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Abstract—We present a novel method to securely determine
whether two signals are similar to each other, and apply it to
approximate nearest neighbor clustering. The proposed method
relies on a locality sensitive hashing scheme based on a secure
binary embedding, computed using quantized random projec-
tions. Hashes extracted from the signals preserve information
about the distance between the signals, provided this distance
is small enough. If the distance between the signals is larger
than a threshold, then no information about the distance is
revealed. Theoretical and experimental justification is provided
for this property. Further, when the randomized embedding
parameters are unknown, then the mutual information between
the hashes of any two signals decays to zero exponentially fast as a
function of the �2 distance between the signals. Taking advantage
of this property, we suggest that these binary hashes can be
used to perform privacy-preserving nearest neighbor search with
significantly lower complexity compared to protocols which use
the actual signals.

I. INTRODUCTION

A large number of signal processing, machine learning
and data mining applications require comparing signals to
determine how similar they are, according to some similarity—
or distance—metric. In many of these applications, such
comparisons are used to determine which of the signals in
a cluster are the nearest neighbors of a query signal, i.e., the
most similar signals to the query from the ones in the cluster.
It is, therefore, inevitable that reliable, efficient, and secure
search of a signal’s nearest neighbors has received significant
attention in the literature. In this paper, we propose an efficient,
yet secure computation framework to execute this search.

There is a vast literature on nearest neighbor algorithms for
various distance measures (e.g., see [1] and references within).
In some applications, the cluster of points is distributed among
multiple parties and, in such cases, it is necessary to design
algorithms that have manageable computational complexity
as well as low communication overhead. The difficulty of
nearest neighbor search is exacerbated when there are privacy
constraints, i.e., when one or more of the involved parties
cannot share their data points.

In recent years, with the advent of social networking,
internet based storage of user data, and cloud computing,
privacy-preserving nearest neighbor search has gained sig-
nificant attention in the research community. To satisfy the
privacy constraints while still allowing distance computation,
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the data vectors possessed by one or more parties are encrypted
using additively homomorphic cryptosystems such as the Be-
naloh [2], Paillier [3] or Damgard-Jurik [4] schemes. Using
cryptographic protocols, a nearest neighbor search scheme
is presented in [5]. In this work, nearest neighbor search is
performed in which the client does not reveal his query to the
server, and the server does not reveal points in its database
other than those belonging to the k-nearest neighbor set. The
computational complexity of this scheme is quadratic in the
number of datapoints, which is a significant overhead since
these distance computation was performed in the encrypted
domain. This scheme is improved in [6], which uses a pruning
technique first proposed in [7] to reduce the number of
distance computations and obtain linear computational and
communication complexity.

Our contribution in this paper is two-fold: (1) We propose
a scheme for nearest-neighbor search based on a secure
stable embeddings using quantized random projections. Our
approach produces a locality-sensitive hashing method with a
special property: The Hamming distance between the hashes is
proportional to the �2 distance between the underlying vectors
so long as the latter distance is below a threshold. If the
underlying vectors are too far away, the hashes provide no
information about the true distance between them, provided
the projection parameters are not revealed. (2) We show how to
utilize this embedding scheme for privacy-preserving nearest
neighbor search by presenting protocols for clustering and
authentication applications. A salient feature of these protocols
is that distance computation can often be performed on the
hashes in cleartext without revealing the underlying data vec-
tors. Thus, the computational overhead, in terms of encrypted-
domain distance computation is significantly lower than the
state of the art. Further, even when encryption is necessary, the
inherent “nearest neighbor within a ball” property can obviate
complex subprotocols required in the final step to select a
specified number of nearest neighbors, such as in [6].

Our approach is based on recent work on rate-efficient
universal scalar quantization [8], and has strong connec-
tions with stable binary embeddings for quantization [9] and
with Locality-Sensitive Hashing (LSH) approaches to nearest
neighbor computation. LSH uses very short hashes of signals
to efficiently compute their approximate distance [10], [11].
The key difference in our approach is that we guarantee the
information-theoretic security of our embeddings.



II. BACKGROUND: UNIVERSAL QUANTIZATION

Universal Scalar Quantization, first introduced in [8], fun-
damentally revisits scalar quantization and redesigns the quan-
tizer to have non-contiguous quantization regions. In this
section we provide a very brief overview.

