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Abstract

In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way
to analyze chaos in the system through application of the Thurston-Nielsen classification theorem
(TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding
of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al.,
Topological chaos and periodic braiding of almost-cyclic sets, Phys. Rev. Lett. 106, 114101
(2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local res-
idence time that act as stirrers or ghost rods around which the surrounding fluid appears to be
stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a
system parameter is varied, which results in a sequence of topologically distinct braids. We show
that, for Stokes flow in a lid-driven cavity, these various braids give good lower bounds on the
topological entropy over the respective parameter regimes in which they exist. We make the case
that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used
for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented
statistical methods and topological methods, which promises to be an important analysis tool in
the study of complex systems.
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In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to

analyze chaos in the system through application of the Thurston-Nielsen classification theorem

(TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of

almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al.,
“Topological chaos and periodic braiding of almost-cyclic sets,” Phys. Rev. Lett. 106, 114101

(2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence

time that act as stirrers or “ghost rods” around which the surrounding fluid appears to be stretched

and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system

parameter is varied, which results in a sequence of topologically distinct braids. We show that, for

Stokes’ flow in a lid-driven cavity, these various braids give good lower bounds on the topological

entropy over the respective parameter regimes in which they exist. We make the case that a

topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing

chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods

and topological methods, which promises to be an important analysis tool in the study of complex

systems. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768666]

When a body of fluid moves, whether it be in the atmos-

phere, an ocean, or a kitchen sink, there are often regions

of fluid that move together for an extended period of

time. As these coherent sets of fluid trace out trajectories

in space and time, they can be thought of as “stirring”

the surrounding fluid. The entanglement of these trajec-

tories as they “braid” around each other is connected to

the level of chaos present in the fluid system. When the

sets return periodically to their initial positions in a two-

dimensional, time-dependent system, the entanglement of

their trajectories can be used to predict a lower bound on

the rate of stretching in the surrounding domain. We

examine the trajectories of such “almost-cyclic sets” in a

lid-driven cavity flow and demonstrate that this combina-

tion of topological analysis with set-oriented methods can

be an effective means of predicting chaos. The characteri-

zation of the entanglement and associated prediction of

stretching are achieved through application of the Thur-

ston–Nielsen Classification Theorem, which in general

classifies the topological complexity of homeomorphisms

of punctured surfaces. While a rigorous lower bound on

topological entropy is not available in the absence of

exactly periodic braiding structures, our approach finds

the “topological skeleton” that can be used to get an

approximate rate of stretching.

I. INTRODUCTION

Qualitative and quantitative analyses of mixing in phase

space are often key components of understanding the dynam-

ics of a complex system. Our focus is on systems exhibiting

deterministic behavior, although our discussion is applicable

to stochastic systems for which the full dynamics can be

considered a deterministic “template” on which an added

stochastic behavior plays a secondary role. From the per-

spective of dynamical systems theory, the presence of mix-

ing in phase space is synonymous with the existence of

chaotic trajectories. There has been a significant amount of

interest in understanding how such chaotic behavior arises,

how to detect it, and how to design for or against it.1,2

The field of fluid mechanics has been a particularly pro-

ductive proving ground for understanding mixing in dynami-

cal systems. Consider, for example, the development3 and

growth4 of the field of chaotic advection, the phenomenon in

which advective transport by a regular velocity field leads to

chaotic particle trajectories. Given an incompressible fluid

moving with a velocity field V ¼ ðu; v;wÞ, one can write the

advection equations of motion for a passive fluid particle at

position xðtÞ as

dx

dt
¼ Vðx; tÞ: (1)

Non-autonomous two-dimensional systems or autonomous

three-dimensional systems are capable of generating chaotic

particle trajectories even if the underlying velocity field is

not chaotic or stochastic. In the dynamical systems vernacu-

lar, a mixing system is one that generates chaotic trajecto-

ries. From the perspective of fluid mechanics, this advective

transport is typically referred to as “stirring,” with the term

“mixing” usually reserved for homogenization due to the

combined effect of stirring and molecular diffusion. It is usu-

ally assumed, and often correctly, so that dynamical systems

mixing are synonymous with fluid mixing, and here we will

use the terms interchangeably. This approach to understand-

ing and predicting mixing has played an important role in

the engineering analysis of laminar flows, and it has been
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particularly valuable in the development of microfluidics.5,6

From the perspective of dynamical systems theory, this con-

nection between regular flows and chaotic trajectories was

previously known.7 However, it was not until the concept of

chaotic advection took root that the general scientific com-

munity fully realized the ubiquitous existence of relatively

simple flows capable of generating chaotic transport.

