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Further Developments and Applications of

Network Reference Governor for Constrained Systems

Stefano Di Cairano, Ilya V. Kolmanovsky

Abstract—This paper develops further the network refer-
ence governor, which is a predictive algorithm for modifying
commands sent to the remote system to satisfy state and
control constraints. Due to the network communication, the
governor must account for a delay that can be time-varying
and unknown. The paper summarizes the results on network
reference governor theory, and demonstrate its operation on
a case study of a attitude control of a spacecraft with a
very flexible appendage, where the commands are transmitted
remotely over a network to the spacecraft, and hence delayed
by a bounded, unknown delay. In this case study, the reference
governor ensures that the elastic deflections of the appendage
and the control signal satisfy the imposed limits while the
spacecraft performs a reorientation maneuver. The paper then
presents the novel theoretical construction of a less conservative
network reference governor for the case when the delay is long
but only slowly time-varying, with known bounds on the rate
of change. A spacecraft relative motion control example with
constraints on thrust and Line Of Sight (LoS) cone positioning
is considered to illustrate these theoretical developments.

I. INTRODUCTION

In aerospace applications, remotely piloted and unmanned

air and space vehicles rely on communication relay networks

and links for exchanging commands and measurements with

ground stations. Electronic control modules within these ve-

hicles are in turn interconnected with internal communication

networks exchanging subsystem input and output informa-

tion. The new generation of spacecraft, based on Plug-n-Play

standards [1], will incorporate modern networking protocols

that facilitate rapid, flexible, modular satellite constructions.

These network-based data bus protocols introduces commu-

nication delays that are network-traffic dependent, and thus

time-varying. Hence, control systems need to robustly com-

pensate the variable disturbances introduced by the network

communication [2]–[4].

A particular class of control algorithms that have been

extended to the networked control framework are the refer-

ence governors. Reference governors [5]–[8] are constrained

control algorithms that modify the exogenous reference (or

command) to a plant stabilized by an inner-loop controller, in

order to enforce constraints on closed-loop system outputs.

Since the reference governor relies on on-line optimization
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which may be computationally intensive for certain embed-

ded applications, locating it remotely with respect to the

system being controlled may be justified for these systems.

Previous contributions in the area of reference governor for

remote controller executions can be found in [9], [10], for

network-induced delays that are multiple of the sampling

period. More recently in [11], the authors have proposed

a scheme that guarantees robustness to delays that are not

necessarily multiple of the sampling period. The approach is

based on reformulating the system dynamics so that the effect

of the network-induced delay appears as an additive distur-

bance withe magnitude affinely dependent on the change in

the reference governor output. The reference governor was

modified to account for this disturbance thereby resulting in

a scheme that effectively trades-offs the rate of convergence

to the desired reference versus the magnitude of the induced

disturbances due to the command variations. In this paper, in

Section II we briefly review the recent results in [11] on our

approach to network reference governor design. In Section III

we present an application of these results to a challenging

attitude control problem for a spacecraft with a very flexible

appendage subject to control input magnitude constraints and

constraints on maximum appendage deflection. In Section IV

we present a new network reference governor construction

with reduced conservativeness for the case of a slowly vary-

ing delay. In Section V we illustrate the results using a case

study of a remotely piloted spacecraft relative motion control.

Finally, concluding remarks are summarized in Section VI

Notation: The sets of real, nonnegative real, and nonneg-

ative integer numbers are denoted by R, R0+, and Z0+,

respectively. For a signal a(t), t ∈ R0+, sampled with

sampling period Ts we denote by a(k) the value at the kth

sampling instant, that is a(k) = a(tk), where tk = kTs.



Where a is a vector, ‖a‖p indicates the p-norm and [a]i is
the ith component, while where A is a matrix, ‖A‖p indicates

the induced p-norm. Where X is a set, int[X ] indicates the
interior, and X ⊕Y is the Minkowski sum of sets X and Y .

II. NETWORK REFERENCE GOVERNOR FOR SYSTEMS

WITH UNKWNOWN VARIABLE DELAY

We first introduce the system model, and review the main

results on network reference governor in [11].

