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The Rendezvous Dynamics
under Linear Quadratic Optimal Control

Stefano Di Cairano, Carlo A. Pascucci, Alberto Bemporad

Abstract—This paper investigates the dynamics of networks
of systems achieving rendezvous under linear quadratic opti-
mal control. While the dynamics of rendezvous were studied
extensively for the symmetric case, where all systems have
exactly the same dynamics such as simple integrators, this paper
investigates the rendezvous dynamics for the general case when
the dynamics of the systems may be different. We show that
the rendezvous itself is stable and that the post-rendezvous
dynamics of the network of systems is entirely defined by the
common eigenvalues with common eigenvectors output image.
The approach is also extended to the case of constraints on
systems states and inputs.

I. INTRODUCTION
Controlling a network of systems is a challenging task

that occurs in many applications. As discussed in [1],
studies on this subject started already in the eighties for
the case of teams of mobile robots, and grew considerably
in the nineties because of the availability of low-cost and
effective wireless communication systems. During the last
decade, studies in cooperative control continued because of
the increased interest in unmanned aerial vehicles (UAVs).
The possibility to control a team of several agents has led
to new intriguing applications such as search and rescue
missions and pursuit and evasion games [2], cooperative
exploration [3], distributed sensor fusion [4], and sensor
networks [5].
We consider the rendezvous problem (see, e.g., [6]),

where several systems need to reach and maintain the same
output value. This output rendezvous value is not specified a
priori and imposing imposing a specific rendezvous value
would add unnecessary constraints, and thus, in general,
lower performance. The rendezvous problem is also related
to the consensus problem [7], where the goal is to find
an agreement on a common variable through an iterative,
distributed scheme.
Most of the existing contributions focus on rendezvous of

symmetric systems and adopt a distributed control approach.
However, many systems in practical applications are asym-
metric, i.e., the subsystems have (possibly) different dynam-
ics and even different state-space dimensions. For example,
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the DARPA System F6 program [8], a satellite composed of
a cluster of stand-alone modules that can share resources,
requires rendezvous of asymmetric systems (under a central
coordinator) to reconfigure the satellite capabilities while in
flight. Motivated by such a class of practical applications,
in this paper we aim at characterizing the properties of
rendezvous for networks of possibly asymmetric linear sys-
tems. We focus on the general properties of the rendezvous
dynamics under a centralized linear-quadratic (LQ) optimal
control law and a fixed communication topology, obtaining
basic results that might be relevant for further extensions to
the case of distributed control laws and changes of network
topology. We show that the optimal closed-loop dynamics
depends on the eigenvalues (if any exist) that are common
to all the systems and whose image satisfies a condition
that depends on the system output matrix. In particular, the
rendezvous may occur and be stable, but still the rendezvous
value may diverge in time. We also indicate how to extend
the LQ design to enforce constraints on the systems states,
inputs, and outputs.
The rest of the paper is structured as follows. After

defining some preliminary concepts and reviewing some
existing results in Section II, we propose the optimal LQ
control design and analyze the closed-loop system properties
in Section III. Some simulation results are presented in
Section IV. The extension to constraint enforcement in
presented in Section V, and conclusions are summarized in
Section VI.

II. PRELIMINARIES
Due to limited space, only a sketch of the main theorem is

provided. First the notation is introduced and some existing
results are recalled.

A. Notation
R, R+, R0+ denote the set of real, positive real, and

nonnegative real numbers, respectively. Z, Z+, Z0+ denote
the set of integer, positive integer, and nonnegative integer
numbers, respectively, and Z[a,b] = {v ∈ Z : a ≤ v ≤ b}.
We indicate the non-ordered set of n given distinct elements
o1, o2,. . . , on by O = {o1, o2, . . . , on}, and a particular
ordered set out of the existing different n! sets by O =
(o1, o2, . . . , on). The cardinality of O is denoted by |O|.
For a matrix A, rank(A), ker(A), nul(A) denote the rank,

the kernel (or nullspace) and the nullity (the dimension of
the nullspace) of A, respectively. The Kronecker product
between matrices is denoted by ⊗, 0 denotes a matrix of



suitable dimensions entirely composed of zeros, and Ip is
the identity matrix in Rp×p. [A]ji denotes the ith-row, jth-
column element of A, while for a vector v, [v]i denotes the
ith component of i. For a symmetric matrix Q ∈ Rn×n,
Q > 0, (Q ≥ 0) denotes positive (semi) definiteness, and for
a vector v, ‖v‖2

Q = x′Qx.

