
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Monocular Visual Odometry and Dense 3D
Reconstruction for On-Road Vehicles

Zhu, M.; Ramalingam, S.; Taguchi, Y.; Garaas, T.

TR2012-080 October 2012

Abstract

More and more on-road vehicles are equipped with cameras each day. This paper presents a novel
method for estimating the relative motion of a vehicle from a sequence of images obtained using
a single vehicle-mounted camera. Recently, several researchers in robotics and computer vision
have studied the performance of motion estimation algorithms under non- holonomic constraints
and planarity. The successful algorithms typically use the smallest number of feature correspon-
dences with respect to the motion model. It has been strongly established that such minimal
algorithms are efficient and robust to outliers when used in a hypothesize-and-test framework
such as random sample consensus (RANSAC). In this paper, we show that the planar 2-point
motion estimation can be solved analytically using a single quadratic equation, without the need
of iterative techniques such as Newton-Raphson method used in existing work. Non-iterative
methods are more efficient and do not suffer from local minima problems. Although 2-point
motion estimation generates visually accurate on-road vehicle-trajectory, the motion is not pre-
cise enough to perform dense 3D reconstruction due to the nonplanarity of roads. Thus we use
a 2-point relative motion algorithm for the initial images followed by 3-point 2D-to-3D camera
pose estimation for the subsequent images. Using this hybrid approach, we generate accurate
motion estimates for a plane-sweeping algorithm that produces dense depth maps for obstacle
detection applications.
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Abstract. More and more on-road vehicles are equipped with cameras
each day. This paper presents a novel method for estimating the relative
motion of a vehicle from a sequence of images obtained using a single
vehicle-mounted camera. Recently, several researchers in robotics and
computer vision have studied the performance of motion estimation al-
gorithms under non-holonomic constraints and planarity. The successful
algorithms typically use the smallest number of feature correspondences
with respect to the motion model. It has been strongly established that
such minimal algorithms are efficient and robust to outliers when used
in a hypothesize-and-test framework such as random sample consensus
(RANSAC). In this paper, we show that the planar 2-point motion es-
timation can be solved analytically using a single quadratic equation,
without the need of iterative techniques such as Newton-Raphson method
used in existing work. Non-iterative methods are more efficient and do
not suffer from local minima problems. Although 2-point motion estima-
tion generates visually accurate on-road vehicle-trajectory, the motion is
not precise enough to perform dense 3D reconstruction due to the non-
planarity of roads. Thus we use a 2-point relative motion algorithm for
the initial images followed by 3-point 2D-to-3D camera pose estimation
for the subsequent images. Using this hybrid approach, we generate ac-
curate motion estimates for a plane-sweeping algorithm that produces
dense depth maps for obstacle detection applications.

Key words: Visual odometry, 2-point motion estimation, pose estima-
tion, plane sweeping

1 Introduction and Related Work

Accurate ego-motion estimation of a vehicle from video sequences is a challenging
and important problem in robotics and computer vision [11]. Existing algorithms
can be classified based on the camera model (monocular, stereo) and motion
model (planar, non-planar). To compute the relative motion between images, it
has been shown that using a minimum number of feature correspondences in a
hypothesize-and-test framework such as RANSAC produces accurate and robust
results in the presence of outliers.

Several SLAM techniques for general motion sequences exist in the Robotics
community [9, 12]. In this paper, we focus on ego-motion estimation from monoc-
ular video sequences [21, 23, 17] for almost planar road sequences. We present a
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novel analytical solution to the planar motion estimation problem using 2 points.
Existing approaches solved this problem using an iterative algorithm. Our non-
iterative solution is more efficient and does not have local minima problems.

Dense depth estimation from video sequences using a car-mounted camera
can be extremely useful for car safety applications such as obstacle detection. In
this work, we use the 2-point motion estimation algorithm followed by 3-point
2D-to-3D pose estimation to compute the camera poses, and then reconstruct a
dense depth map at each frame. Instead of using just two images and motion-
based stereo, we use several images, typically of the order of 20 to 30, to recon-
struct depth maps using a plane-sweeping algorithm [4]. Plane sweeping can be
implemented on GPUs and it can be performed in real time [15].