In a typical analysis of chaotic advection, one requires a

detailed spatio-temporal characterization of transport through-

out the flow domain in order to quantify mixing from the per-

spective of ergodic theory using metric quantities. Poincar�e
sections and Lyapunov exponents, and the closely related

measure-theoretic or Kolmogorov-Sinai (KS) entropy,8,9 are

generated by accurately tracking individual particles for very

long times.2 Quantifications of transport using lobe dynamics

involve tracking exponentially stretched interfaces forward

and backward in time in order to determine stable and unsta-

ble manifolds and the area (or volume) that they encom-

pass.10,11 Lagrangian coherent structures (LCS), which can be

viewed as generalizations of manifolds, are determined using

the finite-time Lyapunov exponent field.12,13 Each of these

methods provides important information about chaos in a

domain, but they give information only in those regions of the

domain where detailed metric calculations can be made, and

having incomplete information often prevents analysis.

In an alternative approach, mixing is quantified using

topological, as opposed to metric, characteristics of the flow.

Applications of topology to analyzing fluid motion date back

to Helmholtz,14,15 but the topological approach we employ

here is a modern development.16 The core idea in this

approach is to use the topological classification of a few

entangled periodic orbits to place a lower bound on the expo-

nential growth rate of material surfaces under iteration of the

flow. The connection between topology and exponential

growth rates originated with Adler, Konheim, and McAn-

drew’s definition of topological entropy, which we will call

h, as an analogue of the KS entropy.17 There is an enormous

body of work concerning the dynamical meaning of h and

ways to compute and estimate it. Here, we focus our atten-

tion on the main ideas and results that are relevant to the

problem at hand.

The first key idea is the relation between h and the expo-

nential growth rates of various quantities induced by itera-

tion of a function. Perhaps, the strongest such result is the

proof by Yomdin18 of Shub’s entropy conjecture that h is

bounded below by the log of the spectral radius of the

induced action on homology. That is, the algebraic represen-

tation of the system topology (i.e., homology) produces a

matrix representation of the iterated flow map (i.e., the

action), and the log of the leading eigenvalue gives a lower

bound on h for that flow. Newhouse extended this result

to the scenario of interest here by showing that for C1-dif-

feomorphisms (i.e., infinitely differentiable, and invertible

mappings) of surfaces, which includes all singularity-free

deterministic fluid flows, h is equal to the maximal growth

rate of smooth arcs under the action of the diffeomorphism.

He also showed the important result that h varies continu-

ously under infinitely smooth perturbations of the action, i.e.,

in C1-families.19–21

Also of importance here is the related (and earlier) result

of Bowen22 that h is bounded below by the growth rate of

the induced action on the fundamental group, which consists

of sets of equivalence classes of loops under homotopy, i.e.,

each set in the fundamental group consists of a class of loops

that are equivalent under continuous deformation. That is,

Bowen proved that the growth rate of “representative loops”

gives a lower bound on h. That paper also contains what later

became a key observation, namely, that by puncturing a sur-

face at a periodic orbit and studying the action restricted to

the punctured surface, one could get better lower bounds for

the entropy using strictly algebraic means. Bowen22 makes

the prescient remark that Thurston’s classification of surface

isotopy classes can be used to good effect on the punctured

surface.

We thus come to the second key mathematical tool used

here: Thurston’s theorem on a surface punctured at a periodic

orbit.23–26 Again, this concept has been the subject of a large

body of work, which we consider here to only a limited

extent; See Boyland27 for an excellent survey and additional

references. The Thurston–Nielsen classification theorem

(referred to hereafter as TNCT) characterizes the isotopy

classes of continuous, one-to-one, invertible, orientable maps,

or homeomorphisms, of punctured surfaces. Since, we are

discussing the application of this work in the context of fluid

flows, we will further restrict our discussion to differentiable

maps of two-dimensional manifolds, i.e., to surface diffeo-

morphisms. The topological complexity in the system is

introduced through the relative motions of the punctures

induced by the flow map. The surfaces under consideration

are k-punctured disks, Dk, in which the k punctures can corre-

spond to physical obstructions,16,28 periodic orbits,29,30 or

other stirrer-like objects that entangle the surrounding fluid,

such as point vortices.31 Since it is topology being considered

here, the specific shapes of the disk and the punctures do not

matter. In dynamical systems applications, these surfaces are

typically two-dimensional physical space and the maps act in

time, but under certain conditions maps can also be con-

structed in three-dimensional space.32

An isotopy class consists of all the topologically equiva-

lent diffeomorphisms that can be mapped to each other

through a “fixed stirrer” diffeomorphism in which the punctu-

res are fixed relative to each other during the mapping.