Consider the control architecture shown in Figure 1, which

consists of a linear plant (2a) (possibly interconnected with

a local controller) and a remotely located reference gover-

nor (2c). The commands and measurements are exchanged

through a communication network and are subject to time

delay. In [11] the authors have shown that when delays are

present in both the command and the measurement channels,

an equivalent representation where the delay is present only

in the command channel can be obtained. Consequently, in

this paper we focus on the dynamics where the delay affects

only the command channel,

ẋ(t) = Acx(t) + Bcr(t − δ(t)), (1a)

y(t) = Ccx(t), (1b)

where x ∈ R
n, r ∈ R

m, y ∈ R
p, δ(t) ∈ R0+, for all

t ∈ R0+, Ac is strictly Hurwitz, i.e., plant is asymptotically

stable (possibly because of a local controller), and (Ac, Cc)
is observable. The signal r is interpreted as a reference

command specified to achieve the desired equilibrium.

Consider a delay free version of (1a) (i.e., for all t ∈ R0+,

δ(t) = 0) which is sampled with period Ts. We assume that

observability is preserved, and we consider pointwise in-time

output constraints Hy(k) ≤ K, where the set C = {y ∈
R

p : Hy ≤ K} is compact and 0 ∈ int[C]. Instead of r, a

virtual reference v is applied to the system, as generated by

a reference governor [7], [8],

x(k + 1) = Ax(k) + Bv(k) (2a)

y(k) = Cx(k) (2b)

v(k) = g(x(k), r(k)) (2c)

Hy(k) ≤ K, (2d)

where v(t) = v(k) for all t ∈ [tk, tk+1), A = eAcTs is

strictly Schur, B =
∫ Ts

0
eAc(Ts−τ)Bcdτ . In what follows,

the value of the state x is assumed to be known only at the

sampling instants. The purpose of the reference governor g(·)
in (2c) is to modify r(k) to enforce

y(k) ∈ C, ∀k ∈ Z0+. (3)

Let v(·) : R0+ → R
m be the virtual reference signal

generated by the governor, and ṽ(·) : R0+ → R
m be

the virtual reference signal received by the plant, where

ṽ(t + δ(t)) = v(t), and δ(t) ∈ R0+ is the time-varying

delay. In the sampled-data framework, the command v(k) is
generated at time tk, k ∈ Z0+, and it is applied at tk + δ(k),
δ(k) ∈ R0+, due to the network induced delay. We assume

that for every k ∈ Z0+, δ(k) ∈ [0, δ̄], δ̄ < Ts, and δ(k)

is unknown at both network sides, plant and controller. The

system evolution from state x(tk) is given by

x(k + 1) = eAcTsx(tk) +

∫ δ(k)

0

eAc(Ts−τ)Bcv(tk−1)dτ

+

∫ Ts

δ(k)

eAc(Ts−τ)Bcv(tk)dτ. (4)

By defining W (δ) = −
∫ δ

0
eAc(Ts−τ)Bcdτ , from (4) we

obtain the uncertain system

x(k + 1) = Ax(k) + Bv(k) + W (δ(k))∆v(k). (5)

where ∆v(k) = v(k) − v(k − 1). From (5), the effect

of the network induced delay is a disturbance proportional

to the virtual reference variation, ∆v(k). The smaller is
the virtual reference variation, the smaller is the induced

disturbance. Since Ac is Hurwitz, it is invertible andW (δ) =
(Ac)

−1(eAc(Ts−δ) − eAcTs)Bc. The complete model of the

system subject to input delay is

x(k + 1) = Ax(k) + Bv(k) + d(k) (6a)

d(k) ∈ D(∆v(k)) (6b)

D(∆v(k)) = {d ∈ R
n : d = W (δ)∆v(k), δ ∈ [0, δ̄]}. (6c)

Next, model (6) is used to design a reference governor that

robustly enforces the constraints with respect to the delay.

