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Abstract

One of the challenges in radiotherapy of moving tumors
is to determine the location of the tumor accurately. Exist-
ing solutions to the problem are either invasive or inaccu-
rate. We introduce a non-invasive solution to the problem
by tracking the tumor in 3D using bi-plane ultrasound im-
age sequences. We present CrossTrack, a novel tracking
algorithm in this framework. We pose the problem as re-
cursive inference of 3D location and tumor boundary seg-
mentation in the two ultrasound views using the tumor 3D
model as a prior. For the segmentation task, a robust graph-
based approach is deployed as follows: First, robust seg-
mentation priors are obtained through the tumor 3D model.
Second, a unified graph combining information across time
and multiple views is constructed with a robust weighting
function. For the tracking task, an effective mechanism for
recovery from respiration-induced occlusion is introduced.
Our experiments show the robustness of CrossTrack in han-
dling challenging tumor shapes and disappearance scenar-
ios, with sub-voxel accuracy, and almost 100% precision
and recall, significantly outperforming baseline solutions.

1. Introduction
Research in Image Guided Radiation Therapy

(IGRT) [19, 1] aims at deploying advanced medical
image analysis techniques to maximize the effectiveness
of radiation therapy. One of the challenges of IGRT is
treatment of moving tumors. Uncertainties in determining
the tumor location may cause radiation beams to overshoot
or undershoot, thus, either damage the healthy tissue or
fail to control the tumor growth. The current clinical
practice is to track moving tumors using external or internal
surrogates [7]. Tracking based on external surrogates,
e.g. measuring lung volume, are not considered accurate
due to changes in the relationship between theses mea-
surements and the tumor location over time. On the other
hand, using internal surrogates, e.g. surgically implanted
fiducial markers, is highly invasive and involves the risk
of medical complications. Recently, purely image-based
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Figure 1. 3D tumor tracking from bi-plane ultrasound images by
coupling segmentation and tracking, using the tumor 3D model.

tracking approaches have been actively researched using
fluoroscopy [10], or 4DCT [16]. While these approaches
are less invasive than using internal surrogates and more
accurate than using external surrogates, they introduce
extra imaging radiation to the patient.

Ultrasound imaging offers a noninvasive alternative to
fluoroscopy and 4DCT. Being cost and time efficient, a
high-frequency ultrasound system with 3-D imaging capa-
bilities also achieves better resolution, discrimination and
detection of abdominal metastases at a minimum size com-
pared favorably with that of X-ray [5]. Ultrasound imaging
depicts not only the center of the tumor but its whole vol-
ume and boundary for a large variety of high contrast neo-
plasms. It has already been used for detection and staging
of tumors [11]. We believe that it can also be used in IGRT
given that highly robust and accurate tracking algorithms
are developed. In this paper we present CrossTrack, a track-
ing algorithm for ultrasound imaging that enjoys these fea-
tures.

Yang et al. [20] introduced an algorithm for tracking the
left ventricle in 3D ultrasound images. This algorithm is
highly complex and relies on supervised learning on a train-
ing dataset, which may not be available in our case. Alter-
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natively, 3D tracking in ultrasound can be considered as a
sequential image segmentation problem where each pixel is
labeled as foreground (tumor) and background (healthy tis-
sue). To reduce the computational intensity and to eliminate
the need for supervised training, we use two 2D ultrasound
slices instead of full 3D volumes, as illustrated in Fig. 1.
Our algorithm jointly segments the tumor boundary in the
two slices. The tumor location in 3D is then inferred from
the resulting segmentation given the tumor 3D model as a
prior. We assume that the tumor becomes visible when it
intersects with one of the ultrasound planes.