According to the TNCT, each isotopy class contains a repre-

sentative homeomorphism U, the Thurston–Nielsen (TN) rep-
resentative, that is one of three possible types: finite order
(FO), pseudo-Anosov (PA), or reducible. If U is FO, then its

nth iterate is the identity map in which the punctures are held

fixed and all points in Dk map to themselves, so no net

stretching occurs. All fixed stirrer diffeomorphisms are iso-

topic to the identity. If U is PA, then it stretches and contracts

everywhere on the surface by factors kTN > 1 and k�1
TN. Itera-

tion of a PA U results in exponential stretching of smooth

arcs with corresponding topological entropy hTN ¼ ln kTN.

There are several methods by which one can compute kTN;

for our analysis, we make use of the open-source code written

by Hall,33 which implements the Bestvina-Handel algo-

rithm.34 A necessary (but not sufficient) condition that an iso-

topy class contain a PA U is the existence of at least three
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punctures in the surface. Finally, for the reducible case, U
leaves a family of curves invariant, and these curves delimit

regions in which U is either FO or PA. Each isotopy class

contains only one TN representative, so that the isotopy class

itself can be referred to as being of FO, PA, or reducible type.

We focus here on cases for which the isotopy class is of PA

type.

The power of Thurston’s theorem in the analysis of dy-

namical systems comes from the connection between the TN

representative U and the complexity of a flow f within the

same isotopy class. By Handel’s isotopy stability theorem,35

if U is PA and f is isotopic to U, then there exists a compact,

f-invariant set Y � Dk and a continuous, onto mapping a :
Y ! Dk such that af ¼ U a. Thus, the complex dynamics of

a PA U are preserved by f in (some subset of) the domain.

The map a may be many-to-one, so that the dynamics of f
may be more complicated than those of U, but they are never

less complicated. Therefore, the existence of a PA U places a

lower bound on the complexity of any flow map f from the

same isotopy class. Non-trivial material lines, such as curves

that encircle two punctures or that connect punctures with

each other and/or the disk boundary, will grow exponentially

in length under n iterates of f, according to L � kn
f , with

associated topological entropy hf ¼ ln kf , and the TNCT

establishes that kf � kTN (and hf � hTN). Unfortunately,

there are no restrictions on the size of Y, so the complicated

dynamics may exist on a subset with Lebesgue measure

zero. However, the complexity associated with the exponen-

tial stretching and folding of material lines cannot be

removed by continuous perturbation of the domain that

maintains the orbit topology. This topological chaos is thus

“built in” to the system due to the orbit topology of only a fi-

nite number of punctures.

The initial application of the TNCT to fluid mixing

examined a system of three cylindrical rods moving slowly

on periodic trajectories through a viscous fluid in a cylindri-

cal domain.16 The three rods exchanged positions pair-wise

on circular trajectories. Two stirring protocols were consid-

ered: one motion of FO type and one of PA type. In the FO

protocol, all motions involved clockwise interchanges. In the

PA protocol, the exchanges alternated between clockwise

and counterclockwise, producing figure-eight rod trajecto-

ries. Although these two motions were energetically equiva-

lent (in the Stokes’ flow limit), the mixing produced by the

PA motion was clearly better than that produced by the FO

motion. Computational analysis of this flow system28 con-

firmed that the lower bound predicted by the TNCT gives an

excellent representation of the actual stretching rate caused

by the PA motion. Furthermore, a substantial subset of the

domain exhibited exponential stretching and folding, demon-

strating that the dynamics of the TN representative can

indeed be relevant to the analysis of a realistic fluid system.

Artin’s braid group36 provides a useful framework for

representing the trajectories of punctures under the action of

the flow. Each of the puncture trajectories is identified with a

strand in a “physical braid.” The temporal reordering of

these strands dictates the topological structure of the physical

braid. The generator ri represents a clockwise exchange of

strands i and iþ 1, and r�i (our shorthand notation for r�1
i )

represents a counterclockwise exchange. A braid can be

identified via a “braid word” of generator “letters,” which we

read from right to left as time progresses. For example, the

braid on three strands that we discuss in Sec. II is represented

by the braid word r�1r2. Since the braid word, or the

“mathematical braid,” encodes only the topology of the braid

crossings, each isotopy class on a punctured orientable two-

dimensional surface is associated with one such braid. Thus,

we can refer to a braid as being of FO, PA, or reducible type.

A brief overview of the connection between braid theory and

topological chaos is given in Sec. II A, and a general intro-

duction to braid theory can be found in examples Refs. 37

and 38.

From the mathematical point of view it is clear that the

topological analysis of a fluid system can be based on the tra-

jectories of periodic orbits, even when these orbits are not

associated directly with stirring rods. Such orbits can still

appear to be “stirring” the surrounding fluid, and they have

been thus been termed ghost rods.29 In many cases, considera-

tion of ghost rods is essential to understanding the presence of

topological chaos in a system. For example, a single physical

rod moving on an epicyclic trajectory in a two-dimensional

domain29 produces a braid on one strand, which is in an iso-

topy class of FO type. However, it is clear from direct obser-

vation that stirring a Stokes’ flow with this motion produces

significant stretching and folding of material lines. This com-

plexity can be explained using the TNCT by noting that there

are two important fixed points, or ghost rods, in the domain

about which the moving rod winds. The braid on three strands

corresponding to the space-time trajectories of the two fixed

ghost rods and the moving rod is in an isotopy class of PA-

type, and thus predicts the presence of chaos in the domain.

