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Abstract

Finding optimal sparse solutions to estimation problems, particularly in under-determined regimes
has recently gained much attention. Most existing literature study linear models in which the
squared error is used as the measure of discrepancy to be minimized. However, in many applica-
tions discrepancy is measured in more general forms such as log-likelihood. Regularization by
’1-norm has been shown to induce sparse solutions, but their sparsity level can be merely sub-
optimal. In this paper we present a greedy algorithm, dubbed Gradient Support Pursuit (GraSP),
for sparsity constrained optimization. Quantifiable guarantees are provided for GraSP when cost
functions have the Stable Hessian Property.
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Abstract—Finding optimal sparse solutions to estimation prob-
lems, particularly in underdetermined regimes has recently
gained much attention. Most existing literature study linear
models in which the squared error is used as the measure of
discrepancy to be minimized. However, in many applications
discrepancy is measured in more general forms such as log-
likelihood. Regularization by ℓ1-norm has been shown to in-
duce sparse solutions, but their sparsity level can be merely
suboptimal. In this paper we present a greedy algorithm, dubbed
Gradient Support Pursuit (GraSP), for sparsity-constrained opti-
mization. Quantifiable guarantees are provided for GraSP when
cost functions have the “Stable Hessian Property”.

I. INTRODUCTION

Sparsity has emerged as a central topic of study in variety of

fields that require high-dimensional data analysis. Sparsity of

the parameters of interest allows techniques such as robust re-

gression and hypothesis testing, model reduction and variable

selection, and compressive signal acquisition to be feasible

in underdetermined settings. Estimation of underlying sparse

parameters in these techniques is often cast as an optimization

problem. In particular, these optimization problems are studied

thoroughly for the case of sparse linear regression in the field

of Compressive Sensing (CS).

The majority of the CS reconstruction algorithms rely on

the Restricted Isometry Property (RIP), a sufficient condition

to guarantee the solution accuracy. A matrix A satisfies the

δs-RIP of order s if

(1 − δs) ‖x‖2
2 ≤‖Ax‖2

2 ≤ (1 + δs) ‖x‖2
2

holds for all s-sparse vectors x [1]. Given an

s-sparse parameter vector, x⋆, measurements

y = Ax⋆ + e, and error ‖e‖2 ≤ ε then, if δ2s <
√

2 − 1, the

solution to the convex program

arg min
bx

‖x̂‖1 s.t ‖y − Ax̂‖2 ≤ ε, (1)

known as Basis Pursuit Denoising (BPDN) [2], satisfies

‖x̂ − x⋆‖2 ≤ Cε for some constant C [3]. Alternative
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algorithms collectively known as Greedy Pursuits such as

Iterative Hard Thresholding (IHT) [4], Compressive Sampling

Matching Pursuit (CoSaMP) [5], and Subspace Pursuit [6] also

provide similar guarantees based on the RIP. These greedy

algorithms attempt to approximate a solution to the sparsity-

constrained least-squares optimization

arg min
bx

1

2
‖y − Ax̂‖2

2 s.t. ‖x̂‖0 ≤ s, (2)

by iterating between detection of the location of non-zero

elements and estimation of their values.

While least-squares (quadratic) cost functions are encoun-

tered often in signal processing, they are not always the

appropriate choice in a variety of fields and applications.

For example, in statistics and machine learning, Generalized

Linear Models (GLMs) are associated with some important

non-quadratic cost functions, such as the logistic loss [7]. We

therefore desire to extend the theory and algorithms for sparse

optimization to include a wider range of cost functions.

In addition to established results for quadratic cost func-

tions, it has been shown that ℓ1-regularization also induces

sparse minimizers for a variety of other cost functions, in-

cluding those which belong to GLMs [8, 9] or the exponen-

tial family [10]. These work demonstrate that, under certain

conditions, ℓ1-regularization provide a solution that accurately

estimates the minimizer of the risk, assuming this minimizer is

indeed sparse. The main advantage of ℓ1-regularized problems

is that they are convex and tractable, as opposed to the ideal

sparsity inducing formulation using ℓ0-regularization that leads

to an NP-hard problem.