Given a K-dimensional signal x ∈ RK , we consider the
quantization process described by

ym = �x,am�+ wm, (1)

qm = Q

�
ym

∆m

�
, (2)

compactly represented by

q = Q(∆−1(Ax + w)), (3)

where m = 1, . . . ,M is the measurement index, ym are the
unquantized measurements, am are the measurement vectors,
wm denotes the additive dither, ∆m are precision parameters,
and Q(·) the quantizer, with y ∈ RM ,A ∈ RM×K ,w ∈ RM

and ∆ ∈ RM×M the corresponding matrix representations.
Here, ∆ is a diagonal matrix with entries ∆m, and Q(·) is a
scalar quantizer, i.e., operates element-wise on vector inputs.

In the remainder of our work, we base our analysis on the
results in [8] and, therefore we follow the same assumptions.
Specifically, A is a random matrix with i.i.d. zero-mean,
normally distributed entries with variance σ2, ∆m = ∆ is
the same and predetermined for all measurements, and w is
uniformly distributed in [0,∆]. Further, to ensure universality,
efficiency and security, we use the quantization function, Q(·),
shown in Fig. 1. Under these assumptions, the next lemma—
on which we rely for this work—follows.

Lemma 2.1: [8, Lemma 3.1] Consider signals x, and x�
with d = �x− x��2 and the quantized measurement function

q = Q

�
�x,a�+ w

∆

�
, q� = Q

�
�x�,a�+ w

∆

�
,

where Q(v) = �v� mod 2, a ∈ RK contains i.i.d. elements
drawn from a normal distribution with mean 0 and variance
σ2, and w is uniformly distributed in [0,∆]. The probability
that the quantized measurements of the two signals produce
equal bits, i.e., that q = q�, is given by

P (x,x� consistent|d) =
1
2

+
+∞�

i=0

e
−

“
π(2i+1)σd√

2∆

”2

(π(i + 1/2))2
,

where the probability is taken over the distribution of a and
w. Furthermore, the above probability can be bound using

Pc|d ≤
1
2

+
1
2
e
−

“
πσd√
2∆

”2

, (4)

Pc|d ≥
1
2

+
4
π2

e
−

“
πσd√
2∆

”2

, (5)

Pc|d ≥ 1−
�

2
π

σd

∆
, (6)

where Pc|d is henceforth shorthand for P (x,x� consistent|d).
Finally, it is also straightforward to demonstrate that thanks to
the dither, for a particular signal each quantization bit takes
the value is 0 or 1 with the same probability, 1

2 .
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Fig. 1. This non-monotonic quantization function Q(·) allows for universal
rate-efficient scalar quantization and provides information-theoretic security.

III. SECURE BINARY EMBEDDINGS

In this section we examine the security and embedding
properties of the binary quantization process in (3). The con-
struction of our embedding is very similar, but not identical,
to the one constructed in [11]. Since we use the quantization
process as an embedding, it has similar properties to Locality
Sensitive Hashing (LSH) [10], [11]. Thus we often refer to q,
the quantized measurements of x, as the hash of x.

Our aim is twofold. First we use an information-theoretic
argument to demonstrate that the quantization process provides
information about the distance between two signals x and x�
only if the �2 distance between them, �x−x��2, is sufficiently
small. Furthermore, the process does not leak any information
about them or their relation if their �2 distance is sufficiently
large. Second, we quantify the information provided by the
hashes by demonstrating that they provide a stable embedding
of the �2 distance under the normalized Hamming distance,
i.e., we show that the �2 distance between two signals bounds
the normalized Hamming distance between their hashes. A key
requirement is that the measurement matrix A and the dither
w remain secret from the receiver of the hashes. Otherwise,
the receiver could, in principle, reconstruct the signals very
accurately, according to the guarantees in [8].1

A. Information-theoretic Security

To understand the security properties of this embedding we
consider the mutual information between the ith bit, qi and q�i,
of the hash of two signals, x and x� (measured with the same
random ai and wi), conditional on the signal distance d:

I(qi; q�i|d) =
�

qi,q�i∈{0,1}
P (qi, q

�
i|d) log

P (qi, q�i|d)
P (qi|d)P (q�i|d)

= Pc|d log(2Pc|d) + (1− Pc|d) log(2(1− Pc|d))

= log(2(1− Pc|d)) + Pc|d log
�

Pc|d
1− Pc|d

�

≤ log
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1We should note here that the results in [8] are of theoretical nature, and do
not provide any reconstruction algorithms. In fact, reconstruction from such
measurements, even if the measurement parameters A and w are known,
seems to be of combinatorial complexity, and might be computationally
prohibitive. Still, we do not rely on this complexity for our development.



where the last step uses log x ≤ x − 1 to consolidate the
expressions.