The trajectories of moving ghost rods can also produce topo-

logical chaos, even when there are no physical rods in the sys-

tem, such as in the lid-driven cavity flow discussed in Sec. II

that forms the basis for our present discussion.

Identifying braiding of ghost rods is an important step in

applying the concepts of topological chaos to a broad range

of fluid systems with no physical stirring rods. However, find-

ing appropriate periodic orbits is a challenging task. One way

of getting around this difficulty is to calculate the long-time

braids generated by random collections of initial points.39,40

The topological entropy is estimated from these computed

braid generators. This approach removes the need to identify

periodic orbits in the flow but, since the braids being consid-

ered here are aperiodic, the TNCT cannot be invoked in the

prediction of a lower bound. Instead, relatively long-time cal-

culations are needed. It has also been found that a random

selection of trajectories in the flow typically leads to a poor

estimate of overall system behavior,39 so a large statistical

representation is required in this approach.

We have recently considered a different approach to

examining topological chaos in flows without physical rods

and with no discernible low-order periodic orbits on which

to base a topological analysis.41 In this view, the domain is

divided into distinct subsets such that there is a very small

probability that typical trajectories beginning in each subset

will leave this subset in a short time. These almost-invariant
sets (AISs)42 can be determined from the eigenspectrum of

043135-3 Grover et al. Chaos 22, 043135 (2012)



the discretized Perron-Frobenius transfer operator via a set-

oriented approach, which we review in Sec. III A. In some

cases, disconnected components of an AIS correspond to

almost-periodic regions, or what has been referred to as

almost-cyclic sets (ACSs).42 Since, the ACSs consist of tra-

jectories that move together for a relatively long time, the

region of the domain corresponding to an ACS can be identi-

fied as a (leaky) ghost rod, and a representative trajectory

from each ACS can be used to reveal the underlying braid

structure. Furthermore, since these ACSs contain almost-

periodic orbits, the aperiodic braid they generate can be

approximated by periodic continuation to a time-periodic

braid. This time-periodic braid can be characterized using

the TNCT, and an estimate of the topological entropy can

hence be determined. The topological entropy given by the

TNCT is no longer a strict lower bound, since the time-

periodic braid is only an approximation of the true dynamical

structure. However, it was demonstrated41 that this estimate

can give a good representation of the flow.

Our earlier work41 considers creeping flow in a lid-

driven cavity and starts with parameters for which there exist

three periodic orbits, which we refer to as the reference case.

For small perturbations from the reference case, considera-

tion of ACS braiding gives a clear explanation for the topo-

logical entropy in this flow. However, for certain larger

perturbations from the reference case, we observe a drop in

the numerically computed topological entropy below the

lower bound predicted for the reference case. This paper

extends the previous analysis to consider these larger pertur-

bations, which leads us to our main observation. As we vary

away from the reference case, the AIS/ACS structure appears

to bifurcate, leading to a sequence of topologically distinct

braids with differing numbers of strands. The motion in Dk

for each of these new braids on k strands belongs to an

isotopy class of PA type, and the corresponding value of kTN

gives a correct lower bound estimate on the topological en-

tropy for the corresponding parameter value. Hence, we give

further evidence that these almost-cyclic sets are natural

objects on which to base an application of the TNCT. We

assert that this work marks an important step in making the

ghost rod methodology applicable to realistic fluid flows

with arbitrary time-dependence when low-order periodic,

braiding orbits are difficult to identify or do not exist. We

also conjecture that this generalization is applicable to a

wide variety of dynamical systems, not just fluid systems.

II. BRAIDING OF PERIODIC ORBITS IN A LID-DRIVEN
CAVITY FLOW

A. The reference case

The fluid system model that we analyze in this work is a

simplified version of a system43 that allows for exact solu-

tions. This relatively simple fluid system has an easily

visualized piecewise-steady velocity field, but due to the

imposed time dependence it exhibits complicated dynamics.