Unfortunately, for non-quadratic cost functions, the condi-

tions under which the equivalence of ℓ0 and ℓ1 regulariza-

tion can be guaranteed are mostly unknown. Furthermore,

in applications where precise control of the sparsity is crit-

ical, imposing explicit sparsity constraints is preferable to

ℓ1-regularization. Thus, several algorithms independent of ℓ1-

regularization have also been proposed in the context of

sparsity-constrained optimization. For example, the algorithms

in [11] can sparsify a dense minimizer while increasing the

cost only slightly. In [12] a non-linear generalization of CS

is examined, where the observations are the image of the

parameters under a nonlinear operator corrupted by additive

noise. Using the squared error to measure discrepancy, a

generalization of the IHT algorithm is then shown to find

accurate sparse solutions under the smoothness and strong



convexity criteria imposed by the so-called Restricted Strong

Convexity Property (RSCP).

In this paper we develop a framework for sparsity-

constrained minimization for a broad class of cost functions.

In particular we provide a greedy algorithm, the Gradient

Support Pursuit (GraSP), which approximates the solution to

sparsity-constrained minimization problems, providing explicit

control of the solution sparsity. Our algorithm generalizes

and is inspired by the CoSaMP algorithm. We also develop

a sufficient condition on the function—the Stable Hessian

Property (SHP)—used to guarantee accuracy of the GraSP

approximation.Our work is similar in spirit and complements

[12], but has significant differences. In particular, the form of

the cost function we examine in this work is more general.

Furthermore, the RSCP upper and lower bounds in [12] are

global. Instead the SHP merely requires that only a ratio of

upper and lower bounds is globally bounded, related to the

conditioning of the (reduced) Hessian of the cost function

being restricted to canonical sparse supspaces. Finally, our

algorithm generalizes CoSaMP instead of the IHT. The former

is a more sophisticated algorithm, that has demonstrated

significantly better performance in simulations [13].

The next section introduces notation and the problem for-

mulation. Section III presents GraSP, the SHP, and the implied

performance guarantees. Section IV discusses our results and

concludes. The proofs of our results are relegated to the

appendix.

II. PROBLEM FORMULATION

Notation: In the remainder of this paper we use boldface

letters to denote matrices and vectors. For a positive integer

m we use [m] as a shorthand for the set {1, 2, · · · ,m}.

Suppose that M is an a × b matrix, v is a b-dimensional

vector, and J is a subset of [b] for arbitrary positive integers

a and b. The set of nonzero entries, the support set, of v

is denoted by supp(v). We use MT and M† to denote the

transpose and pseudo-inverse of M, respectively. The largest

and the smallest eigenvalues of M are denoted by λmax (M)
and λmin (M), respectively. Furthermore, MJ denotes the

restriction of M to the columns enumerated by J . Similarly,

v|J is the restriction of v to the rows indicated by J . The

best r-term approximation of v is denoted by vr. The support

set of v, i.e., indices of the non-zero entries, is denoted by

supp (v). Finally, PJ denotes restriction of the identity matrix

(i.e., Ib×b) to the rows indicated by J (i.e., PJ = IT
J ).

Sparsity-constrained minimization: We generalize (2)

with a generic cost function replacing the squared error. Using

f (x) to denote the cost function, we attempt to approximate

a solution to

arg min
bx

f (x̂) s.t. ‖x̂‖0 ≤ s. (3)

To perform this minimization, we provide an algorithm, the

Gradient Support Pursuit (GraSP), which is inspired by and

generalizes the CoSaMP algorithm. Of course, even for a sim-

ple quadratic objective, (3) can have combinatorial complexity

and become NP-hard. Thus, we also provide a sufficient

condition, the Stable Hessian Property (SHP) that enables

accurate and tractable approximation. The SHP is analogous

to the RIP in the sense that in linear regression problems with

squared error as the cost function, the SHP basically reduces

to RIP.

III. GRADIENT SUPPORT PURSUIT (GRASP) ALGORITHM

Algorithm Description: GraSP is an iterative algorithm,

summarized in Algorithm 1, that maintains and updates an

estimate x̂ of the sparse optimum at every iteration. In each

iteration, first the gradient of the cost function is evaluated

at the current estimate to obtain z = ∇f (x̂). Then indices

of 2s entries of z with largest magnitudes are collected in

the set Ω to indicate the coordinates in which estimation

error is dominant. In the next step Ω is merged with the

support of the current estimate to obtain T which contains

at most 3s coordinates. The function f is then minimized

over the vectors supported on T to produce a crude estimate

b. As will be seen later, by imposing the SHP this inner

optimization step becomes a convex program which can be

solved efficiently. Finally, the estimate x̂ is updated to the

best s-term approximation of b. The iterations continue until a

terminating condition, e.g., on the change of the cost function

or the change of the estimated minimum from the previous

iteration holds.