Many researchers approached the problem of coupling
segmentation and tracking. Kohli and Torr [8] presented an
algorithm for segmentation of a moving object using Dy-
namic Graph Cuts (DGC). DGC quickly segments a new
frame using Graph Cuts (GC) [2] taking advantage of the
final flow values of the last frame. In contrast, CrossTrack
is not tailored to a specific segmentation algorithm. In fact,
it can be applied to any graph-based segmentation algo-
rithm. Ren and Malik [14] propagate segmentation masks
over time using matching of super-pixels across frames. We
believe that super-pixel segmentation is not suitable for ul-
trasound images due to high image noise and low contrast.
Liang and Davis [21] addressed the problem of changing
appearance of the tracked object over time by jointly per-
forming segmentation and appearance modeling. This ap-
proach is very effective, but, highly computationally inten-
sive. To the best of our knowledge, none addressed the
problem of tracking from two cross-sectional views using
the object’s 3D model as a prior. Moreover, we present an
effective method to recover from partial and total occlusion
(disappearance), a common difficulty in coupled segmenta-
tion/tracking algorithms.

The main contributions of this paper are:

• A framework for tumor tracking in 3D from bi-plane
ultrasound image sequences.

• An algorithm for 3D tracking of a volumetric object
from two intersecting cross-sectional views. The algo-
rithm uses the volumetric model prior of the tracked
object by recursive coupling of 3D location estimation
and 2D boundary segmentation.

• A novel graph construction that joins multiple-view
and temporal information for graph-based segmenta-
tion, with a robust and easily-tunable link weighting
function.

• A method for track recovery after tumor disappearance
due to respiration-induced motion.

2. Algorithm Overview
CrossTrack couples two tasks: 3D tumor tracking, and

2D tumor boundary segmentation in the two ultrasound
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Figure 2. Graphical models for segmentation and tracking.

planes, as illustrated in Fig. 1. The two tasks assist one an-
other and the tumor 3D model assists both of them. The in-
teraction between segmentation and tracking can be viewed
as a recursive inference process, as illustrated in the graph-
ical model in Fig. 2. The tumor 3D model is used as a prior
for the two inference directions. In one direction, given the
current 2D segmentation and the 3D model, the current 3D
location is inferred. In the other direction, given the last 3D
location and the 3D model, the current 2D segmentation is
inferred.

Tracking For inferring the 3D location, we use a simple
model that proved effective in our framework. The new lo-
cation is assumed to be sampled from a uniform distribu-
tion in a small sphere surrounding the last estimated loca-
tion. Particles are sampled from that distribution, where
each particle represents a hypothesis for the new location.
Given the tumor 3D model, a segmentation mask is synthe-
sized for each particle. By matching these segmentation hy-
pothesis with the result of the segmentation task, a score is
computed for each particle. We finally pick the particle that
provides the best matching score (Maximum A Posteriori
estimation). Occlusion resulting from respiration-induced
motion is effectively handled via a simple update rule. For
this paper, we only consider the coordinates of the 3D lo-
cation as the state variables to track, i.e. we only consider
translation motion. Extension of CrossTrack to a handle
more general motion models is straightforward, in princi-
ple. However, tracking longer state vectors may require a
more sophisticated probabilistic filtering scheme.

Segmentation Inferring the 2D segmentation using the
latest 3D location estimation is the main focus of this pa-
per. We start by giving a brief overview here. Given the
latest estimated location (initial location for the first frame),
a set of location particles are sampled and segmentation hy-
potheses are constructed for each, as described in the track-
ing task above. Using the segmentation hypotheses, a prior
probability map for the segmentation is constructed. From
this prior, segmentation seeds for the new frame are marked.
Intensity distributions for foreground and background are
learned from the intensity values of the marked seeds. This
leads to another data-driven prior probability map for the
segmentation. A single joint graph is constructed that com-
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bines graphs for two frames for each plane. A graph-based
segmentation algorithm is run on the joint graph. The seg-
mentation outcome is refined by replacing it with the best
matching segmentation hypothesis.

The details of graph construction and computing prior
probability maps are explained in Sect. 4. Occlusion han-
dling is explained in Sect. 5. Before these topics, we start
off with a brief background on graph-based segmentation in
Sect. 3.