For any x, x� the ith hash bits qi, q�i are independent of
the jth hash bits qj , q�j , for i �= j, because the rows of A
and w are independent random variables. Thus, the mutual
information between two length-M hashes, q,q� of the two
signals is bounded by the following theorem:

Theorem 3.1: Consider two signals, x and x�, and the quan-
tization method in Lemma 2.1 applied M times to produce the
quantized vectors (hashes) q and q�, respectively. Then,

I(q;q�|d) ≤ 10Me
−

“
πσd√
2∆

”2

(7)

Theorem 3.1 shows that the mutual information between a
pair of hashes decreases exponentially fast with the distance
between the signals that generated them. The rate of the
exponential decay is controlled by the precision parameter ∆.
Thus we cannot recover any information about signals that
are far apart, compared to ∆, just by observing their hashes.
We remark that this scheme might be susceptible to a chosen-
plaintext attack; if a very large number of vectors, carefully
selected by an adversary, are all hashed using the same A and
w, then it might be possible to recover A and w. However,
in the applications discussed in Section IV, such an attack is
not possible; the protocols ensure that participants who don’t
already possess A and w cannot arbitrarily examine a large
number of chosen vector-hash pairs.

B. Stable Embedding

Next, we demonstrate that this approach provides a stable
embedding similar in spirit to Johnson-Lindenstrauss em-
beddings [12]. Such an embedding provides a relationship
between distance of signals in the signal space RK and
the distance of their measurements, i.e., their hashes. Since
the hash is in the binary space {0, 1}M , the appropriate
distance metric is the normalized Hamming distance, denoted
dH(q,q�) = 1

M

�
m(qm ⊕ q�m).

We first consider the quantization of a pair of vectors x,x�
with �2 distance d = �x − x��2, as described above. The
distance between each pair of individual quantization bits
(qm ⊕ q�m) is a random binary value with distribution

P (qm ⊕ q�m|d) = E(qm ⊕ q�m|d) = 1− Pc|d.

Using Hoeffding’s inequality [13], it is straightforward to show
that the Hamming distance satisfies

P
�
|dH(q,q�)− (1− Pc|d)| ≥ t

�� d
�
≤ 2e−2t2M (8)

Next, consider a cloud of L points to be embedded securely.
Using the union bound on at most L2 possible signal pairs in
this cloud, each satisfying (8), the next theorem follows.

Theorem 3.2: Consider a set S of L signals in RK and
the quantization method of Lemma 2.1. With probability 1−
2e2 log L−2t2M the following holds for all pairs x,x� ∈ S and
their corresponding hashes q,q� ∈ {0, 1}M

1− Pc|d − t ≤ dH(q,q�) ≤ 1− Pc|d + t, (9)

where Pc|d is defined in Lemma 2.1, d is the �2 distance
between the signals, and dH(·, ·) is the normalized Hamming
distance between their hashes.

This theorem essentially states that with overwhelming
probability the normalized Hamming distance between the two
hashes will be very close, as controlled by t, to the mapping
of the �2 distance defined by 1−Pc|d. Furthermore, using the
bounds in (4)–(6), we can obtain closed form, albeit looser,
embedding bounds for (9):

1
2
− 1

2
e
−

“
πσd√
2∆

”2

− t ≤ dH(q,q�) ≤ 1
2
− 4

π2
e
−

“
πσd√
2∆

”2

+ t,

The mapping 1 − Pc|d, together with its bounds, is shown
in Fig 2. The mapping is linear for small d and becomes
essentially flat—therefore, not invertible—for large d, with the
scaling controlled by the precision parameter ∆. Furthermore,
it is very clear in the figure that the upper bounds,

1− Pc|d ≤
�

2
π

σd

∆
, and (10)

1− Pc|d ≤
1
2
− 4

π2
e
−

“
πσd√
2∆

”2

, (11)

are very tight for small and large d, respectively, and can be
used as approximations of the mapping. Of course, the results
of Theorem 3.2, and the bounds on the mapping, can be easily
reversed to provide guarantees on the �2 distance as a function
of the Hamming distance.