B. Output-weighted Linear Quadratic Optimal Control
Theorem 1: Consider the linear system

x(k + 1) = Ax(k) + Bu(k) (1a)
y(k) = Cx(k) (1b)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, and the cost function
∞
∑

k=0

y(k)′Qyy(k) + u(k)′Ru(k) (2)

where Qy , R are symmetric and Qy > 0, R > 0. Let (A,B)
be controllable, and (C,A) be observable. The stabilizing
control law that minimizes (3) is the Linear Quadratic
Regulator (LQR) [9], K = −(B′PB + R)−1B′PA, where
P is the solution of the Riccati equation P = C ′QC +
A′PB(B′PB + R)−1B′PA. !

If system (2) is not observable, consider an observability
decomposition via an appropriate change of coordinates T ,

xobs = Tx, xobs =
[

x′
o x′

no

]′

and

xobs(k + 1) =

[

Ao 0
Ano,o Ano

] [

xo(k)
xno(k)

]

+

+

[

Bo

Bno

]

u(k) (3a)

y(k) =
[

Co 0
]

[

xo(k)
xno(k)

]

(3b)

where xno are the coordinates of the state vector with respect
to a basis of the unobservable space, and the pair (Ao, Co)
is observable. For a system in the form (4) the LQ optimal
control problem is

min
∞
∑

k=0

y(k)′Qyy(k) + u(k)′Ru(k) (4a)

xo(k + 1) = Aoxo(k) + Bou(k) (4b)
xno(k + 1) = Ano,oxo(k) +

+Anoxno(k) + Bnou(k) (4c)
y(k) = Coxo(k) (4d)

By (5) it is clear that the unobservable component of the
state, xno, has no impact on the optimal solution, because the
unobservable states do not contribute to the output y ∈ Rp

in the cost function, and because the unobservable state
dynamics do not affect the observable states. Thus, the
following result holds straightforwardly.
Theorem 2: The solution to the optimal control prob-

lem (5) is

u = Koxo =
[

Ko 0
]

xobs

=
[

Ko 0
]

Tx = Kx (5)

whereKo is the LQR controller computed on (5a), (5b), (5d).
The observable subspace of the closed-loop system (2), (6)

x(k + 1) = (A + BK)x(k) (6a)
y(k) = Cx(k) (6b)

is Lyapunov stable. The unobservable eigenvalues of (2) (i.e.,
the eigenvalues of Ano) are not modified in (7) by (6). !

Proof (sketch): By Theorem 1, u = Koxo mini-
mizes (5a), (5b), (5d). Since the unobservable component
of the state xno does not affect the cost function neither
directly nor indirectly, any additional input effort applied to
used to stabilize xno will not decrease the regulation term
of the cost function, while it will increase the input energy
term, thus it is not optimal. Hence, xno must have no effect
on the control input, which results in (6).
By applying the observability decomposition (4) to the

open-loop system (2), and closing the loop with (6), the ob-
servable component xo is controlled by an LQR law, hence it
is asymptotically stable. The unobservable component is not
modified by the input. Since the eigenvalues are not modified
by the change of coordinates, the same set of eigenvalues will
appear in (7) in the original state coordinates. !

Remark 1: Controller (6) is not LQR in the proper sense,
because it does not necessarily stabilizes the whole system,
but only its observable component. In particular, if the system
has unstable unobservable modes (with no unobservable
modes on the unit circle), the LQR [9] is different from
what obtained by Theorem 2, since the LQR is stabilizing.
!