3. Graph-Based Segmentation

The image segmentation problem is one of the oldest and
most studied problems in computer vision. For a compre-
hensive review of the segmentation literature, the reader is
referred to dedicated survey papers [18, 3, 12]. Of particular
interest to us are graph-based segmentation algorithms. In
this category of algorithms, an input image is represented
as a graph G = (V,E,w), where V = {vi|i = 1..N}
is a set of nodes, each corresponds to one of the N pixels
in the image, E = {eij = (vi, vj) |i, j = 1..N} is a set
of links in the graph connecting neighboring image pixels,
and w : E → R is a weighting function that measures the
similarity between the two nodes incident on a link. The
segmentation problem is defined as finding an optimal dis-
crete labeling function l : V → 1..K, where K is the num-
ber of desired segments, with respect to some energy func-
tion. The energy function is designed to indicate the overall
similarity among the nodes that are assigned the same label
(smoothness), and the compliance of the labeling function
to our prior knowledge (data). The simplest form of the
energy function includes terms defined over singleton (data
terms) and pairwise (smoothness terms) label assignments
as

E (l) =
∑
vi∈V

E1(li) +
∑
eij∈E

E2(li, lj) , (1)

where li = l(vi), and E1 and E2 define the singleton and
pairwise energy terms.

There are many graph-based segmentation algorithms in
the literature. Among them, GC [2], and Random Walks
(RW) [4] are among the most popular ones. Both of them
are computationally efficient. RW’s formulation guarantees
a unique optimal solution regardless of the number of labels
while GC’s formulation guarantees a unique optimal solu-
tion in the case of two labels only and is further restricted
in the type of energy functions it can minimize [9].

4. Graph Construction in CrossTrack

One of the main contributions of this paper is the robust
graph-based segmentation. In this section, we explain the
graph construction aspect of it. The main idea is to use
a unified graph that combines multiple views and multiple

Reference Frame

Current Frame

}
Figure 3. Dual-frame graph construction.

time instances. Such unified graph construction makes seg-
mentation robust by fusing all available information. More-
over, in some cases, as we further explain below, it helps in
recovering from tumor disappearance.

In supervised segmentation algorithms, such as GC and
RW, the user must designate at least one pixel belonging to
each label. These pixels, and their corresponding nodes in
the graph are called seeds. The segmentation algorithm is
guaranteed not to change the label assignment for seeds. In
a tracking framework, seeds can be determined in the first
frame given the tumor 3D model and its initial 3D location.
The challenge is in finding seeds for each upcoming frame.
In this section, we explain one solution to this problem. A
complementary solution is explained later in Sect. 4.3.

4.1. Combining Frames Across Time

Despite the incremental change of the segmentation
boundary over time, it is not straightforward to use the seg-
mentation result of one frame to harvest seeds for the next.
In order to ensure availability of seeds without enforcing
erroneous label assignments, we segment two frames to-
gether. One frame is the new frame, and the other is a refer-
ence frame. Namely, we construct the segmentation graph
with two parallel grids, one for each frame. Each pixel in
one grid is connected to the corresponding one in the other
grid, Fig. 3. For now, we consider the reference frame to
be the preceding frame in time. We assume the preceding
frame has both foreground and background labels in its seg-
mentation. In Sect. 5 we handle the general case. The la-
beled pixels of the reference frame serve as the seeds of
the combined graph. By using labeled nodes in the refer-
ence frame as seeds, no node in the new frame is forced
to take a particular label (unless a strong evidence avails,
Sect. 4.3). Nevertheless, due to the similarity between the
two frames, the segmentation can still produce meaningful
results. This dual-frame graph construction is useful also to
maintain temporal consistency in the segmentation.

4.2. Combining Multiple Views

Thus far, we have not used the fact that the two ultra-
sound sequences in our setup correspond to two intersect-
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ing planes. The images corresponding to the two planes
should have similar intensity values along the lines of inter-
section and should be segmented consistently along these
lines. To make use of this fact, we use a bi-plane graph con-
struction. In this construction, each plane is represented as
a grid graph and the two grids are connected along the inter-
section lines. In addition to maintaining segmentation con-
sistency between the two planes, such construction is also
useful in some cases of tumor disappearance, as explained
in Sect. 5. Note that the dual-frame construction, Sect. 4.1,
is used with the bi-plane construction presented here. How-
ever, the bi-plane connections are made only between the
grids corresponding to the new frames since the reference
frames may correspond to different time instances, as ex-
plained in Sect. 5.