We consider a two-dimensional lid-driven cavity flow in

an infinitely wide cavity with height 2b. Under the assump-

tion of Stokes’ flow, the stream function wðx; yÞ defined by

Vðx; tÞ ¼ @w
@y

;� @w
@x

; 0

� �
; (2)

satisfies the two-dimensional biharmonic equation

r2r2wðx; yÞ ¼ 0: (3)

We assume that the flow is driven by prescribed tangential

velocities on the top and bottom boundaries at y ¼ 6b. The

piecewise steady tangential velocities we take to be

uðx; bÞ ¼ �uðx;�bÞ ¼
U1 sin

px

a

� �
þ U2 sin

2px

a

� �
when nsf � t < ðnþ 1Þsf =2

�U1 sin
px

a

� �
þ U2 sin

2px

a

� �
when ðnþ 1Þsf =2 � t < ðnþ 1Þsf

;

8>><
>>:

(4)

for integer n, where sf is the time period of the system. The solution to Eq. (3) subject to the boundary conditions in Eq. (4) is

wðx; y; tÞ ¼
U1C1f1ðyÞ sin

px

a

� �
þ U2C2f2ðyÞ sin

2px

a

� �
nsf � t < ðnþ 1Þsf =2

�U1C1f1ðyÞ sin
px

a

� �
þ U2C2f2ðyÞ sin

2px

a

� �
ðnþ 1Þsf=2 � t < ðnþ 1Þsf ;

8>><
>>:

(5a)

where

fkðyÞ ¼
2py

a
cosh

kpb

a

� �
sinh

kpy

a

� �

� 2pb

a
sinh

kpb

a

� �
cosh

kpy

a

� �
; (5b)

and

Ck ¼
a2

2kp2b

a

2kpb
sinh

2kpb

a

� �
þ 1

� ��1

: (5c)

The spatial symmetry in the boundary conditions produces a

vertical streamline in the flow at x¼ n a, and without any
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loss of generality we can restrict our attention to the bounded

two-dimensional rectangular domain

D ¼ fðx; yÞ : 0 � x � a;�b � y � bg: (6)

By the time periodicity of the boundary conditions, the flow

pattern is reflected about the line x¼ a/2 every sf =2 units of

time.

In Sec. III, we will often refer to the one-parameter fam-

ily of stroboscopic global Poincar�e maps

/
tþsf

t : D! D; (7)

where /tþsf

t is the solution diffeomorphism (i.e., flow map)

from time t to tþ sf ; that is, /
tþsf

t represents the motion of

all fluid particles over one period of the velocity field starting

at time t 2 ½0; sf �. Here, we treat the initial time t as a param-

eter, which we can also think of as an initial phase (belong-

ing to S1).

We will focus on analyzing behavior in a domain with

aspect ratio a/(2b)¼ 3, such as is shown in Figure 1. The

structure of the flow for the reference case depends on the

value of the parameters a, U1; U2, and sf . The ratio U2=U1

dictates the streamline pattern, and the relationship between

U1 (say) and sf determines how much time a particle spends

traveling along a streamline before the flow is “blinked” to

another streamline pattern. For a domain aspect ratio of

a=ð2bÞ ¼ 3, we have the following properties when we take

a¼ 6, U2=U1 � 0:841; U1 � 0:1055, and sf ¼ 1:

(1) There exist three points xL; xC, and xR, such that xC is at

the center of the domain (x,y)¼ (a/2,0), and xL and xR

are located symmetrically about x¼ a/2 along y¼ 0.

(2) For 0 � t < sf=2; xL is a fixed point, and xC and xR

exchange their positions while moving clockwise along

their shared streamline.

(3) Since the flow pattern is reflected about x¼ a/2 at

t ¼ sf=2, xR is a fixed point for sf=2 � t < sf , and xC

and xL exchange their positions during this time period

while moving counterclockwise.

After three periods of the flow, the points xL; xC, and xR

return to their original positions. We refer to this choice of

parameters as the reference case, for which the trajectories

of these three period-3 points form the (2þ 1)-dimensional

space-time braid on three strands, r�1r2, shown in Figure

1(c). We determine this braid structure by projecting the tra-

jectory crossings onto the x-axis (which gives the “physical

braid representation”) and follow the braid group labeling

convention discussed in Sec. I.

In the reference case, the determination of kTN can be

described via the Burau representation.44 In this representation,

a braid on N strands is identified with a ðN � 1Þ 	 ðN � 1Þ
matrix. Each of the braid generators has a matrix representa-

tion, and the braid matrix is given by the product of the gen-

erator matrices. The entries of Burau matrices are Laurent

polynomials in some variable t, which is taken to be –1 here.

The Burau matrices can be heuristically understood as Mar-

kov matrices that track the evolution of material lines con-

necting the points. For instance, in Figure 2, the generator r2

stretches the line I to approximately look like the sum of

lines I and II while leaving the line II intact, giving the rela-

tions I’¼Iþ II and II’¼II. The Burau matrix corresponding

to r2 is thus

M2 ¼
1 0

1 1

� �
: (8)

Similarly, for r�1 the Burau matrix is

M�1 ¼
1 1

0 1

� �
: (9)

The Burau matrix for the braid r�1r2 is then M ¼ M�1 M2.