Minimal Solutions: Nistér’s 5-point algorithm [13] with a RANSAC frame-
work has been established as the standard method for motion estimation in the
presence of outliers. In the case of relative motion between two cameras, there
are 6 degrees of freedom (DOF) in the motion parameters: 3 DOF for rotation
and 3 DOF for translation. For conventional cameras with a single center of
projection, only 5 parameters can be estimated, i.e., the translation can only be
estimated up to a scale. Accordingly, we need a minimum of 5 feature correspon-
dences to estimate the motion parameters. The feature correspondences can be
obtained using, e.g., Harris corners, SIFT, or KLT. Usually, minimal approaches
lead to a finite number of solutions for the motion and the correct motion is
chosen based on physical realizability or additional point correspondences.

Minimal solutions have been proposed for several calibration and 3D re-
construction problems: the five point relative pose problem [13], the six point
generalized camera problem [22], point-to-plane registration using six correspon-
dences [16], pose estimation for stereo setups using either points or lines [2, 3].
The last few years have seen the use of minimal problems in various applica-
tions [20] and there are even unification efforts to keep track of all the existing
solutions1.

Restricted Motion Models: In real-world scenarios, the relative motion
of a camera is usually constrained by the associated application. For example,
a camera mounted on a car does not generally have all 6 DOF. If the road is
planar, the camera can only undergo 3 DOF (2 DOF of translation and 1 DOF
of rotation). Recently, Scaramuzza et al. [18] have shown that there exists a
class of vehicles (cars, bicycles, differential-drive robots) whose motion can be
parameterized using only one parameter and thus a 1-point algorithm can be
developed. The underlying idea is to use the fact that there exists an instanta-
neous center of rotation (ICR) and the vehicle follows a circular course around
this point. When inertial measurement unit (IMU) is available, one can get two
measurement angles using the gravity vector. The remaining unknowns are just
three parameters (1 DOF of rotation and 2 DOF of translation). Fraundorfer et
al. [5] solved this 3-point motion estimation problem using a quartic equation.
This motion estimation algorithm can be useful if one uses cell phone cameras
to capture images.

1 http://cmp.felk.cvut.cz/minimal/
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Several researchers have compared the performance of minimal algorithms
such as 1-point, 2-point and 5-point algorithm. As shown in many of the recent
results, 2-point is comparable to 1-point and 5-point [17]. However, the existing
algorithm used for 2-point is an iterative one. Ortin and Montiel [14] proposed
a 2-point motion estimation algorithm for planar motion sequences. This is ap-
plicable for indoor robot ego-motion estimation when the camera mounted on
the robot moves on a plane. The number of degrees of freedom is 3 (1 DOF of
rotation and 2 DOF of translation). However, the relative motion can be recov-
ered only up to a scale. In the RANSAC framework, the number of iterations
required is usually smaller when we decrease the number of points required to
compute the motion. Given the complexity of the equations, Ortin and Montiel
determined the solutions iteratively with the Newton-Raphson method and this
iterative approach is still used in several recent results [17]. In this paper, we show
that 2-point algorithm can be solved very easily with a simple quadratic equa-
tion. Independently, Booij and Zivkovic have developed an analytical solution for
2-point motion estimation using a trignometric approach in their unpublished
technical report [1]. Similar to their approach, we also obtain a quadratic poly-
nomial for the 2-point problem. However, our formulation is different and we
show an entire pipeline including dense 3D reconstruction for driver assistance
in car-navigation.

Organization: In Section 2, we present a minimal 2-point relative motion
estimation algorithm. In Section 3, we detail our system pipeline and experi-
mental results, including the calibration procedure, 2-point motion estimation
followed by 3-point 2D-to-3D pose estimation, and dense depth reconstruction
using plane sweeping for obstacle detection application.

2 2-Point Motion Estimation

In this section, we first describe some background of motion estimation prob-
lems and then present our analytical solution to the 2-point motion estimation
problem.

2.1 Background

Motion estimation refers to estimating the relative pose between two images.
Corresponding feature points p and p′ in two images are related by the essential
matrix E by the relation p′T

Ep = 0. Note that p and p′ are expressed as unit
vectors in spherical image coordinates (p and p′ are pixels back-projected onto a
unit sphere such that ||p|| = ||p′|| = 1). This is always possible when the camera
is calibrated.

The essential matrix E can be computed using the relationship E = [T]×R,
where R is the 3 × 3 rotation matrix and [T]× is the skew symmetric matrix of
the 3 × 1 translation vector T.