Figure 3 indicates how the embedding behaves in practice. It
shows simulation results on the normalized Hamming distance
between pairs of hashes as a function of the �2 distance
between the signals that generated them. The signals are
randomly generated in R1024, i.e., K = 210. The top plot
uses M = 212 = 4096 measurements per hash, i.e., 4
bits per coefficient. The bottom plot uses M = 28 = 256
measurements per hash, i.e., 1/4 bit per coefficient. Two
different ∆ are used in each plot, ∆ = 2−3, 2−1. As the
∆ increases, the slope of the linear part of the embedding
increases, and a larger range of �2 distances can be identified.
This reduces security since information is leaked for signals at
longer distances. Furthermore, the width of the linear region
increases, which increases the uncertainty in inverting the map
in the linear region. On the other hand, as the number of
hashing bits M increases, the embedding becomes tighter at
the expense of larger bandwidth requirements. This means that
the �2 distance between near neighbors can be more accurately
estimated from the hashes. Note that a similar uncertainty on
the exact mapping between distance of signals exists even if
the signals are quantized, and then compared in the encrypted
domain using, for example, a homomorphic cryptosystem.

This behavior is consistent with the information-theoretic
security shown earlier for the embedding. For small d, there is
information provided in the hashes, which can be used to find
the distance between the signals. For large d, information is not
leaked so it is not possible to determine the distance between
two signals, or any other information, from their hashes.
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Fig. 2. Embedding map 1 − Pc|d, and its bounds plotted versus the �2
distance between two signals. The two upper bounds also provide a very good
approximation of the embedding, each at a different region of the function.
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Fig. 3. Simulations demonstrating the embedding behavior. As ∆ increases,
the slope decreases and the linear region of the map increases, at the expense
of revealing information for more distant signals and increasing the uncertainty
in the mapping. As the number of bits M increases the mapping becomes
tighter, reducing the uncertainty in the mapping, at the expense of larger
bandwidth use.

IV. APPLICATIONS

We now present various application scenarios in which
performing a nearest neighbor search based on the hashes is
beneficial. We assume that all parties are semi-honest, i.e., they
will follow the rules of the protocol but will utilize information
available to them at each step of the protocol to discover the
data held by other parties. In all of the protocols below, assume
that the embedding parameters A,w and ∆ are chosen such
that the linear proportionality region in Fig. 2 extends at least
up to an �2 distance of D. Within this proportionality region,
denote by DH the normalized Hamming distance between
hashes corresponding to an �2 distance of D between the
underlying signals. Recall from Section III that, outside this
region, the embedding is non-invertible and therefore secure.
In other words, if the distance between two signals is outside
the linear region, then we cannot recover any information
about them just by observing their hashes.

A. Privacy Preserving Clustering with a Star Topology

In this application, we take advantage of the property
that, when the embedding matrix A and the dither vector
w are unknown, no information is leaked about the original
vector x by observing the corresponding hash. In the scenario
considered here, multiple parties provide data for the purpose
of an experiment or a survey performed by a centrally located
researcher or auditor. The goal is to allow the researcher to
cluster the data and organize the parties into classes without
looking at their original data.

.!
.!
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R!

x(1)

x(2)

x(3)

x(N)

x(4)

q(4)
q(3)

q(2)

q(1)

q(N)

Fig. 4. Researcher can perform approximate nearest neighbor clustering of
star-connected parties without discovering their data.

Inputs: There are N parties. Each party Ui possesses
data x(i), i ∈ I = {1, 2, ..., N}.

Output: For each i ∈ I, the researcher obtains the
approximate nearest neighbors of the party Ui within an �2
distance of D.

Protocol: The protocol transmissions are summarized
in Fig. 4 and are explained below.

1) All the parties obtain a common random embedding
matrix A, a dither vector w and the parameter matrix ∆.
One way to accomplish this is for one party to choose
A,w and ∆ and transmit them to the other parties using
public encryption keys of the intended recipients.

2) Each party Ui computes q(i) = Q(∆−1(Ax(i) + w))
and sends q(i) to the researcher in plaintext form.

3) Corresponding to each party Ui, the researcher con-
structs sets Gi = {Uj | dH(q(i),q(j)) ≤ DH ∀ j ∈
I, j �= i}.

From Theorem 3.2, we know that the elements of Gi are
the approximate �2 nearest neighbors of the party Ui. Note
that, owing to the properties of the embedding, the researcher
can perform clustering using the binary hashes in cleartext
form, without discovering the underlying data x(i). Thus, apart
from the initial overhead incurred in order to communicate the
parameters A,w and ∆ to the N parties, encryption is not
needed in this protocol. This is in contrast to protocols which
need to perform distance calculation based on the original
vectors x(i), which would require the researcher to engage in
additional sub-protocols to compute O(N2) pairwise distances
in the encrypted domain using homomorphic encryption.