Using the quadratic cost f (x̂) = 1
2‖y − Ax̂‖2

2, GraSP

reduces to CoSaMP. Specifically, the gradient step and the

support-constrained minimization reduce to the proxy step

z = AT (y − Ax̂) and the constrained pseudoinverse step

b|T = A
†
T y,b|T c = 0 in CoSaMP, respectively.

Algorithm 1: The GraSP algorithm

input : f (·) and s
output: x̂

initialize: x̂ = 0

repeat

compute local gradient: z = ∇f (x̂)
identify directions: Ω = supp (z2s)
merge supports: T = Ω ∪ supp (x̂)
minimize over

support: b = arg min f (x) s.t. x|T c = 0

prune estimate: x̂ = bs

until terminating condition holds

Sparse Reconstruction Conditions: To characterize and

provide performance guarantees for the algorithm, we first

introduce the Stable Hessian Property (SHP), a sufficient

condition on the set of functions that GraSP can minimize.

Definition 1. Suppose that f is a twice continuously dif-

ferentiable function whose Hessian is denoted by Hf (·).
Furthermore, for a given positive integer k let

Ak (u) = sup
|supp(u)∪supp(v)|≤k

‖v‖
2
=1

vTHf (u)v (4)



and

Bk (u) = inf
|supp(u)∪supp(v)|≤k

‖v‖
2
=1

vTHf (u)v, (5)

for all k-sparse vectors u. Then f is said to have the Stable

Hessian Property (SHP) with constant µk, or in short µk-SHP,

if
Ak(u)
Bk(u) ≤ µk.

Remark. Note that the SHP only requires that symmetrically

selected submatrices of the Hessian to be well-conditioned

and in general the Hessian does not have to be positive-

semidefinite. Furthermore, there is no global bound on Ak (u)
and Bk (u), only on their ratio. Thus they can be arbitrarily

large or small, as long as their ratio is controlled. For the

special case of quadratic cost functions as in (2), we can write

Hf (u) = ATA which is constant. The SHP condition then

implies Bk‖v‖2
2 ≤ ‖Av‖2

2 ≤ Ak‖v‖2
2 for all k-sparse vectors

v and some positive constants Ak and Bk. Therefore, in this

case a matrix with small RIP constant will also have small SHP

constant and the conditions become essentially equivalent.

Performance Guarantees: The following theorem shows

that if f satisfies the µ4s-SHP with µ4s ≤
√

3/2 then GraSP

finds an accurate estimate of

x⋆ ∈ arg min f(x) s.t. ‖x‖0 ≤ s.

Theorem 1. Suppose that f has µ4s-SHP with µ4s ≤
√

3/2.

Furthermore, suppose that for some ǫ > 0 we have ǫ <
B4s (u) for all 4s-sparse u. Then x̂(i), the estimate at the

i-th iteration, satisfies

‖x̂(i) − x⋆‖2 ≤ 2−i‖x⋆‖2 +
4

(
2 +

√
3/2

)

ǫ
‖∇f (x⋆) |I‖2,

where I is the position of the 3s largest entries of ∇f (x⋆)
in magnitude.

Remark. Note that the the condition µ4s ≤
√

3/2 is imposed

merely to have a contraction factor of 1/2. In fact having

µ4s <
√

2 would be sufficient to have a valid contraction

factor. Furthermore, Theorem 1 indicates that ∇f (x⋆) con-

trols the accuracy of the output of GraSP. In particular, if the

sparse minimum x⋆ is also an unconstrained local minimum of

f then ∇f (x⋆) = 0 and the error floor vanishes. This result is

similar to the s-term approximation guarantees in CS in case

of nearly sparse signals or noisy measurements [1, 5].

IV. DISCUSSION

In this paper we introduce the Gradient Support Pur-

suit (GraSP) algorithm to solve a wide range of sparsity-

constrained optimization problems. We also propose the Stable

Hessian Property (SHP), which allows us to provide theoretical

guarantees on accuracy of the solution obtained by GraSP.