Planar Motion: As shown in Figure 1, we assume that the camera moves
on a plane. In the case of a camera mounted on a car, we assume that the road
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(a) (b) (c)

Fig. 1. Two-point motion estimation for planar motion of an on-road vehicle. (a) The
motion of the car is assumed to be on the XZ plane. (b) The camera moves on a plane
parallel to the ground plane. We show the projection rays for two 3D points P1 and
P2 from two camera positions C1 and C2 respectively. (c) The general idea behind our
coordinate transformation technique for the 2-point motion estimation algorithm. Our
goal is to compute the motion (Ro,To) between the coordinate frames C1 and C2. We
transform the coordinate frames C1 and C2 to two intermediate coordinate frames C

′

1

and C
′

2 respectively. We compute the motion (R,T) between C
′

1 and C
′

2, which is much
simpler than computing (Ro,To) directly.

is parallel to the XZ plane and the camera moves on the XZ plane, as shown
in Figure 1(a). Accordingly, the rotation matrix and the translation vector are
given by

R =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 =





α 0 β
0 1 0
−β 0 α



 , T =





Tx

0
1



 (1)

The above rotation matrix represents a rotation around the Y axis by an angle
θ. We rewrite the rotation matrix by replacing cos θ and sin θ with α and β.
According to the orthonormality constraint, we have α2 + β2 = 1. Since the
camera moves on the XZ plane, the Y coordinate of the translation vector is
0. The absolute scale cannot be computed. By fixing Tz = 1, we fix the scale of
the motion. Due to the coordinate transformation we later perform in the algo-
rithm, this assumption will hold true even if the motion is along the X direction.
We use the essential matrix to compute the unknown parameters (Tx, α, β). Al-
though there are three variables, the number of independent variables is only 2
since α2 + β2 = 1. By directly solving the essential matrix for two sets of points
correspondences, we obtain two quadratic equations in three variables (Tx, α, β).
Using the orthonormality constraint on α and β, we may get 8 solutions or less.
By using algebraic geometry tools like Groebner basis [10], one can directly get
two solutions. On the other hand, below we show that a coordinate transfor-
mation approach will lead to a simple quadratic equation for computing the
motion.
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2.2 Our Analytical Solution

Our goal is to compute the motion between the first camera coordinate frame C1

to the second camera coordinate frame C2. Let the required motion be (Ro,To).
Instead of directly computing the motion between these two coordinate frames,
we pre-rotate both C1 and C2 to intermediate reference frames Ci

1
and Ci

2
re-

spectively. Figure 1(c) shows our transformation approach. We choose these in-
termediate reference frames such that the motion estimation equations become
as simple as possible. Once we compute the motion between these intermediate
reference frames (R,T), we can find the motion in the original coordinate frames
using a simple post-rotation.

Intermediate Reference Frames: Let the two point correspondences be
(p1,p

′

1
) and (p2,p

′

2
). Let us rotate the first camera coordinate system C1 by a

rotation matrix R1 such that the z coordinate of the first point p1 becomes 0.
Similarly, let us rotate the second camera coordinate system C2 by a rotation
matrix R2 such that the z coordinate of the second point p′

2
becomes 0. Let the

new reference frames be C′

1 and C′

2. Let the new correspondences be (a1,b1)
and (a2,b2) as ai = R1pi, bi = R2p

′

i where i = {1, 2}. In the new reference
frames, we have

a1 =





a1x

a1y

0



 , a2 =





a2x

a2y

a2z



 , b1 =





b1x

b1y

b1z



 , b2 =





b2x

b2y

0



 . (2)

The rotation matrices R1 and R2 can be easily computed as they are just equiv-
alent to rotating the coordinate frames around the Y axis such that the Z
coordinate of the point becomes 0:

Ri =





cos θi 0 sin θi

0 1 0
− sin θi 0 cos θi



 . (3)

Here θ1 = tan−1(p1z/p1x) and θ2 = tan−1(p′
2z/p′

2x).
Solution: Using Equation (1), we obtain the essential matrix

E = [T ]×R =





0 −1 0
1 0 −Tx

0 Tx 0









α 0 β
0 1 0
−β 0 α



 =





0 −1 0
α + βTx 0 β − αTx

0 Tx 0



 . (4)