C. Graph notation and basic definitions
A graph G(V,E) is defined by the set of vertices V =

{v1, . . . , vh}, h ∈ Z+, with vk '= vl for all k '= l,
k, l ∈ Z[1,h], and the set of edges E ⊆ V ×V = {e1, . . . , er},
r ∈ Z+, r ≤ h2. An edge is identified by a pair of vertices
vk, vl,∈ V , k '= l. If the order of the vertices in the pair does
not matter, ei = {vk, vl}, the graph is called non-directed;
otherwise, each edge ei ∈ E is identified by an ordered
pair, ei = (vk, vl), and the graph is called directed. Given a
directed graph G(V,E), for any edge index i ∈ Z[0,r], where
ei = (vk, vl) ∈ E, we define the starting and the ending ver-
tex indices as pre(i) = k, post(i) = l, respectively. A path Π
on G(V,E) is a sequence of edges Π = (eΠe(1), . . . , eΠe(!)),
such that pre(Πe(i + 1)) = post(Πe(i)), i ∈ Z[1,!−1]. For
undirected graphs, a path is a sequence of ! ∈ Z+ edges
(eΠ(1), . . . , eΠ(!)) where to each edge a direction can be
arbitrarily assigned such that pre(Π(i + 1)) = post(Π(i)),
i ∈ Z[1,!−1]. A graph is connected if for any pair of nodes
vl, vk ∈ V , there exists a path Π = (eΠ(1), . . . , eΠ(!)) such
that vl = pre(Π(1)), vk = post(Π(!)).
Given a directed graph G(V,E) its associated non-directed

graph G̃(V, Ẽ) is such that for any (vh, vl) ∈ E, {vh, vl} ∈
Ẽ.
The incidence matrix I of a directed graph G(V,E), is

I ∈ R|E|×|V |, such that [I]ji = −1 if pre(i) = j, [I]ji = +1
if post(i) = j, [I]ji = 0, otherwise.



A coverage tree is a set of edges CT ⊆ E such that a
path from any node to any other node can be constructed
with edges in CT . A coverage tree CT is minimal when,
taken any ei ∈ CT , CT = CT/{ei} is not a coverage tree.

III. LQ-OPTIMAL RENDEZVOUS CONTROL
AND ITS CLOSED-LOOP DYNAMICAL PROPERTIES
Consider a set of N linear time-invariant dynamical sys-

tems {Σi}N
h=1, where Σh, h ∈ Z[1,N ], is defined by

x̄h(k + 1) = Āhx̄h(k) + B̄hūh(k) (7a)
yh(k) = C̄hx̄h(k) (7b)

and where x̄h ∈ Rn̄h , ūh ∈ Rm̄h , yh ∈ Rp, for all h ∈
Z[1,N ]. Define a connected directed graph G(V,E), where
V = {vh}N

h=1, so that vh is associated to Σh. The edges of
the graph will be required to satisfy a few properties, defined
in the sequel of the paper.
Assumption 1: For all h ∈ Z[1,N ], system (2) is observ-

able and reachable, rank(Bh) = m̄h, and rank(Ch(I −
Ah)−1Bh) = m̄h.
Assumption 2: For all h ∈ Z[1,N ], we have m̄h = m̄,

m̄ = p̄ and Ah is diagonalizable.
Assumption 2, is made principally for easing notation. It

is worth to point out that the results developed in the next
sections extend with minor modifications to the removal of
Assumption 2.
Definition 1 (Rendezvous): Given the set {Σi}N

h=1 of dy-
namical systems (8), the (asymptotic) rendezvous occurs if
for any i, j ∈ Z[1,N ], limk→∞ ‖yi(k) − yj(k)‖ = 0.
Note that the rendezvous condition does not necessarily
imply convergence of all outputs to a steady value, that is
limk→∞ yi(k) may not exists, ∀i ∈ Z[1,N ].

A. LQ-optimal control for rendezvous
In order to achieve rendezvous by means of LQ-optimal

control, introduce the following rendezvous stage cost

Jrdv(y1, . . . , yN ) =
∑

e∈E,e=(vi,vj)

‖yi − yj‖
2
Qij

(8)

where Qij ∈ R+, i, j ∈ Z[1,N ] are (edge) weights.
Proposition 1: If the rendezvous occurs, limk→∞

Jrdv(y1(k), . . ., yN (k)) = 0. Let G̃(V,E) be the non-
directed graph associated with G(V,E), and let G̃(V,E) be
connected. If limk→∞ Jrdv(y1(k), . . . , yN (k)) = 0, then the
rendezvous occurs. !

In order to setup the control problem as in (5), consider
the incremental form

ūh(k) = ūh(k − 1) + uh(k), (9)

where uh(k) ∈ Rmh , uh(k) = ∆ūh(k) = ūh(k)− ūh(k−1)
is the input increment at time k, so that for all h ∈ Z[1,N ]

the augmented system becomes

xh(k + 1) = Ahxh(k) + Bhuh(k) (10a)
yh(k) = Cxh(k) , (10b)

Ah =

[

Āh B̄h

0 I

]

, Bh =

[

B̄h

I

]

, C =
[

C̄ 0
]

,

where xh ∈ Rnh , xh(k) = [ x̄h(k)′ ūh(k−1)′ ]′, uh ∈ Rmh ,
yh ∈ Rp. For the augmented systems (11), we can have
limk→∞ xh(k) = xeq

h , xeq
h '= 0, and at the same time

limk→∞ u(k) = 0.
Proposition 2: Under Assumption 1, the augmented sys-

tem (11) is observable. !