In contrast with ℓ1-regularization techniques GraSP allows

direct control of the sparsity of the solution which is critical

in applications such as feature selection. The error bounds

obtained in statistical estimation problems in general are

not absolute constants and they generally depend on the

true statistical optimum. Therefore, at large error bounds ℓ1-

regularization might not guarantee sufficiently sparse solu-

tions. Furthermore, since GraSP operates on a small subset of

coordinates in each iteration it provides more computational

flexibility compared to standard ℓ1-regularization techniques.

Our results also show that if the SHP condition holds with

proper constant, the algorithm shows a linear rate of conver-

gence up to an approximation error.

Studying GraSP in statistical estimation framework, relax-

ing the SHP to an entirely local condition, and extending the

results to nonsmooth cost functions, are interesting problems

that we are investigating as parts of our future work.

APPENDIX

We first provide a few propositions and lemmas to analyze

how the algorithm operates on its current estimate x̂. These

results lead to an iteration invariant property on the estimation

error which is the basis for proving Theorem 1. Due to length

limitations we omit the proofs of Propositions 1 and 2.

Proposition 1. Let M (t) be a matrix-valued function such

that for all t ∈ [0, 1] M (t) is symmetric and its eigenvalues

lie in interval [B (t) , A (t)] with B (t) > 0. Then for any

vector v we have

1∫

0

B(t)dt ‖v‖2 ≤

∥∥∥∥∥∥

1∫

0

M(t)dtv

∥∥∥∥∥∥
2

≤
1∫

0

A(t)dt ‖v‖2.

Proposition 2. Let M (t) be a matrix-valued function such

that for all t ∈ [0, 1] M (t) is symmetric and its eigenvalues

lie in interval [B (t) , A (t)] with B (t) > 0. If Γ is a subset of

row/column indices of M (·) then for any vector v we have
∥∥∥∥∥∥

1∫

0

PΓM(t)PT
Γcdtv

∥∥∥∥∥∥
2

≤
1∫

0

A(t) − B (t)

2
dt ‖v‖2.

To simplify notation we use (4) and (5) and introduce

functions

αk (p,q) =

1∫

0

Ak (tq + (1 − t)p) dt

and

βk (p,q) =

1∫

0

Bk (tq + (1 − t)p) dt.

We also define γk (p,q) := αk (p,q) − βk (p,q). Further-

more, we use the shorthand z⋆ = ∇f (x⋆).

Lemma 1. Let ∆̂ = x̂ − x⋆ and R = supp
(
∆̂

)
. Then the

current error vector ∆̂ obeys

‖∆̂|Ωc‖2 ≤γ4s (x̂, ) + γ2s (x̂,x⋆)

2β2s (x̂,x⋆)
‖∆̂‖2

+
‖z⋆|R\Ω‖2 + ‖z⋆|Ω\R‖2

β2s (x̂,x⋆)
.



Proof: Since Ω = supp (z2s) and |R| ≤ 2s we have

‖z|R‖2 ≤ ‖z|Ω‖2 and thereby

‖z|R\Ω‖2 ≤ ‖z|Ω\R‖2. (6)

Furthermore, because z = ∇f (x̂) we can write

‖z|R\Ω‖2≥‖∇f (x̂)|R\Ω−∇f (x⋆)|R\Ω‖2−‖∇f (x⋆)|R\Ω‖2

=

∥∥∥∥∥∥

1∫

0

PR\ΩHf

(
x⋆ + t∆̂

)
dt∆̂

∥∥∥∥∥∥
2

− ‖z⋆|R\Ω‖2

≥

∥∥∥∥∥∥

1∫

0

PR\ΩHf

(
x⋆ + t∆̂

)
PT

R\Ωdt∆̂|R\Ω

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥

1∫

0

PR\ΩHf

(
x⋆ + t∆̂

)
PT

Ω∩Rdt∆̂|Ω∩R

∥∥∥∥∥∥
2

−‖z⋆|R\Ω‖2

Since ‖∆̂|Ω∩R‖2 ≤ ‖∆̂|2 applying Propositions 1 and 2

yields

‖z|R\Ω‖2 ≥β2s (x̂,x⋆) ‖∆̂|R\Ω‖2

−γ2s (x̂,x⋆)

2
‖∆̂‖2 − ‖z⋆|R\Ω‖2. (7)