The equation based on the essential matrix becomes bT
i Eai = 0 for i = {1, 2}

after the coordinate transformation. When i = 1, we have





b1x

b1y

b1z





T



0 −1 0
α + βTx 0 β − αTx

0 Tx 0









a1x

a1y

0



 = 0, (5)

resulting in
g1βTx + g2Tx + g1α + g3 = 0, (6)
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where g1 = a1xb1y,g2 = a1yb1z and g3 = −a1yb1x. When i = 2, we have





b2x

b2y

0





T



0 −1 0
α + βTx 0 β − αTx

0 Tx 0









a2x

a2y

a2z



 = 0, (7)

resulting in
f1αTx + f2βTx + f2α − f1β + f3 = 0, (8)

where f1 = −a2zb2y, f2 = a2xb2y and f3 = −a2yb2x. Using Equations (6) and
(8), we get the following relation for Tx:

Tx =
−g1α − g3

g1β + g2

=
−f2α + f1β − f3

f1α + f2β
(9)

(−g1α − g3)(f1α + f2β) = (g1β + g2)(−f2α + f1β − f3) (10)

By simplifying the above equation, we get

h1α + h2β + h3 = 0, (11)

where h1 = g3f1 − f2g2, h2 = f1g2 − f3g1 + f2g3 and h3 = f1g1 − f3g2. Using
the orthonormality constraint α2 + β2 = 1 to replace all β’s in Equation (11),
we obtain the following quadratic equation:

(h2

1
+ h2

2
)α2 + (2h1h3)α + (h2

3
− h2

2
) = 0. (12)

We have two solutions for α by solving the above quadratic equation. Once we
compute α, we obtain the corresponding two solutions for β. We can then com-
pute Tx using Equation (9). Note that there will be two solutions for (Tx, α, β)
and we can find the correct solution using additional correspondences. Finally
we perform the following operations to obtain the motion between the original
coordinate frames Ro = R

′

1
RR2 and To = R

′

1
T.

2.3 Sensitivity Analysis of Planarity Assumption

We studied the effect to the planarity assumption on the accuracy of our algo-
rithm. In accordance with our algorithm, we assume that the camera moves on
the XZ plane. The only rotation the algorithm can compute is the one around
the Y axis. In simulations, we considered rotations that had an off-plane rota-
tion along with the rotation around the Y axis. Any rotation around the X or
Z axes can not be computed. In Figure 2(a) we show the error in rotation. Since
the translation can only be up to a scale, the error shown is with respect to the
direction of the motion on the plane. In many car navigation applications and
localization problems, the rotation error around the Y axis is more important.
We also studied the error in rotation around the Y axis and this is much lower
than the overall rotation error. We considered images of size 100 × 100 pixels
with a focal length of 100. The scene size is a cube of dimension 100 units. We
added Gaussian noise with standard deviation of 0.2 in the simulations.
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(a) (b) (c) (d)

Fig. 2. (a) Simulations to study the sensitivity to out of plane rotation. The red and
blue curves show the error in rotation and translation respectively. (b) We show the
epipole (white circle) obtained from the intersection of the line segments showing the
point correspondences from two consecutive images. For a car moving on a planar
road, these epipoles should lie on the horizon. (c) We show the horizon (red line) and
a trajectory of epipoles. The green line segments show the trajectory of the epipoles for
several consecutive pairs of images. Note that the epipoles do not lie on the horizon.(d)
We computed the motion parameters for 3400 images in a video sequence from a GoPro
camera mounted on the front of a car. We project the computed trajectory on the Google
Earth’s aerial image. The entire trajectory is approximately 1 km long.

3 System Pipeline and Experimental Results

3.1 Setup and Calibration

The experiments were conducted with Hero-GoPro cameras, which are extremely
small in size and easy to mount on cars. We tested several video sequences by
mounting the camera on both front and rear side of a car. We calibrated this
camera using the omni-directional toolbox of Scaramuzza et al. [19]. The cal-
ibration is used to rectify the video sequence captured from the camera. The
original image resolution is 1920 × 1080 pixels. Using the calibration we con-
structed rectified images of 1000× 500 pixels. All the experiments shown in this
paper use these rectified images. Once the camera is calibrated and the images
are rectified, the algorithmic components shown in this paper will apply to any
central omni-directional camera. We compute the pose of the ground plane in
the camera coordinate frame using a large calibration grid on the ground.