4.3. Probabilistic Priors From 3D Model

Thus far, our graph construction did not make use of the
tumor 3D model. In this section, we show how to use the
tumor 3D model to harvest seeds for a new frame (in addi-
tion to the seeds in the reference frame), construct a proba-
bilistic prior, and use it to compute a robust link weighting
function.

4.3.1 Volume Prior

We use the tumor volumetric shape to obtain a probabilistic
prior for foreground segmentation. Knowing the current 3D
tumor location, we generate hypotheses for the segmenta-
tion mask corresponding to hypotheses of the next 3D tumor
location (sampled particles for tracking). Each segmenta-
tion hypothesis is a binary mask with value 1 assigned to
foreground pixels and 0 assigned to background pixels. We
then compute the average of these masks to obtain a proba-
bilistic prior. We call this prior the volume prior, and denote
it as pV.

pV (v) =
∑
i

hi (v) , (2)

where hi is the i’s segmentation hypothesis. The volume
prior contains useful information for enhancing the accu-
racy of the segmentation. Some pixels will have saturated
probability values (either 0 or 1) in pV. These are the pix-
els that have the same label in all hypotheses. Such pixels
are used as seeds in the new frame, in addition to the seeds
of the reference frame in the dual-frame graph construction,
Sect. 4.1. Figure 4 illustrates the process of computing the
volume prior and harvesting seeds from it.

4.3.2 Appearance Prior

Using the seeds from the volume prior, we create another
probabilistic prior based on the foreground and background
appearances. We use the intensity values at the foreground
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Figure 4. Constructing volume and appearance priors.

and background seeds to learn two probability distributions
for the foreground and background intensity values, de-
noted as ffg and fbg. For ultrasound images, we use a Gaus-
sian Mixture Model, with the number of modes empirically
set to 2 for ffg and 1 for fbg. From these intensity distribu-
tions, we construct another probability map, the appearance
prior, pA.

pA (v) =
ffg (v)

ffg (v) + fbg (v)
. (3)

As shown in Fig. 4, the appearance prior may assign high
foreground probabilities to pixels belonging to the back-
ground because of their similarities to the foreground dis-
tribution. However, based on the information in the volume
prior, most of such pixels cannot be foreground. Therefore,
we finally combine the two probability maps in a unified
prior, pfg, such that

pfg (v) = φ (pV (v)) pA (v) , (4)

where φ(x) is a step function that takes the value 1 if x > 0,
and 0 otherwise.

4.4. Robust Link Weighting Function

Both GC and RW can be formulated in a way to in-
corporate priors in the singleton terms in (1). Grady [4]
showed that including a probabilistic prior in GC and RW
are closely related. In the case of two labels, they are
both equivalent to adding a seed auxiliary node for each
label, linking each auxiliary node to all nodes in the orig-
inal graph, and setting the weight for such links to prior
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probability values multiplied by some constant ν. Properly
setting the multiplicand ν is critical to adjusting the effect
of the prior with respect to smoothness of the labeling func-
tion. Too high ν value would make the result a mere thresh-
olding of the prior while too low value would make the prior
ineffective. We argue that incorporating the probabilistic
prior in the pair-wise energy terms in (1) is more intuitive
to adjust and could make the segmentation algorithm more
robust.

For intensity images, such as ultrasound images, the link
weighting function is typically formulated as

w (eij) = eαI(F (vi)−F (vj))
2+αD‖vi−vj‖ , (5)

where F is intensity map of the input image, ‖vi − vj‖ is
the Euclidean distance between the two vertices vi and vj ,
and αI and αD are two constants to adjust the relative im-
portance of the two terms. The weighting function indicates
how similar two pixels are, and hence, how likely they are
to belong to the same segment. We introduce the incorpora-
tion of priors in the link weighting function (5). The under-
lying rationale is that two pixels are more likely to have the
same label if their prior probabilities are similar. Therefore,
the difference of prior probability values can be used in the
weighting function. If the prior foreground probability map
is p, we use the weighting function

w (eij) = eαI(F (vi)−F (vj))
2+αP |p(vi)−p(vj)|+αD‖vi−vj‖ .