Similarly, we have

‖z|Ω\R‖2 ≤‖∇f (x̂) |Ω\R −∇f (x⋆) |Ω\R‖2 + ‖z⋆|Ω\R‖2

=

∥∥∥∥∥∥

1∫

0

PΩ\RHf

(
x⋆+t∆̂

)
PT

Rdt∆̂|R

∥∥∥∥∥∥
2

+ ‖z⋆|Ω\R‖2

≤γ4s (x̂,x⋆)

2
‖∆̂‖2 + ‖z⋆|Ω\R‖2. (8)

Combining (6), (7), and (8) we obtain

β2s (x̂,x⋆) ‖∆̂|R\Ω‖2 −
γ2s (x̂,x⋆)

2
‖∆̂‖2 − ‖z⋆|R\Ω‖2

≤ γ4s (x̂,x⋆)

2
‖∆̂‖2 + ‖z⋆|Ω\R‖2.

Since R = supp
(
∆̂

)
, we have ‖∆̂|R\Ω‖2 = ‖∆̂|Ωc‖2.

Hence,

‖∆̂|Ωc‖2 ≤γ4s (x̂,x⋆) + γ2s (x̂,x⋆)

2β2s (x̂,x⋆)
‖∆̂‖2

+
‖z⋆|R\Ω‖2 + ‖z⋆|Ω\R‖2

β2s (x̂,x⋆)
.

Lemma 2. For the vector b given by

b =arg min f (x) s.t. x|T c = 0 (9)

let ∆̃ = b − x⋆. Then we have

‖∆̃‖2 ≤ ‖z⋆|T ‖2

β3s (b,x⋆)
+

(
1+

γ4s (b,x⋆)

2β3s (b,x⋆)

)
‖x⋆|T c‖2.

Proof: By definition z⋆ = ∇f (x⋆) thus we have

z⋆ −∇f (b) = −
1∫

0

Hf

(
x⋆ + t∆̃

)
dt ∆̃.

Furthermore, since b is the solution to (9) we must have

∇f (b) |T = 0. Therefore,

z⋆|T = −
1∫

0

PT Hf

(
x⋆ + t∆̃

)
dt ∆̃

= −
1∫

0

PT Hf

(
x⋆ + t∆̃

)
PT

T dt ∆̃|T

−
1∫

0

PT Hf

(
x⋆ + t∆̃

)
PT

T cdt ∆̃|T c . (10)

Since f has µ4s-SHP and |T | ≤ 3s, functions A3s (·) and

B3s (·), defined using (4) and (5), exist such that for all t ∈
[0, 1] we have

B3s

(
x⋆+t∆̃

)
≤λmin

(
PT Hf

(
x⋆+t∆̃

)
PT

T

)

≤λmax

(
PT Hf

(
x⋆+t∆̃

)
PT

T

)
≤A3s

(
x⋆+t∆̃

)
.

If W denotes the matrix
∫ 1

0
PT Hf

(
x⋆ + t∆̃

)
PT

T dt it fol-

lows from Proposition 1 that

β3s (b,x⋆) ≤ λmin (W) ≤ λmax (W) ≤ α3s (b,x⋆) .

Consequently W is invertible and

1

α3s (b,x⋆)
≤ λmin

(
W−1

)
≤ λmax

(
W−1

)
≤ 1

β3s (b,x⋆)
.

(11)

Therefore, by multiplying (10) by W−1 and using the fact

that ∆̃|T c = −x⋆|T c we obtain

W−1z⋆|T = − ∆̃|T + W−1

1∫

0

PT Hf

(
x⋆+t∆̃

)
PT

T cdtx⋆|T c .

Triangle inequality, (11), and Proposition 2 then yield

‖∆̃|T ‖2 ≤‖W−1z⋆|T ‖2

+

∥∥∥∥∥∥
W−1

1∫

0

PT Hf

(
x⋆+t∆̃

)
PT

T c∩S⋆dtx⋆|T c∩S⋆

∥∥∥∥∥∥
2

≤ ‖z⋆|T ‖2

β3s (b,x⋆)
+

γ4s (b,x⋆)

2β3s (b,x⋆)
‖x⋆|T c‖2,

where S⋆ = supp (x⋆). Finally, we obtain

‖∆̃‖2 ≤‖x⋆|T c‖2 + ‖∆̃|T ‖2

≤ ‖z⋆|T ‖2

β3s (b,x⋆)
+

(
1+

γ4s (b,x⋆)

2β3s (b,x⋆)

)
‖x⋆|T c‖2.