According to the TNCT, when N¼ 3 the stretching rate pro-

duced by the TN representative U is the same as in the linear

map represented by the Burau matrix. That is, for the refer-

ence case kTN is given by the dominant eigenvalue of M, so

that kTN ¼ ð3þ
ffiffiffi
5
p
Þ=2. In order to distinguish between the

stretching produced by topologically distinct flows with N
punctures, we will refer to the entropy in this reference case

as hTN;3 ¼ logðkTNÞ � 0:962.

For N > 3, the dominant eigenvalue of the Burau matrix

only provides a lower bound for kTN, and other methods

must be used instead, such as the train-tracks algorithm33,34

or the encoding of loops.40,45

The actual topological entropy produced by the flow

map, hf , can be determined by computing the asymptotic

stretching rate of topologically non-trivial lines,46 such as

lines that join a periodic point with the outer boundary. We

estimate hf by following two orthogonal lines that are ini-

tially along the lines x¼ a/2 and y¼ 0, respectively, as they

are stretched over 6–10 periods of the flow. For numerical

reasons these lines are not extended all the way to the bound-

ary, but instead are terminated a distance � < a=200 from the

boundary. For this reference case, these computations give

hf � 0:97, which is reasonably well represented by the lower

bound, hTN;3.

FIG. 1. (a–b) Representative streamlines given by Eq. (5) for the reference case with a=ð2bÞ ¼ 3 and U2=U1 � 0:841 for (a) 0 � t < sf =2 and (b)

sf =2 � t < sf . Points marked by solid circles are stagnation points in the flow. If a¼ 6 and U1 � 0:1055, the fluid particles starting at the open circles have

exchanged positions after Dt ¼ sf =2 ¼ 1=2. (c) The braid diagram generated by the periodic orbit trajectories in the reference case.
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B. Perturbation of the reference case

For the analysis discussed here, we keep the ratio U2=U1

fixed while changing the value of sf away from unity. This

perturbation increases (for sf > 1) or decreases (for sf < 1)

the amount of rotation in the domain before switching, which

has a direct effect on the stretching of material lines. The

computed topological entropy for the flow is shown in Figure

3 for a range of sf values. The entropy varies smoothly, as

expected from the results of Newhouse.19 The overall trend

in hf is logical, as increasing sf increases the energy added

to the flow during each period. However, the rate of increase

in hf is not uniform, which we explain by considering the to-

pology of the flow map.

In the reference case with sf ¼ 1, the three period-3

points discussed in Sec. II are parabolic points, which are

structurally unstable. Under small perturbations for sf > 1,

each parabolic point bifurcates into a pair of periodic saddles

and periodic centers, as illustrated in Figure 4. The stable

and unstable manifolds that pass through the saddles (i.e.,

the hyperbolic points) form barriers to transport, so that fluid

within these regions moves together for a number of periods.

These “ghost rod” structures are “leaky,” in that there is a

small amount of transport across their boundaries due to the

transverse intersections of the stable and unstable manifolds,

form lobes. The amount of leakage per period is the amount

of phase space enclosed by the lobe.11 In Figures 4(b) and

4(c), we show the manifold structure for the center “leaky

ghost rod” for sf ¼ 1:01 (panel b, where the transversal

intersection is present, but not evident) and sf ¼ 1:04 (panel

c). The four period-3 points (two hyperbolic and two elliptic)

that form the structure of a single “leaky ghost rod” produce

a braid on 12 strands. The four strands corresponding to each

individual ghost rod structure simply twist around each

other, and as a result the braid on 12 strands is reducible to a

braid on three strands. This mathematical braid on three

strands is identical to the mathematical braid from the refer-

ence case. Thus, the value of hTN � 0:962 predicted by the

TNCT for the reference case remains the lower bound on hf

for the perturbed flow we have considered here with sf > 1.

Clearly, there is additional stretching in these cases that is

not captured by the TN representative, which suggests the

presence of additional ghost rods. We do not explore this

increased complexity here.

When the value of sf is decreased below 1, the parabolic

points disappear and no low-order periodic points are found

in the flow. We have searched numerically for periodic orbits

by iteratively mapping regions of the flow forward and back-

ward in time. For example, the Poincar�e section shown in

Figure 4(d) for sf � 0:99 appears to be completely chaotic.

FIG. 2. The stretching of material lines

under the action of the two generators in

the reference case: (a) the action of r2,

(b) the action of r�1, and (c) the actual

stretching of a material line that is ini-

tially along the x axis in the reference

case.

FIG. 3. Variation of the actual topological entropy of the fluid, hf , as a func-

tion of sf . Also shown is the lower bound hTN;3 for r�1r2, the braid on three

strands corresponding to the reference point with sf ¼ 1.