(6)
where αP is the weight of the prior-based distance. For a
general K label segmentation, the absolute value difference
in (6) can be replaced by another distance measure, such as
the χ2 statistic. Note that these changes to the weighting
function still respect the regularity conditions required for
GC [9].

The benefit of using the weighting function formulation
in (6) is multi-fold. First, incorporating the prior with the
intensity difference in a single formula makes it easier to
adjust their relative weights to get the desired segmenta-
tion. Second, in noisy images, such as ultrasound, intensity
difference is not a reliable similarity measure. Incorporat-
ing the prior probability difference in the similarity measure
makes it more robust to image noise. Third, the segmenta-
tion becomes less sensitive to the weight given to the prior
because the same prior value for a pixel is used multiple
times, twice the number of neighbors, and is given a differ-
ent weight each time.

5. Occlusion Handling
Occlusion handling is a main component in any tracking

algorithm in the visible domain, e.g. [6]. The tracked object
may become briefly invisible due to an occluding object in
the scene, or due to lying outside the camera’s field of view.

The tracking algorithm has to detect such events and resume
tracking afterwards. In ultrasound imaging, an equivalent
phenomenon can happen when the tracked organ falls into
the shadow caused by a highly reflective tissue interface.
Another scenario is when the tracked organ moves so that
it no longer intersects the ultrasound scanning plane. This
case needs a special handling since the foreground region
will be lost completely for a period of time.

We consider only respiration-induced motion, which is
the most significant un-voluntary motion in the body. Fortu-
nately, respiratory motion is highly periodic. Therefore, it is
expected to cause an organ to approximately move along a
fixed closed trajectory. For simplicity, we assume the organ
to be approximately moving back and forth along a fixed
path. Therefore, when a tracked organ moves off the scan-
ning plane, it is expected to come back and intersect the
plane at a location that is close to when it was last detected.
Recall that in our algorithm, we use dual-frame graph con-
struction that contains a reference frame along with the cur-
rent frame to segment, Sect. 4.1. The reference frame has to
be as close as possible in its appearance to the new frame to
be helpful for the segmentation. Given the periodic motion
pattern described above, considering the frame in which an
invisible tumor starts to appear again, the closest frame in
appearance would be the last frame in which the tumor was
visible, i.e. right before leaving the field of view. There-
fore, this frame can be the best choice as a reference frame
for segmentation. It remains to set a criterion to determine
whether the tumor is visible or not. When the tumor be-
comes invisible, the segmentation is expected to label no
pixels as foreground. We rely on this desired segmentation
behavior for detecting invisibility of the tumor.

In summary, invisibility of tumors due to respiratory mo-
tion can be effectively handled using the following simple
update rule for the reference frame: If the segmentation re-
sult for the current frame has a non-empty foreground re-
gion, update the reference frame to be the current frame.
Otherwise, keep the reference frame as it is. In practice,
we stop updating the reference frame when the foreground
region is smaller than a specific threshold (100 pixels in
our implementation). This approach is illustrated by sample
frames from one of our test videos in Fig. 5.

It is also worth noting here that the bi-plane graph con-
struction, Sect. 4.2, helps in some situations when the sim-
ple occlusion handling scheme explained here does not. If
the foreground seeds in the reference frame of one plane
do not overlap with the tumor’s boundary upon returning to
view in that plane, the tumor can be missed. However, if
the tumor is still visible in the other plane, seeds from the
other plane can be of great help due to the interconnections
between the two.
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Figure 5. Occlusion handling. Top: segmentation result. Bottom:
reference frames. Occlusion is detected and reference frame is not
updated in third frame from left. Update is resumed in the right
most frame.
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Figure 6. Data generation from a simulated 4DCT volume.

6. Experimental Results

In order to evaluate the performance of CrossTrack, we
need ground truth data where the tumor 3D volume is
known and the 3D location of the tumor corresponding to
each pair of ultrasound frames is also known. Unfortu-
nately, such data is extremely hard to obtain for real ultra-
sound data. Therefore, we evaluated CrossTrack on syn-
thetic data obtained by simulation from a CT volume. We
evaluate the algorithm based on the error in the estimated
3D location.