B. Authentication using Symmetric Keys

Next, we consider authentication using a vector x derived,
for instance, from a biometric or an image. The goal is
to authenticate x with a trusted server without revealing it
to an eavesdropper. If the goal is authentication, the user
claims an identity and the server should determine whether
the submitted vector is within a predefined �2 distance from
that user’s enrollment vector stored in its database. If the
goal is identification, the server should determine whether or
not the submitted vector is within a predefined �2 distance
from at least one enrollment vector stored in its database.
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Fig. 5. A user can be identified by an authentication server without revealing
its authentication data x to an eavesdropper. As a variation, to design a
protocol for an untrusted server, we can stipulate that the server only keeps the
q(i), does not store x(i) and does not possess the (user-specific) embedding
parameters (A(i),w(i),∆(i)).

Our proposed scheme accomplishes this by performing the
authentication or identification in the subspace of quantized
random projections. Here, the triplet (A,w,∆) serves as a
symmetric key known only to the user and the authentication
server, but not to the eavesdropper. The protocol for the user
identification scenario is explained below; the authentication
protocol proceeds along very similar lines.

Inputs: The user possesses a vector x to be used for
identification. The server possesses a database of N
enrollment vectors x(i), i ∈ I = {1, 2, ..., N}. The user and
the server (but not the eavesdropper) possess (A,w,∆).

Output: The server determines G which is the set of
approximate nearest neighbors of the probe vector x within
an �2 distance of D. If G = ∅, user identification has failed,
otherwise the user has been identified as being close to
at least one legitimate enrolled user of the database. The
eavesdropper obtains no information about x.

Protocol: The protocol transmissions are summarized
in Fig. 5 and are explained in detail below:

1) The user computes q = Q(∆−1(Ax + w)) and sends
q to the server in plaintext form.

2) The server computes q(i) = Q(∆−1(Ax(i) + w)) for
all i ∈ I.

3) The server constructs the set G = {i | dH(q,q(i)) ≤
DH ∀ i ∈ I}.

Again, from Theorem 3.2, we see that the set G contains
the approximate �2 nearest neighbors of x. If G = ∅, then
identification has failed, otherwise the user has been identified
as having one of the indices in G. As the eavesdropper does
not know (A,w,∆), the quantized projections do not reveal
information about the underlying vector. This protocol does
not require the user to encrypt the hash before sending it to the
authentication server. In terms of the communication overhead,
this is an advantage over conventional nearest neighbor search
algorithms which require that the client should send the
original vector to the server in encrypted form in order to
hide it from the eavesdropper.

An interesting variation of the above scheme is as follows:
If the authentication server is untrusted, users would not wish

to enroll using their identifying vectors x(i). In that case,
change the above protocol so that only a user (but not the
server) possesses (A(i),w(i),∆(i)). The users now enroll into
the server’s database using the hashes q(i) instead of the
corresponding vectors x(i). These hashes are the only data
stored on the server. In this situation, since the server does
not know (A(i),w(i),∆(i)), it cannot reconstruct x(i) from
q(i). Further, if the server’s database is compromised, then
the q(i) can be revoked and new hashes can be enrolled using
different embedding parameters (A(i)� ,w(i)� ,∆(i)�).

C. Privacy Preserving Clustering with Two Parties

Next, we consider a two-party protocol in which a client
initiates a query on a server’s database. The privacy constraint
is that the server should not discover the client’s query vector
while the client should only discover the vectors in the server’s
database that are within a predefined �2 distance from its query.

Unlike the earlier protocol with the star topology in
Section IV-A, it is now necessary to use a homomorphic
cryptosystem scheme such as Paillier cryptosystem [3] to
perform simple operations in the encrypted domain. The
additively homomorphic property of the Paillier cryptosystem
ensures that ξp(a)ξq(b) = ξpq(a + b) where a, b are integers
in the message space, and ξ(·) is the encryption function.
The integers p, q are randomly chosen encryption parameters
which make the Paillier cryptosystem semantically secure,
i.e., by choosing the parameters p, q at random, one can
ensure that repeated encryptions of a given plaintext results
in different ciphertexts, thereby protecting against chosen
plaintext attacks (CPAs). For simplicity, we will drop the
suffixes p, q from our notation. As a corollary to the additively
homomorphic property, we have ξ(a)b = ξ(ab).