A. Network Reference Governor

The standard reference governor (2c) [8] generates the vir-

tual reference v(k) in (2a) at time k ∈ Z0+ as the minimum

distance projection of r(k) onto the set of commands that
enforce (3) for all h ≥ k, h ∈ Z0+,

v(k) = arg min
v

‖r(k) − v‖2
2 (7a)

subject to (x(k), v) ∈ O∞, (7b)

where O∞ is the maximum output admissible set [7]. If

(x(k), v(k)) ∈ O∞ and v(h) = v(k) for all h ∈ Z0+, h ≥ k,

then y(h) ∈ C for all h ≥ k. For stable linear systems under

the previous assumptions, O∞ is positive invariant, bounded,

convex, and has an arbitrary close inner approximation

described by a finite number of linear inequalities [7].

However, due to the network delay, the reference governor

must ensure that a set of states belongs to O∞,

v(k) = arg min
v

‖r(k) − v‖2
2 (8a)

subject to (x(k + 1), v) ∈ O∞, (8b)

∀d(k) ∈ D(∆v(k)). (8c)

In order to make (8) computationally tractable, we approx-

imate the disturbance set (8c). Constraints (8b), (8c) enforce

(x̃(k + 1) ⊕D(∆v(k)), v(k)) ⊆ O∞,

where x̃(k + 1) = Ax(k) + Bv(k) is the delay free next
state computed from (5) for δ(k) = 0. The set D(∆v) can
be bounded [11] by any polyhedral set affinely dependent on

∆v. A simple approach is to use the infinity norm

W̄ = max
δ∈[0,δ̄]

‖W (δ)‖∞, (9)



which can be computed by solving a nonlinear scalar op-

timization problem. Note that minδ∈[0,δ̄] ‖W (δ)‖∞ = 0.

By (9), we define D̃(∆v) ⊃ D(∆v) as

d ∈ D̃(∆v) , {d ∈ R
n : ‖d‖∞ ≤ W̄‖∆v‖∞}. (10)

By using D̃, (8) is formulated as the quadratic program (QP),

v(k) = arg min
v,ξ

‖r(k) − v‖2
2 (11a)

s.t. Hx(Ax(k) + Bv + ηiW̄ ξ)

+Hvv ≤ h, (11b)

ξ ≥ [v − v(k − 1)]j , (11c)

ξ ≥ −[v − v(k − 1)]j , (11d)

i = 1, . . . , nv, j = 1, . . . ,m,

where O∞ = {(x, v) : Hxx + Hvv ≤ h} and {ηi}
nv

i=1 is the

set of vertices of the unitary ∞-norm ball in R
n.

Theorem 1 ( [11]): Let xe(v) be the equilibrium associ-

ated with command v, and r(k) = r for all k ≥ 0. Let O∞

be compact and convex with (xe(v), v) ∈ int[O∞], for all
v, r ∈ Γ, where Γ is a compact set of strictly steady state

admissible references. For the network reference governor

based on (8) and (11), there exists a finite index k̄ ∈ Z0+

such that v(k̄) = r. 2

B. Unbounded delays and command overtaking

If the delay is larger than the sampling period, δ̄ ≥ Ts, the

problem becomes significantly more complex. In particular,

it is possible that the delay variation causes command

overtaking (v(k) is received after v(k + j), j ∈ Z+). The

approach in [11] avoids the conservativeness of previous

approaches [10] by embedding some logic at the plant. The

reference governor generates commands that are robust with

respect to a certain set of disturbances, and the logic at

the plant verifies the admissibility of the command upon

reception.

Let the delay δ(k) be possibly unbounded, i.e., δ(k) ∈
R0+, for all k ∈ Z0+ and assume an IID probability density

function of δ is known, φ(δ) : R0+ → R0+. Select Ts > 0

and 0 < α < 1 such that
∫ αTs

0
φ(δ)dδ = ̺, for some

̺ > 0, finite, and set δ̄ = αTs. At every control cycle

k ∈ Z0+, the plant logic sends to the controller the state

x(k) and v(t−k ), the command that was applied just before
the beginning of the current sampling instant. The controller

sends to the plant v(k) = v̄ computed from (8), together with

rv(k) = rv ∈ R
m, the corresponding value of the desired

reference r. The plant logic checks whether the command

can be practically applied, since robustness only up to a

delay length δ̄ is guaranteed, and whether it is better than the

one currently applied. Such a checks are performed by using

O∞, the state at the beginning of the current sampling period,

x(k), and the worst case command variation ∆v during the

current sampling period.