Given a CT scan, we first embed a volume at a given lo-
cation to represent the tumor. The Hounsfield Unit (HU)
values for the CT voxels covered by the embedded vol-
ume are randomly generated from a Gaussian distribution
whose mean is slightly higher than the surrounding tis-
sue with a small standard deviation. Next, we simulate
the breathing motion and generate a 4DCT sequence. For
each time instance, two ultrasound slices are simulated from
the corresponding CT volume. The locations of the two
slices are fixed. They are taken in the transverse and sagit-
tal directions, and set to intersect at initial tumor loca-
tion. The process is illustrated in Fig. 6 with sample im-
ages. Details of the simulation are beyond the scope of
this manuscript. Interested readers are referred to equiva-
lent simulation work [13, 17].

In our experiments, the tumor volume was generated by
combining one or more of the basic shapes shown in Fig. 7.
The breathing cycle length was set to 2 seconds1. Each se-
quence is 7 seconds with 30 fps. From a single CT scan,
we generated 6 4DCT sequences while changing the tumor
location and shape to create different levels of difficulties.

1Slightly faster than average, but, more challenging.

Pear Shape V Shape Combined Volume

Figure 7. Making complex tumor shapes from basic ones.

In all the sequences, the tumor is placed in the abdomen
area. The sequences cover the cases of continuous visibil-
ity in both planes, short and long tumor disappearance (8
and 19 frames, respectively) in each breathing cycle in one
view only, and tumor disappearance in the two planes at the
same time. In one sequence, the V shape volume is rotated
so that the transverse plane cuts through the two arms of
the V, which creates a disconnected tumor cross section. In
another sequence, the tumor consists of two disconnected
volumes. Figure 8 shows sample frames from the last two
sequences.

We base our comparisons on quantitative measures for
3D tracking performance. We use the Euclidean distance
(D) between the estimated 3D location of the tumor center
and the ground truth location to represent the tracking error.
The distance here is in terms of ultrasound voxels. To eval-
uate occlusion handling, we use the precision (P ) and recall
(R) metrics. To compute these metrics, we consider the tu-
mor existing at a time instance if it is visible in at least one
of the two planes, and non-existing if it is invisible in both.
For each sequence, the P and R metrics and the average of
theD metric over all frames are computed. The comparison
is based on the average metrics over all sequences.

Table 1 shows the overall performance of our algo-
rithm using both GC and RW as the base segmentation al-
gorithms. The two algorithms are very close in terms of
precision and recall while scoring more than 98% on av-
erage for both metrics. This highlights the robustness of
the algorithm against different challenging cases of tumor
disappearance. In terms of the distance measure, the RW
delivers more than double the accuracy of GC, where RW’s
average error is less than a voxel, while GC’s is 2.16 voxels.
RW’s subvoxel accuracy indicates that it is limited only by
the image resolution and hence can deliver the maximum
possible accuracy for a given imaging device. We believe
that the difference between RW and GC is due to the ten-
dency of GC to favor smaller foreground regions [15]. Since
our goal is not to compare RW to GC, we just include the
better performer, RW, in subsequent experiments.

Next, we show the significance of using bi-plane imag-
ing for tracking over using a single plane. To conduct this
experiment, we used our algorithm on one plane at a time.
That is the segmentation is performed in one plane, and
the 3D location is estimated by matching the segmenta-
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Distance Precision Recall
Random Walks 0.98 100.00 98.42
Graph Cuts 2.16 99.31 98.02

Table 1. CrossTrack’s performance using Graph Cuts and Random
Walks.

.

Distance Precision Recall
CrossTrack 0.98 100.00 98.42
Single Plane 3.32 99.90 86.11
Baseline 5.80 100.00 54.98

Table 2. Performance comparison of CrossTrack vs. single plane
and a baseline tracking algorithms.