The assumption rank(B̄h) = m̄h is needed to maintain
complete observability of the augmented system. In reality,
an observability loss in the augmented model will be only
fictitious, because the full command input is actually known,
and it does not appear on the output vector only because in
this problem formulation we use the output as rendezvous
variable. Indeed, if the assumption does not hold, which
is the case for over-actuated systems, multiple steady state
inputs can correspond to a single steady-state output. This
will not be a problem for the results developed next, although
it would complicate the notation.
We formulate the rendezvous on (11) as

min
{uh(·)}N

h=1

∞
∑

k=0

∑

(vi,vj)∈E

‖yi(k) − yj(k)‖2
Qij

+
N

∑

h=1

‖uh(k)‖2
Rh

xh(k + 1) = Ahxh(k) + Bhuh(k)

y(k) = Chxh(k), h ∈ Z[1,N ] (11)

where Qij > 0, Rh > 0 for all i, j, h ∈ Z[1,N ]. Problem (12)
is converted in the form of (5) by observability decomposi-
tion (4) of the network of systems dynamics

x(k + 1) = Ax(k) + Bu(k) (12a)
y(k) = Cx(k) (12b)

where,

A =





A1 ... 0

0
. . . 0

0 ... Ah



 , B =





B1 ... 0

0
. . . 0

0 ... Bh



 (13a)

C = (I ⊗ Ip) ·





C1 ... 0

0
. . . 0

0 ... Ch



 , (13b)

where I is the incidence matrix of G(V,E). For dynam-
ics (14), x ∈ RN , N =

∑N
h=1 nh, x = [ x′

1 ··· x′
N ]′,

u ∈ RM, M =
∑N

h=1 mh, u = [ u′
1 ··· u′

N ]′, y ∈ RP ,
P = Np, y = [ y′

1 ··· y′
N ]′. Controller (6) guarantees the

asymptotic stability of the observable component of (14),
which then guarantees asymptotic stability of the rendezvous
by (4). On the other hand, the dynamics of the network
of systems depends also on the unobservable component
of (14), which motivates the next study.

B. LQ-optimal rendezvous for asymptotically stable systems

The dynamical properties of the overall closed-loop sys-
tem derive from Theorem 2 when applied to the network of
systems defined by (14). The observability matrix of (14),



Θ = [ C′ (CA)′ ... (CAN )′ ]′ can be rearranged as

Θ =















Θ(N )
pre(1) −Θ(N )

post(1) 0 . . . 0
...

. . . Θ(N )
pre(i) . . . −Θ(N )

post(i) 0
...















(14)

where Θ(N )
h is the N -steps observability matrix of the h-th

system (11), thus resulting in a matrix of E = |E| block
rows (one per edge in the graph), and where each block row
belongs to RNp×N . Due to the dimension of the full system,
each of the observability matrices Θ(N )

h is expanded beyond
the observability index of a single subsystem.
For a state x ∈ RN to belong to the unobservable space

of the network of systems (14), it must holds from (15) that

Θ(N )
pre(i)xpre(i) = Θ(N )

post(i)xpost(i), ∀ei ∈ E . (15)

We show that some of equations in (16) may be redundant.
Proposition 3: The linearly independent equations in (16)

are generated by a minimal coverage tree CT of the network
of systems graph G(V,E). Such coverage has N − 1 edges,
so that, in general, the observability matrix (15) has at most
N (N − 1)p independent rows. !

Theorem 3: Let systems (8) be open-loop asymptotically
stable, and apply controller (6) based on (12). Then, the
network of systems (14) converges asymptotically to a steady
rendezvous condition, and all states remain bounded. !