Thus, the command v̄ is actuated if and only if: (i),
‖rv − v̄‖2

2 < ‖rv − vact‖
2
2, where vact is the command

currently applied to the plant, and (ii), ((Ax(k) + Bv̄) ⊕

D(∆v), v̄) ⊆ O∞, where D(∆v) = {d ∈ R
n : ‖d‖∞ ≤

W̄∆v}. Condition (i) is a liveness condition that requires
that the newly received command improves the reference

tracking performance, while assuming that rv is the current

value of the reference. Condition (ii) is a safety condition
that requires that the new command maintains output admis-

sibility. The following result was proven.

Corollary 1 ( [11]): Let the assumptions of Theorem 1

hold, and a uniform bound k̄ ∈ Z0+ on the time required

for the virtual reference to converge to the reference exists.

Let ̺ > 0, α > 0, δ̄ = αTs. For the case of the δ > Ts

the command converges asymptotically to the reference r in

probability, i.e., lim
r→∞

P[‖v(k) − r‖2
2 = 0] = 1

III. ORIENTATION CONTROL OF A SPACECRAFT WITH A

FLEXIBLE APPENDAGE

We illustrate the network reference governor based control

using simulations of a single degree of freedom reorientation

maneuver for a spacecraft with a flexible appendage. The

command r is the requested orientation angle. This command

is transmitted through a communication network with a time-

varying delay. The objective is to keep the deflections of the

flexible appendage in the specified range and enforce the con-

trol constraints. With x1[rad] denoting the orientation angle

of the spacecraft bus and x2[m] denoting the deflection of

the flexible appendage, the physical model of the spacecraft

has the following form,

(J + ml2)ẍ1 + mlẍ2 = u,

mẍ2 + kx2 + mlẍ1 = 0,

where m = 1kg, J = 50kgm2, k = 0.1N/m, and l = 40m.
The nominal controller for the control torque u[Nm] is of

Linear Quadratic type, u = −Kx+Hrr, and is designed so

that x1 tracks the command r in steady-state. The constraints

are prescribed as

−0.2 ≤ x2(t) ≤ 0.2, −0.8 ≤ u(t) ≤ 0.8.

The update period of the reference governor is 1s. In con-
structing O∞, we used a discrete-time model obtained for

0.25s update period. It can be shown that for a reorientation
of −1.2rad, the constraints are severely violated. We report
the simulation results for two scenarios: short time delay

which can randomly vary in [0, 1]s, and long time delay
which can randomly vary in [0, 10]s, i.e., up to 10 times the
sampling period. For the second case, the network reference

governor implementation was based on Section II-B.

The simulation results for the short time delay case are

shown in Figures 2,3. Unlike the conventional reference

governor, the networked reference governor strictly enforces

the appendage deflection constraint despite the time-varying

delay. The orientation change maneuver is only slightly

slowed down with the networked reference governor versus

the conventional reference governor.

The responses for the long time delay case are shown in

Figures 4,5. The constraints are enforced despite the delay

up to 10 times the update period of the reference governor.
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Fig. 2. Time histories of virtual reference, v, (left) and control signal, u,
(right) with conventional (dashed) and networked reference governor (solid)
for the short time delay case.
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Fig. 3. The response of spacecraft bus orientation x1 (left) and of the
appendage deflection, x2 (right) with conventional (dashed) and networked
reference governor (solid) for the short time delay case.

The response is slower and clearly more conservative to

compensate for the potential effects of longer delay.