FIG. 4. (a) Poincar�e section from the map /
sf

0 for sf ¼ 1:01. Note the “leaky

ghost rods” generated by perturbation of the parabolic periodic points from

the reference case. (b,c) Close-ups of the domain near (x, y)¼ (a/2,0), which

show the structure of the center “ghost rod” consisting of two saddle and

two centers for (b) sf ¼ 1:01 and (c) sf ¼ 1:04. In (b) the stable and unstable

manifolds nearly overlap, while in (c) they clearly intersect transversally,

leading to significant “leaking” in and out of the region bounded by them.

(d) Poincar�e section from the map /
sf

0 for sf � 0:99. The phase space

appears featureless and is devoid of low-order periodic orbits that form non-

trivial braids.
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Thus, there are no apparent periodic “ghost rods” available

to form a braid and predict a lower bound on the topological

entropy of the flow. However, Figure 3 shows that hTN;3 is a

lower bound for hf for approximately a 7% perturbation in

sf .
41 In the discussion below, we consider the validity of the

topological entropy predicted by TNCT even if we cannot

identify exactly periodic orbits that produce the expected

braiding motion. We accomplish this by using a transfer op-

erator approach to reveal phase space structures that braid

non-trivially and persist under perturbations in the sf values.

III. ALMOST-INVARIANT AND ALMOST-CYCLIC SETS

A. Computation of almost-invariant and
almost-cyclic sets

We use a set-oriented method to compute AISs for the lid-

driven cavity flow system. Our aim is to partition the phase

space into a given number (say k) of sets fA1;A2; ::::;Akg such

that the phase space transport between these sets is very

unlikely. We also want these sets to be important statistically

with respect to the long term dynamics of the system. Follow-

ing,47 this can be formulated as follows. We define the invari-

ance of a set Ai as

qlðAiÞ ¼
lðAi \ f�1ðAiÞÞ

lðAiÞ
: (10)

This quantity represents the probability (according to an

invariant measure l) of a point in set Ai being mapped back

to Ai over one iteration of a map f ¼ /
tþsf

t . We want to max-

imize the quantity
Pk

i¼1 qlðAiÞ, with the constraint that

lðAiÞ is not too small compared to 1. Without loss of gener-

ality, we can restrict to partitions fA1;A2; ::::;Akg such

that each member Aj of is a union of sets in fB1;B2;…;Bng,
i.e., each Aj ¼ [i2IBi, for some set of box indices I

 f1; 2; ::::; ng. Using the Ulam-Galerkin method,48–50 we

define the transition matrix Pt;sf
with entries

pij ¼
m f�1ðBiÞ \ Bj

	 

mðBjÞ

; (11)

where B1;…;Bn are the boxes in the covering and m is the

normalized Lebesgue measure, which coincides with the phase

space volume measure (see Figure 5). In our computations, all

boxes will have the same measure, i.e., mðBiÞ ¼ mðBjÞ for all

i; j.
This stochastic matrix Pt;sf

is a discretized approxima-

tion of the Perron-Frobenius operator of the map f ¼ /tþsf

t

that may be viewed as a transition matrix of an n-state Mar-

kov chain.51 The first left eigenvector v1 of Pt;sf
, correspond-

ing to an eigenvalue k1 ¼ 1, is the invariant distribution of

the system, i.e., the discretized version of the invariant mea-

sure l.42

Following,52 we form a new reversible matrix Rt;sf
,

which is a stochastic matrix having only real eigenvalues53

that satisfies important properties related to almost-invari-

ance.52 First, we define the reverse time transition matrix

P̂t;sf
, whose elements are given by

p̂ij ¼
v1;j

v1;i
pji:

Here, by v1;i we mean the ith component of the vector v1,

i.e., the value of v1 assigned to the box Bi. (For additional

accuracy, one can directly calculate P̂t;sf
as Pt;�sf

.47) The

reversible matrix Rt;sf
is

Rt;sf
¼ 1

2
ðPt;sf

þ P̂t;sf
Þ:

We use the left eigenvectors vk, corresponding to eigenval-

ues kk of Rt;sf
, to detect AISs. If an AIS (over one period-sf

map, /
tþsf

t ) can be further decomposed into period- N sub-

sets, then those subsets are ACSs of the flow of period Nsf ,

and are hence AISs under the map ð/tþsf

t ÞN ¼ /
tþNsf

t .

For this system, we approximate the dynamics on D by

covering it with a collection of n ¼ 19 200 equally sized

square boxes (aspect ratio 1), i.e., 240 boxes in the x direc-

tion times 80 boxes in the y direction. We take 100 uniformly

distributed points in each box (a 10	10 grid), perform a for-

ward iteration for each point for one period of the flow sf ,

and monitor the boxes reached by the iteration. The transi-

tion probability from a source box to a destination box is

measured by the ratio of the number of points from the

source box that reach the destination box in one iteration

step.