Proof (sketch): By (6), limk→∞ ‖∆ūh(k)‖ = 0, for all h ∈
Z[1,N ]. Because of the asymptotic stability, (11) converge
to the equilibria x(eq)

h , h ∈ Z[1,N ]. Equations (16) reduces
to [ y

(eq)
i

′
... y

(eq)
i

′ ]′ = [ y
(eq)
j

′
... y

(eq)
j

′ ]
′, hence (N − 1)p

equations in Np variables, resulting in null(Θ) = p. The
solutions are obtained as any yeq

1 ∈ Rp, and yeq
i = yeq

j ∈ Rp,
for all (vi, vj) ∈ CT , hence all possible rendezvous.

C. Generalization to non-asymptotically stable systems
Next we remove the stability assumption on (2). By

Theorem 2 we know that the dynamics of the network of
systems is stabilized by (6) except for the unobservable
subspace. Let the eigenvalues of (11) be ordered so that the
ones common to all systems have the same index, and let L
be the set of such indices.
Theorem 4: The rendezvous space is the subspace

spanned by the eigenvectors of (11), φh
! , h ∈ Z[1,N ], whose

corresponding eigenvalues are equal, λh
! = λ!, for all h ∈

Z[1,N ], ! ∈ L, and such that there exists γ! ∈ Rp, µh
! ∈ R,

h ∈ Z[1,N ], ! ∈ L, for which µh
! Cφh

! = γ!. !

Proof (sketch): The rendezvous space is the unobservable
subspace of the network of systems, i.e., x ∈ RN , such that
Θx = 0. To characterize such solutions one can consider the
structure of Θ induced by the coverage tree, and operate the
eigenvector decomposition on the dynamics of each subsys-
tem. This results in the equations

∑ni

ζh=1 Ciφi
ζi

µi
ζi

(λi
ζi

)k =
∑nj

ζh=1 Cjφ
j
ζj

µj
ζj

(λj
ζj

)k, k ∈ Z[0,N−1], for all(vi, vj) ∈ CT ,
where φh

ζh
∈ Rnh , µh

ζh
∈ R, for ζh ∈ Z[1,nh], are the

eigenvectors and the corresponding coordinates. The proof is
concluded by showing that the equations admit only a trivial
solution x = 0, unless some common eigenvalues between
the different subsystems exists, satisfying the theorem’s
conditions. In that case, the stacked eigenvectors belongs to
ker(Θ).
Remark 2: For a non-trivial rendezvous to occur, Theo-

rem 4 requires the systems to have an equal eigenvalue λ!,
! ∈ L, and the corresponding eigenvectors to have equal
image through the output matrix. The systems may have
different state dimensions as long as the output dimensions
are the same. The results of Theorem 3 are also in accordance
to these, since the systems share the eigenvalues of the input
integrators (10) for which the condition on the eigenvalues
holds. !

Remark 3: The diagonalizability condition required by
Assumption 2 is included here mostly for the ease of
notation. The result of Theorem 4 can be extended to the
case when Jordan blocks are present. !

Remark 4: If mh < p for some h ∈ Z[1,N ], not all the
rendezvous are achievable, see (4). Only a subset of ren-
dezvous can occur, or none, if there is an empty intersection
of achievable rendezvous between the systems. !

Corollary 1: The dynamics of the network of systems (14)
after the rendezvous occurs are defined by the common
eigenvalues λh

! = λ! for all h ∈ Z[1,N ], ! ∈ L, such that
for the corresponding eigenvectors φh

! , h ∈ Z[1,N ], there
exists γ! ∈ Rp, µh

! ∈ R, h ∈ Z[1,N ], for which µh
! Cφh

! = γ!.
The network of systems (14) is unstable only if there exists
! ∈ L, such that λ! > 1 and satisfies the above conditions.!

IV. SIMULATIONS
We present here simulations that confirm the results

predicted by Theorems 3 and 4. The examples below are
restricted to two-dimensional outputs aligned with cartesian
axes, for graphical reasons. We consider N = 6 systems
with mh = 2 inputs, h ∈ Z1,6, p = 2 outputs, that satisfy
Assumptions 1 and 2. The number of states is n̄1 = n̄2 =
n̄3 = n̄4 = 4, n̄5 = 3, n̄6 = 5, and the input incremental
form (11) is applied to all. The initial states of the systems
(denoted as large circles in the output-plane plots) are chosen
according to a normal distribution.
Case 1. Some of the systems have unstable poles, but no
common eigenvalues to all systems exist, except for the input
integrators (10). Thus, according to Theorem 4, the system
converges to a steady rendezvous value, and the states remain
bounded. An example of this behavior is shown in Figure 1.
Case 2. In Figure 2 we show the case where all the systems
share the stable eigenvalue λh