Inputs: The client has a query vector x. The server
has a database of N vectors x(i), i ∈ I = {1, 2, ..., N}. The
server generates the triplet (A,w,∆) and makes ∆ public.

Output: The client obtains G, the set of approximate
nearest neighbors of the query vector x within an �2 distance
of D. If no such vectors exist, then the client obtains G = ∅.

Protocol: The protocol transmissions are summarized
in Fig. 6 and the steps are detailed below:

1) The client generates a public encryption key, pk,
and secret decryption key, sk, for Paillier encryp-
tion. Then, it performs elementwise encryption of
x. Denote the elementwise encryption by ξ(x) =
(ξ(x1), ξ(x2), ..., ξ(xK)). The client transmits ξ(x) to
the server.

2) The server uses the additively homomorphic property to
compute ξ(y) = ξ(Ax + w) and returns ξ(y) to the
client.

3) The client decrypts y and computes q = ∆−1y. It then
sends ξ(q) to the server.

4) The server computes the hashes of its entire database,
i.e., it obtains q(i) = ∆−1(Ax(i) + w) for all i ∈ I.
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Fig. 6. A client can obtain the approximate nearest neighbors of the query
vector x using the proposed locality-sensitive hashing scheme in conjunction
with a additively homomorphic cryptosystem.

5) Now, the server uses homomorphic properties to com-
pute the encryption of the Hamming distances between
the quantized query vector and the quantized database
vectors, i.e., it computes dH(q,q(i)) for all i ∈ I as
follows:

ξ(MdH(q,qi)) = ξ(
M�

m=1

qm ⊕ q(i)
m ) =

M�

m=1

ξ(qm ⊕ q(i)
m )

=
M�

m=1

ξ(qm)ξ(q(i)
m )ξ(qm)−2q(i)

m

The server sends the encrypted distances to the client.
6) The client decrypts dH(q,q(i)) for all i ∈ I and obtains

the set D = {i | dH(q,q(i)) ≤ DH ∀ i ∈ I}.
7) If D = ∅, the protocol concludes. If not, the client

performs a |D|-out-of-N oblivious transfer (OT) pro-
tocol with the server to retrieve G = {x(i) | i ∈ I

�
D}.

OT (See [14], [15]) guarantees that the client does not
discover any x(i) such that i /∈ D while ensuring that
the query set D is not revealed to the server.

From Theorem 3.2, the set G contains the approximate �2
nearest neighbors of the query vector x. Consider the ad-
vantages of computing distances in the hash subspace versus
encrypted-domain computation of distance between the un-
derlying vectors. For a database of size N , computing the
distances between the vectors would reveal all N distances
� x− x(i) �2 , i = 1, 2, ..., N . A separate sub-protocol is nec-
essary to ensure that only the distances corresponding to the
nearest neighbors, i.e., the local distribution of the distances,
is revealed to the client. In contrast, our proposed protocol
naturally reveals the distances only when � x − x(i) �2 ≤ D.
If � x−x(i) �2 > D, then the Hamming distances between the
hashes are no longer proportional to the true distances. This
prevents the client from knowing the global distribution of the
vectors in the server’s database, while only revealing the local
distribution of vectors close to the query vector.

V. CONCLUSIONS

We presented a secure binary embedding scheme using
quantized random projections, which preserves the distances
between vectors in a special way: So long as one vector is
within a pre-specified distance d from another vector, the
normalized Hamming distance between their two quantized

projections is approximately proportional to the �2 distance
between the two vectors. However, as the distance between the
two vectors increases beyond d, then the Hamming distance
between their projections becomes independent of the distance
between the vectors. The embedding further exhibits some
useful privacy properties: The mutual information between
any two hashes decays towards zero exponentially fast as a
function of the �2 distance between the two underlying signals.

We use this embedding approach to perform efficient
privacy-preserving nearest neighbor search. Most privacy-
preserving nearest neighbor searching algorithms are carried
out using the original vectors, which must be encrypted in
order to satisfy privacy constraints. On the other hand, because
of the aforementioned properties, the proposed hashes can be
used instead of the original vectors to implement privacy-
preserving nearest neighbor search at significantly lower com-
plexity or higher speed. To motivate this, we presented proto-
cols in low-complexity clustering, and server-based authenti-
cation, though many other applications are possible.
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