
level MSB splits the region of interest in two convex regions (positive
and negative), as shown on the left of the figure. The fine-level LSB
splits the region of interest in two non-convex regions, as shown on
the center of the figure. Using the information that the MSB is equal
to 1, the non-convex set corresponding to the LSB equal to 0 can be
restricted to a convex set, and the coefficient can be easily decoded.
In terms of the hierarchical quantization scheme we describe above,
this would be equivalent to each level in the hierarchy using the same
measurement vectors and dither, and setting α = 1/2.

3.2. Reconstruction Algorithm

To reconstruct the signal we incorporate each level hierarchically and
use a consistent reconstruction algorithm, such as the one in [4], after
the incorporation of each level. The reconstruction algorithm uses the
quantization interval consistent with the quantization point as a con-
straint. Thus, it enforces the constraint

qmin ≤ 〈φ, bx〉/∆ + w ≤ qmax (18)

on the reconstructed signal bx, for all the incorporated measurement
vectors φ, where [qmin, qmax] is the consistent reconstruction interval.

Since the quantization function in Fig. 1(b) is non-monotonic, the
set of consistent reconstruction is not a continuous interval but a non-
convex set. The goal of incorporating a hierarchy level is to select the a
convex subset of the consistent subset, according to the reconstruction
estimate from the already incorporated levels. In terms of the scalar
quantization analogy of Fig. 3, incorporating the LSB uses the infor-
mation from the already incorporated MSB to select the right interval
from the two possible, consistent with the LSB equal to 0, as shown in
the middle figure.

To incorporate a hierarchy level l we use the estimate bxl−1 from
the previous iteration, measure it using the measurement matrix Φl and
quantize it according to the acquisition parametersbyl = Φlbx, (19)bql = Q(∆−1byl + wl) = Q(bpl). (20)

We then compare the quantized estimate vector bql to the acquired
quantized vector ql. For the quantization values in bql that are con-
sistent with the quantized values in ql we use the quantization interval
in which the corresponding value in bpl lies. For the quantization values
in bql that are inconsistent with the quantized values in ql we use the
quantization interval which is closest to bpl and consistent with ql. For
example, if the estimate bx projects to bp as shown in Fig. 2, it will be
inconsistent with the actual measurement p. Since the interval [1, 2] is
the closest interval to bp consistent with q = 0, we select this interval
for the consistent reconstruction algorithm. The conditions discussed
in the previous section guarantee this is the correct choice. The algo-
rithm is initialized with bx = 0 before the first (coarsest) level of the
hierarchy is incorporated.

Once we determine the appropriate quantization intervals at hierar-
chy level l we perform consistent reconstruction using all the informa-
tion (i.e, measurement vectors, scaling parameters, dither, and resolved
quantization intervals) from levels 1 to l to produce the next signal es-
timate bxl, and use it to incorporate the next level in the hierarchy of
measurements.

Of course, it is possible to incorporate this approach to a number of
optimization-based reconstruction algorithms, such as the basis pursuit
commonly used in Compressive Sensing applications. In this case, the
optimization algorithm is executed for every level of the hierarchy, sub-
ject to the consistent reconstruction constraints, to produce the signal
estimate.
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Fig. 4. Reconstruction results for non-sparse signals. Top: sample
reconstruction using hierarchical (left) and classical (right) quantiza-
tion. Bottom: Reconstruction SNR for classical and hierarchical ap-
proaches. The marks on the line denote the level points of the hierar-
chical approach.

4. EXPERIMENTAL RESULTS

This section presents experimental results that confirm our analysis.
Specifically, we consider both dense and sparse signals, and we com-
pare our results to consistent reconstruction from classical 1-bit scalar
quantization with the same number of measurements.

Figure 4 shows the experimental results for randomly generated
dense signals in a 100-dimensional space. We used 8 hierarchy lev-
els, with 250 measurements (i.e., bits) per level. At each level we
compared the performance classical 1-bit scalar quantization and con-
sistent reconstruction using the same number of measurements. The
scaling factor α in our simulations was 1/1.4. The trials were aver-
aged over 100 iterations. The top of the figure plots a sample signal
reconstruction using hierarchical (left) and classical (right) 1-bit quan-
tization, compared to the original. The bottom plot the average recon-
struction SNR as a function of the number of measurements for the
two approaches. The markers in the curve, every 250 measurements,
indicate each level of the hierarchical scalar quantization. It is evident
from the figure that our hierarchical approach significantly outperforms
classical quantization.

Figure 5 shows the same results for 10-sparse signals in a 100-
dimensional space. We used 8 hierarchy levels, with 75 measurements
per level. The scaling factor α was set to 1/1.55. As above, hierarchical
reconstruction significantly outperforms the classical approach.

The results were consistent for other signal dimensions and sparsity
levels. As expected from the theory, our experimental results confirm
the improved performance of hierarchical quantization. Of course, sig-
nificant further work is necessary on the optimal choice of parameters,
such as the number of measurements per level, the number of levels,
and the choice of α.
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