! = 0.8, h ∈ Z[1,6], so that on
the corresponding eigenvectors φh

! , h ∈ Z[1,6], the condition
in Theorem 4 holds. Thus, the rendezvous occurs and the
residual dynamics are stable, hence leading to a steady
rendezvous value. Notice how the outputs converge to each
other and later stabilize around an equilibrium value.
Case 3. The systems have the common unstable eigenvalue
λ = 1.125, and the condition in Theorem 4 holds for the
corresponding eigenvectors φh

! , h ∈ Z[1,6]. Figure 3 shows
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Fig. 1. Rendezvous simulations by LQ control for 6 systems that have no
common eigenvalues before augmentation to incremental form.

that the systems achieve a rendezvous, then the evolution is
dictated by the common eigenvalue, causing the network of
systems to diverge along the y1-axis.

V. EXTENSION TO CONSTRAINED SYSTEMS
The results proved in Section III can be used to extend

the rendezvous control strategy (12) in several directions.
For enabling input and output constraints, designed by (12),
a model predictive control (MPC) strategy based on (6) is
proposed here.
Given an unconstrained LQR, the Riccati matrix and

(possibly) the feedback gain can be used to design an
MPC controller that accounts for constraint and that behaves
locally as the original LQR [10], [11]. In order to achieve
this, the MPC problem is formulated as

min
U(t)

‖x(N |t))‖2
P +

hp−1
∑

k=0

‖x(k|t)‖2
Q + ‖u(k|t)‖2

R (16a)

s.t. x(k + 1|t) = Ax(k|t) + Bu(k|t)) (16b)
z(k|t) = Czx(k|t) + Dzu(k|t) (16c)
ymin ≤ z(k|t) ≤ ymax, k = 0, . . . , hc (16d)
umin ≤ u(k|t) ≤ umax, k = 1, . . . , hu (16e)
u(k|t) = Kx(k|t), k = hu, . . . , hp − 1 (16f)
x(0|t) = x(t) (16g)
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Fig. 2. Rendezvous simulations by LQ control for 6 systems (8) that share
an asymptotically stable eigenvalue with common eigenvalue image.

where U(t) = {u(1|t), . . . , u(hp−1|t)}, z ∈ Rq is the vector
of constrained outputs, generated by (17c), hp, hc, hu are the
prediction, constraint, and control horizons,Q = C ′QyC and
R define the stage cost, K is the terminal controller (6). The
terminal cost P is the solution of the Riccati equation solved
to design (6), expanded to the dimension of the original state
space by zeros (since unobservable states do not contribute
to the cost function), and transformed back in the original
coordinate frame, i.e., P = T ′

[

Po 0
0 0

]

T.
When implemented in this way, whenever

constraints (17d), (17e) are inactive, the MPC controller (17)
generates the same input as the LQR controller (6) designed
by (12). Thus, the guaranteed local stability domain of MPC
is characterized as the set where the feedback controller (6)
designed by (12) satisfies the input and output constraints
for all the future time instants, or in other words, the
maximum output admissible constraint set for the closed
loop dynamics x(k + 1) = (A + BK)x(k). The controller
can be further extended with a terminal constraint set [12]
designed basing on the constraint admissible set, which
provides an enlarged guaranteed stability domain.
A simulation example of N = 5 systems with nh = 4

states each and no shared eigenvalues (before incremental
input augmentation (11)) is shown in Figure 4, along with
the input constraints ‖ūh‖∞ ≤ 1.5, the constraints on input
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Fig. 3. Rendezvous simulations by LQ control for 6 systems (8) that share
an unstable eigenvalue with common eigenvalue image

increments ‖uh‖∞ ≤ 0.75, h ∈ Z[1,N ]. The rendezvous is
achieved, while all the prescribed constraints are enforced.

VI. CONCLUSIONS
This paper analyzed the rendezvous dynamics of a network

of possibly asymmetric systems under LQ optimal control.
We have shown that a rendezvous is achieved, and that the
dynamics governing the rendezvous situation depends on
the systems’ common eigenvalues and on the corresponding
eigenvectors. By using local equivalence results between
LQ control and an appropriately designed MPC controller,
we have shown how the control design can be extended
to enforce constraints. Currently this approach is being
extended to rendezvous to a specified formation pattern.
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