IV. NETWORK REFERENCE GOVERNOR FOR SYSTEMS

WITH SLOWLY VARYING DELAYS

The conservativeness of the networked reference governor

algorithm can be reduced if additional information is avail-

able on the time delay dynamics. In several applications,

delay depends on the network loading [12], which changes

slowly over time. Hence, the delay is also slowly time-

varying. Motivated by this, we consider the case when the

time delay is long, but slowly varying, where “slowly” will

be mathematically defined later. In the case of long delays,

that are common in space applications, the delay variation

cannot be neglected, because the slow variation is integrated

over long periods (the time for the command to reach the

plant and to generate effects observable by the controller),

hence resulting in significative changes.

Consider system (1a), and the delay-free constrained

discrete-time model of the plant and reference governor (2c)

under the previous assumptions of closed-loop stability and

observability, compactness of C, and 0 ∈ int[C].
Let the time delay be bounded, δ ∈ [0, δ̄], and slowly

varying according to the dynamics

δ̇(t) = σ(t) (12a)

σ ≤ σ(t) ≤ σ, (12b)

where the delay rate of change with σ(t) is unknown and
time-varying. In this context, slowly varying means that σ +
|σ| < 1 (preferably, ≪ 1). This condition also avoids the
command overtaking discussed in Section II-B.
At tk > 0, let δ(k) be the current delay duration, which

is supposed to be known to the controller (either measured

0 50 100 150 200 250

−1

−0.8

−0.6

−0.4

−0.2

0

x
1
, 

r,
 v

t
0 50 100 150 200 250

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u

t

Fig. 4. The responses of v and x1 (left) and of u (right) with networked
reference governor for the long time delay case.
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Fig. 5. The response of the appendage deflection x2 for the long time
delay case.

at the plant or estimated by the controller itself) together
with the state measurement, x(k). For the moment, assume
no uncertainty on previously issued commands (i.e., ṽ(ti +
δ(i)) = v(i), for all i ≤ k). This assumption will be relaxed
later. The command issued at tk is expected to reach the
plant at time tk + δ(k) when the state takes value

x(tk + δ(k)) = e
Acδ(k)

x(k) + (13)
∫

δ(k)

0

e
Ac(δ(k)−τ)

Bcṽ(tk + τ − δ(k))dτ.

If the delay were constant, the predicted state x(tk + δ(k))
could be used in the controller without accounting for uncer-

tainty. However, since the delay is changing, the reference

governor command reaches the plant at t+δ(t)+ς(t), where
ς(t) is the cumulated delay change from the time the new

reference is commanded, to the time it is received,

ς(t) =

∫ t+δ(t)+ς(t)

t

σ(t)dt.

The bounds on ς can be computed by considering a constant

value for σ(t), so that ς(t) = σ(δ(t) + ς(t)), and

ς(t) =
σ(t)

1 − σ(t)
ς(t). (14)

For σ(t) < 1, (14) is monotonic, hence due to the slow
variation assumption, we obtain

σ

1 − σ
δ(t) ≤ ς(t) ≤

σ

1 − σ
δ(t).

Thus, under the assumption of no uncertainty on previ-
ously issued commands, the state at tk + δ(k) + Ts is

x(tk+1 + δ(t)) = e
AcTsx(tk + δ(k)) +

∫

Ts

0

e
Ac(Ts−τ)

Bcv(k)dτ

−

∫

b(ς(k))

a(ς(k))

e
Ac(Ts−ς(k))

Bc∆v(k), (15)



where if ς(k) < 0, a(ς(k)) = ς(k) and b(ς(k)) = 0, while
if ς(k) > 0, a(ς(k)) = 0 and b(ς(k)) = ς(k).
As a result, we obtain again a linear system with input

multiplicative additive uncertainty,

x(tk+1 + δ(k)) = Ax(tk + δ(k)) + Bv(k) + Ω(ς(k))∆v(k),
(16)

where Ω(ς) = −
∫ max{0,ς}

min{0,ς}
eAc(Ts−τ)Bcdτ . The value of

ς(k) is unknown, yet it depends on δ(k) and on the bounds
of the delay rate of change. Thus, we can bound Ω and over-

approximate the uncertainty set for a given input variation

∆v, for instance by using the infinity norm,

Ω̄(δ) = max
‖∆v‖∞=1,

σ

1−σ
δ≤ς≤ σ

1−σ
δ

‖Ω(ς)∆v‖∞. (17)