.

tion boundary to the hypothesized segmentations. The sec-
ond row of Table 2 shows the results for this experiment.
Clearly, using bi-plane imaging outperforms single plane
imaging. Using bi-plane imaging reduces the error by 70%
and increases the recall by 14%. The tracking performance
using a single frame is not acceptable for clinical deploy-
ment while the performance for bi-plane is excellent. Fig-
ure 8 shows the segmentation output using a single plane
compared to bi-plane images. Especially, in Seq-5, top 4
rows, segmentation based on a single plane easily confuses
the foreground with the background when the tumor falls
under the shade of another organ and when it splits in two
regions. Using bi-plane in our algorithm accurately handles
this challenging case.

Next, we compare CrossTrack to the prior art. To the
best of our knowledge, there is no close prior work to com-
pare to. Nevertheless, we compare the tracking result using
CrossTrack against RW with probabilistic priors. As shown
by Grady [4], incorporating probabilistic priors in RW alle-
viates the need for seeds and enables segmentation of frag-
mented regions if no seeds available within each connected
component. We consider a hypothetical baseline solution to
our problem that uses RW with probabilistic priors as fol-
lows. From the initial frame, two probability distributions
are estimated for the background and foreground intensity
values. This should be enough in our data since the intensity
distribution does not exhibit severe changes. These distri-
butions are used to estimate an appearance prior for each
subsequent frame, as in Sect. 4.3.2. The resulting segmen-
tation is matched to the tumor model to estimate the 3D
locations. Third row of Table 2 shows the results for this
experiment. Clearly, the baseline algorithm fails, with six
times higher tracking error, and only 55% recall. Despite
the baseline algorithm’s ability to handle disappearing tu-
mors in the absence of seeds, due to similarity of the tracked
region and a large area of the background, it erroneously
segments this area as foreground leading to a significant
tracking error. Figure 9 shows sample segmentation out-

Figure 8. Sample frames from Seq-5 (top 4 rows) and Seq-6 (bot-
tom 4 rows) in our dataset. Rows 1 and 3: tracking using single
transverse plane. Rows 2 and 4: corresponding output using bi-
plane. Rows 5 and 7: tracking using single sagittal plane. Rows
6 and 8: corresponding output using bi-plane. First two rows of
each seq. are transverse plane, last two are sagittal.

puts for CrossTrack compared to this baseline algorithm on
our least challenging sequence.

7. Conclusion
We presented CrossTrack, a novel approach for recursive

3D location estimation and segmentation in multiple cross-
sectional views of a volumetric object. The target applica-
tion is 3D tumor tracking from bi-plane ultrasound imaging
given the tumor 3D model. CrossTrack uses the 3D model
and last estimated location to create priors for next frame,
and to refine the segmentation result afterwards. Segmen-
tation is performed jointly on two views and two time in-
stances to ensure temporal and view consistency and to
achieve robustness against image noise and occlusion. Tu-
mor occlusion is handled in a simple way using the periodic
nature of respiration-induced motion. Our experiments on
synthesized ultrasound data show the effectiveness and ro-
bustness of CrossTrack. CrossTrack is general enough to be
used with any graph-based segmentation. The performance
is reasonably good for both GC and RW, with a significant
lead to RW.

CrossTrack indeed delivers excellent performance on
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Figure 9. Sample frames from Seq-1 in our dataset. Rows 1 and
3: output of baseline algorithm (see text). Rows 2 and 4: output
of our algorithm. First two rows are transverse plane, last two are
sagittal.

tracking challenging tumor shapes. However, there are a
number of limitations we would like to point out. Typi-
cally, the tumor 3D model is obtained by analyzing the pa-
tient’s CT scan. A model obtained from a CT scan may
not perfectly match the appearance in ultrasound due to the
many distortion effects in the latter. We believe that con-
verting a 3D model from the CT space to the ultrasound
space is possible with a sophisticated physical simulation
of the ultrasound imaging process. Another limitation is
that tumors with multiple small volumes may violate the
motion assumptions we use in recovering from occlusion.
CrossTrack can be further enhanced by deploying a richer
recursive Bayesian filtering model, and a more general tu-
mor motion model. Finally, the algorithm can possibly be
made to run in real time using a GPU implementation since
the most time consuming part, segmentation matching, is
highly parallelizable.
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