Lemma 3 (Iteration Invariant). The estimation error in

the current iteration, ‖∆̂‖2, and that in the next iteration,

‖bs − x⋆‖2, are related by the inequality:

‖bs−x⋆‖2≤
γ4s(x̂,x⋆) + γ2s(x̂,x⋆)

β2s(x̂,x⋆)

[
1 +

γ4s (b,x⋆)

2β3s (b,x⋆)

]
‖∆̂‖2

+

[
2+

γ4s(b,x⋆)

β3s(b,x⋆)

]‖z⋆|R\Ω‖2+‖z⋆|Ω\R‖2

β2s(x̂,x⋆)
+

2‖z⋆|T ‖2

β3s(b,x⋆)
.

Proof: Since Ω ⊆ T we have T c ⊆ Ωc. Thus,

‖x⋆|T c‖2 = ‖∆̂|T c‖2 ≤ ‖∆̂|Ωc‖2. Then using Lemma 1 we

obtain

‖x⋆|T c‖2 ≤γ4s (x̂,x⋆) + γ2s (x̂,x⋆)

2β2s (x̂,x⋆)
‖∆̂‖2

+
‖z⋆|R\Ω‖2 + ‖z⋆|Ω\R‖2

β2s (x̂,x⋆)
. (12)

Furthermore,

‖bs−x⋆‖2 ≤ ‖x⋆−b‖2+‖bs−b‖2 ≤ 2‖x⋆−b‖2 = 2‖∆̃‖2

because x⋆ is s-sparse and bs is the best s-term approximation

of b. Therefore, using Lemma 2,

‖bs−x⋆‖2 ≤ 2‖z⋆|T ‖2

β3s (b,x⋆)
+

(
2+

γ4s (b,x⋆)

β3s (b,x⋆)

)
‖x⋆|T c‖2.

(13)

Combining (12) and (13) we obtain

‖bs−x⋆‖2 ≤γ4s (x̂,x⋆) + γ2s (x̂,x⋆)

β2s (x̂,x⋆)

[
1+

γ4s (b,x⋆)

2β3s (b,x⋆)

]
‖∆̂‖2

+2

(
1 +

γ4s (b,x⋆)

2β3s (b,x⋆)

) ‖z⋆|R\Ω‖2 + ‖z⋆|Ω\R‖2

β2s (x̂,x⋆)

+2
‖z⋆|T ‖2

β3s (b,x⋆)
.

Proof of Theorem 1: Using definition 1 it is easy to verify

that for k ≤ k′ and any vector u we have Ak (u) ≤ Ak′ (u)
and Bk (u) ≥ Bk′ (u). Consequently, for k ≤ k′ and any

pair of vectors p and q we have αk (p,q) ≤ αk′ (p,q),
βk (p,q) ≥ βk′ (p,q), and µk ≤ µk′ . Furthermore, for any

function that satisfies µk−SHP we can write

αk (p,q)

βk (p,q)
=

∫ 1

0
Ak (tq + (1 − t)p) dt

∫ 1

0
Bk (tq + (1 − t)p) dt

≤
∫ 1

0
µkBk (tq + (1 − t)p) dt

∫ 1

0
Bk (tq + (1 − t)p) dt

= µk,

and thereby
γk(p,q)
βk(p,q) ≤ µk −1. If ∆̂

(i)
= x̂(i) − x⋆ denotes

the error vector in the i-th iteration of the algorithm then it

follows from Lemma 3 that the estimation error obeys

‖∆̂(i)‖2 ≤2 (µ4s−1)

(
1+

µ4s−1

2

)
‖∆̂(i−1)‖2

+2

(
1+

µ4s−1

2

) ‖z⋆|R\Ω‖2 + ‖z⋆|Ω\R‖2

β2s

(
x̂(i−1),x⋆

)

+2
‖z⋆|T ‖2

β3s

(
b(i−1),x⋆

)

≤
(
µ2

4s−1
)
‖∆̂(i−1)‖2+

2 (µ4s+2)

ǫ
‖z⋆|I‖2

Applying the assumption µ4s ≤
√

3/2 then yields

‖∆̂(i)‖2 ≤ ‖∆̂(i−1)‖2

2
+

2
(
2+

√
3/2

)

ǫ
‖z⋆|I‖2.

The theorem follows by applying this inequality recursively

and using the fact that ‖∆̂(0)‖2 = ‖x⋆‖2.
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