Hence, the relations

Ω(ς)∆v ∈ D(δ,∆V ) (18)

D(δ,∆V ) = {d ∈ R
n : ‖d‖∞ ≤ Ω̄(δ)‖∆v‖∞},

overbound the uncertainty induced by the variation of the

time delay. By ensuring that

(x(tk+1 + δ(k)) ⊕D(δ(k),∆v(k)), v(k)) ⊆ O∞, (19)

the system state is in the maximum output admissible set for

every feasible delay-induced uncertainty.

From the reasoning in Section II-A and from (18), at every

step k ∈ Z0+ the reference governor solves the following

optimization problem

v(k) = arg min
v,ξ

‖r(k) − v‖2
2 (20a)

s.t. Hx(Ax(tk + δ(k)) + Bv

+ηiΩ̄(δ(k))ξ) + Hvv ≤ h, (20b)

ξ ≥ [v − v(k − 1)]j , (20c)

ξ ≥ −[v − v(k − 1)]j , (20d)

i = 1, . . . , nv, j = 1, . . . ,m,

and, if the problem is feasible, it sends v(k) as new reference
to the plant, otherwise it sends v(k) = v(k − 1).

A. Uncertainty in prediction

In (13), it was assumed that the previous values of the

applied reference were perfectly known. However, due to

the variations in the delay between when the command is

sent from the controller and when it is applied to the plant,

this is not the case. For every reference change ∆v(i) 6= 0
at time ti ∈ R0+ we can compute the expected arrival time

range Ta(i) =
[

ti + δ(i) − σ

1−σ
δ(i), ti + δ(i) + σ

1−σ
δ(i)

]

,

and the over-approximation (18) of the uncertainty induced

on the state, D(δ(i),∆v(i)). At any time tk ∈ R0+ if

[tk, tk + δ(k)] ∩ Ta(ti) 6= 0, (21)

for some i < k, i ∈ Z0+, (i.e., for some ti < tk),

during the prediction interval [tk, tk + δ(k)] the reference
change commanded at ti may take place. Thus, the associated

uncertainty will need to be accounted for in prediction. Let

∆V(k) be the set of all reference changes expected to add
uncertainties on the prediction performed at time tk, i.e.,

∆V(k) = {∆v(i) 6= 0 : [tk, tk + δ(k)] ∩ Ta(i) 6= ∅}.

In order to guarantee robustness, there are two approaches.

The first approach is not to command a reference change

whenever |∆V(t)| 6= 0. This does not require further compli-
cations in the calculations, yet reduces the control bandwidth,

and as a consequence the closed-loop performance. The

second approach is to consider in prediction the additional

uncertainty caused by the expected reference change, which,

at time tk, is over-approximated by

D̃(∆V(k)) =
⊕

∆v(i)∈∆V(k)

D(δ(i),∆v(i)). (22)

Thus, the state at tk + δ(k) is such that

x(tk + δ(k)) ∈
{

x̃(t + δ(t)) ⊕ D̃(∆V(k))
}

, (23)

where x̃(tk + δk) is the state prediction neglecting the

uncertainty induced by the previous commands, i.e., the right

hand side of (13). As a consequence, the reference governor

problem with uncertain initial state is solved by imposing

that all the vertices of the set at the right hand side of (23)

belongs to the maximum output admissible set. Let {ϕh}
nd

h=1,

be the vertices of D̃(∆V(tk)), then the reference governor
problem becomes

v(k) = arg min
v,ξ

‖r(k) − v‖2
2 (24a)

s.t. Hx(A(x̃(tk + δ(k)) + ϕh) + Bv

+ηiW̄ ξ) + Hvv ≤ h, (24b)

ξ ≥ [v − v(k − 1)]j , (24c)

ξ ≥ −[v − v(k − 1)]j , (24d)

i = 1, . . . , nv, j = 1, . . . ,m,

h = 1, . . . , nd.