Feature Computation: We compared Harris corners, SIFT features, and
KLT features. We observed that KLT produced more evenly distributed features
compared to SIFT and Harris, thus used KLT features in our experiments.

3.2 Motion and Pose Estimation Algorithms

In our real experiments, we found that the planarity assumption holds for a
short distance, but is violated for a long distance on most roads. For a camera
moving on a plane with one degree of rotation, the epipole should always lie
on the horizon. Note that the epipole can be computed by the intersection of
line segments joining the point correspondences from two images as shown in
Figure 2(b). We computed the epipoles for several image pairs as shown in
Figure 2(c) and found that the epipoles do not lie on the horizon line.
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In all the video sequences, therefore, we compute the 3 DOF planar motion
estimates for the first 20 images using the 2-point motion estimation algorithm,
and then estimate the 6 DOF poses for the subsequent images using the standard
3-point camera pose estimation algorithm [7]. The initial camera poses given by
our 2-point algorithm are used to triangulate the feature correspondences and
obtain sparse point cloud. The absolute scale is fixed using the estimated ground
plane. Using this sparse reconstruction, we compute the 6 DOF poses of the
subsequent images [7]. This partial sparse 3D point cloud is updated as new 3D
points become available in the subsequent frames. Such a hybrid approach has
been used in many real-time 3D reconstruction pipelines for large scale structure-
from-motion problems [15]. In Figure 2(d), we show the motion estimated for a
sequence of 3400 images.

We observed that the 5-point algorithm [13] is better for sideways motion
rather than a forward motion. In our experiments, we have a forward motion.
Furthermore, the camera observes most of the points on the ground and this
scenario was particularly challenging for the 5-point algorithm.

3.3 Dense Depth Reconstruction

Given the camera poses, we compute a dense depth map at each frame using
a plane-sweeping algorithm [4]. Plane sweeping provides a simple and efficient
way to reconstruct a depth map using any number of images and their camera
poses as the input. The algorithm is suitable for GPU implementation [24] and
has been used for dense 3D reconstruction from vehicle-mounted cameras [6, 15].

In our implementation, we define a set of front-parallel planes with depths
di(i = 1, . . . ,D) in the coordinate system of the current frame. For each depth
layer di, we project the current image and N−1 previous images using projective
texture mapping on the GPU [24] and compute a matching cost C(x, di) for
each pixel x. As the matching cost, we compute the absolute intensity difference
among all combinations of the N images for each pixel and take an average of
the smallest 50% values, which makes the cost robust against occlusions [8]. We
then smooth the cost in each depth layer with a small local window (11 × 11
pixels). We finally compute the optimal depth by simply finding the minimum
cost for each pixel as d(x) = arg mini C(x, di).

We tested the plane-sweeping algorithm on several video sequences taken
from both indoor and outdoor scenes as shown in Figure 3. We show that it is
possible to generate depth maps from monocular video sequences. Such depth
maps can be used for car-navigation applications like obstacle detection. Our
algorithm is accurate enough to reconstruct small objects (10 cm wide poles and
boxes of dimensions 30 cm) at close distances (less than 2 meters).

4 Conclusion

We presented a complete system for relative motion estimation and dense 3D
reconstruction of nearby scenes from a monocular video sequence captured by an
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Dense depth reconstruction results. We tested video sequences consisting of 100
frames and computed a depth map at each frame using the plane-sweeping algorithm
with N images and D depth layers. The distances of the objects vary from more than
5 meters to less than 2 meters. (a), (b) and (c) show the snapshots of the depth maps
at three different places in the video for an outdoor scene (N = 20 and D = 50). (d),
(e) and (f) show the depth maps for an indoor garage sequence (N = 30 and D = 80).

omni-directional camera mounted on a car. We proposed a simple non-iterative
solution for the planar 2-point relative motion estimation algorithm. Using a
plane-sweeping algorithm along with the motion estimation, we compute a se-
quence of dense depth maps of the scene. Most of the code is written in Matlab
and unoptimized. It currently takes 0.2 seconds for motion estimation, 0.4 sec-
onds for KLT tracking, and 5 seconds for plane sweeping. We believe that the
entire system can easily be made real time by using C++ and GPUs.
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