The uncertainty in (24) due to (23) decreases when the

command is maintained constant. Thus, if (24) becomes

unfeasible, by not issuing new commands the feasibility will

be recovered, while constraint satisfaction is still guaranteed.

The algorithm for the reference governor in the presence of

slowly varying time delay is summarized in Algorithm IV.1,

where the buffer E contains relevant previous arrival time

ranges and command changes, to compute (22).

V. SPACECRAFT RELATIVE MOTION CONTROL

To illustrate the approach of Section IV, we consider a

relative spacecraft motion control problem. The spacecraft

is to be maneuvered to a desired position in a circular orbit

which is assumed to be the origin of the Hill’s frame. The

waypoints are transmitted remotely to the spacecraft through

a relay network and the communications are delayed. We

assume that the delay is in the forward channel (transmitted

commands are delayed but spacecraft states are acquired

without delay), and is time-varying with bounded rate, σ =
−σ = 0.4. The transmitted command is the target in-

track position, v. The spacecraft controller responds to this



1. At tk receive (x(k), δ(k))

2. Compute Ω̄(δ(k)), Ta(k)

3. Compute x̃(t + δ(t)), ∆V(k), D(∆V(k)).

4. find ı̄ = min{i ∈ Z0+ : ∆v(i) 6= 0, ∆v(i) ∈ ∆V(k)}.

For all j < ı̄, remove e(j) = (Ta(j), ∆v(j)) from buffer E.

5. Solve problem (24)

6. if (24) is feasible

send v(k) to the plant

store e(k) = (Ta(k), ∆v(k)) in buffer E

else

send v(k) = v(k − 1) to the plant

endif

Algorithm IV.1: Networked reference governor algorithm in

the presence of slowly varying delays.

command with the thrust vector U = [ux uy]T = −K ·
(X −Xe(ṽ)), to maneuver the spacecraft to the equilibrium
Xe(ṽ) = [0 ṽ 0 0]T, where X = [x y ẋ ẏ] is the
vector of relative positions and velocities of the spacecraft in

Hill’s frame, K is the Linear Quadratic Regulator gain and

ṽ(t) = v(t − δ(t)). The dynamic equations of motion are
the Hill-Clohessy-Wiltshire (HCW) equations. The mass of

the spacecraft is 100kg and the nominal orbit is 850km. The
constraints are imposed on the thrust (kN) as −0.0004 ≤
ux(t) ≤ 0.0004, −0.0004 ≤ uy(t) ≤ 0.0004 and x(t),
y(t) must adhere to Line Of Sight (LOS) cone constraints
shown by dashed lines in Figure 6-left. The LQ gain is

obtained for high control weighting to reduce the maneuver

fuel consumption.

The spacecraft is initially at x(0) = −0.25km and y(0) =
4km. The desired position is at the origin of the Hill’s frame,
hence r(t) = 0 for t ≥ 0. Figures 6 and 7 illustrate the
response governed by the network reference governor. The

LoS and control input constraints are enforced during the

maneuver despite the delay varies almost up to 100% during

the maneuver.
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Fig. 6. The random, slowly varying time delay δ(t) (left) and the time
histories (right) of v sent (solid) and ṽ received (right).

VI. CONCLUSIONS

In the paper, the network reference governor [11] has

been extended to provide less conservative handling of the

case when the time delay is long but slowly time-varying

with known bounds on its time rate of change. The network

reference governor uses state prediction forward in time by
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Fig. 7. The spacecraft relative motion trajectory in orbital track y versus
radial x direction (left) and the time history of thrust forces in x and y

directions (right).

the current delay value and accounts for the disturbance

induced by the unknown time variation of the delay. As

in [11], the delay-induced disturbance depends affinely on

the change in the reference governor output and hence is

under complete reference governor control. Two simulation

examples based on challenging spacecraft attitude and orbital

control problems were presented for the cases of randomly-

varying and slowly-varying time delay, respectively. In both

cases the network reference governor was shown to success-

fully handle the constraints despite the disturbances induced

by the delay.
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