All subsequent computations were verified to depend

weakly on the number of points per box (for values greater

than 100) by comparing the results with those obtained when

using 2025 points per box (a 45 	 45 grid) instead of 100,

with the difference in the various eigenvalues for the two

cases being less than 0:1% for the range of parameters con-

sidered here. Similarly, a finer discretization of phase space,

obtained by using 30 000 boxes (300	 100 boxes) was used

to verify the convergence of eigenvalues. It was also verified

that finer discretization does not change the order of the

eigenvectors.

The system being considered here is a canonical Hamil-

tonian system, and thus the invariant measure, l, is the same

as volume measure, m. As our boxes are of equal sizes, the

entries of v1 should be approximately equal. We note that the

invariant measure is not unique in our case, since a point

FIG. 5. Computation of the transition matrix Pt;sf
by a set-oriented method.

The phase space is divided into boxes, fB1;B2;…;Bng. Box Bj at the final

time tþ sf is mapped (backwards) to f�1ðBjÞ at the initial time t, where

f ¼ /
tþsf

t . The value of the entry pij is the fraction of box Bi that is mapped

into box Bj by f.
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measure at the periodic points (if any) will also be invariant.

However, due to the discretization procedure, we recover the

unique absolutely continuous measure.

We use the sign structure of the vk, k � 2, to detect

AISs.47,54 For instance, for a given scalar value c (chosen as

described below), the set given by the union of regions in

phase space such that the component of v2 is greater than c
corresponds to one AIS, while the union of regions such that

the component of v2 is less than c corresponds to its comple-

ment, another AIS. More precisely, the two AISs are defined

as follows. Let I1 ¼ fi : v2;i > c; 1 � i � ng and I2 ¼ fi : v2;i

< c; 1 � i � ng, then A1 ¼ [i2I1
Bi and A2 ¼ [i2I2

Bi. The

value of c is chosen so as to maximize minðqlðA1Þ; qlðA2ÞÞ.
For the majority of cases, we will take c ¼ 0, but to maintain

consistency across figures, for non-zero c we plot ðv2;i � cÞ
values while identifying the AISs, so that the zero contour

on the figure always refers to boundaries delineating the

AISs.

It has been shown47 that if qlðAmÞ � qlðAnÞ, then

lðAmÞ � lðAnÞ. It has also been shown52 that for any Am,

such that lðAmÞ < 1
2
, there exist the following bounds on

transport

qlðAmÞ 2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k2Þ

p
;
1

2
ð1þ k2Þ

� �
: (12)

Before moving to an investigation with sf < 1, it is in-

structive to study the transport in our system for sf > 1,

since we can compare the set-oriented method results with

those obtained from lobe dynamics. In Figure 6, we show the

stable and unstable manifolds of the period-3 saddle points

for the case sf � 1:06.

On the right, we show the AIS decomposition into two

sets (red and blue) near the point ðx; yÞ ¼ ð3; 0Þ. We are

interested in finding the transport out of the red region under

f 3, where f ¼ /tþsf

t . For the transition matrix for f,
k2 ¼ 0:9967, and thus for f 3 we have k2 ¼ ð0:9967Þ3
¼ 0:990. Hence the lower and upper bounds on invariance

(12) tell us that, under f 3, qlðA1Þ 2 ð0:857; 0:995Þ, where A1

and A2 are defined as before, and lðA1Þ < 1
2
. Lobe dynamics

theory10,55–58 tells us that the amount of phase space trans-

ported out of a separatrix-bounded region (boundaries given

by stable and unstable manifolds from saddle to primary

intersection points) is given by the size of the lobe. Using

box counting, we find that one lobe consists of approxi-

mately 56 boxes. There are 2 lobes, one on each side, and

hence the approximate transport out of the separatrix-

bounded region under f 3 equals 112 boxes. Dividing this

area by the size of the separatrix-bounded region (¼1158

boxes), we find that the invariance predicted by lobe dynam-

ics is ¼1� 112=1158 � 0:903, well within the bounds

provided by k2.

In Figure 7, we show the AISs based on v2 for sf ¼ 0:99.

The collection of the three prominent regions corresponding

to the set A1 (i.e., the union of regions where v2 > 0) forms

an AIS. This almost invariant set consists of three ACS com-

ponents, which form a three-stranded braid, as discussed

next. The eigenvector that has N ACS components, and hence

forms an N-stranded braid, is referred to as an N-stranded

eigenvector in our discussion. Each (positive) lower eigen-

value has an associated eigenvector whose zero contour

isolates other AIS, which are more “leaky,” i.e., the lower the

eigenvalue, the lower is the invariance of the associated AIS.

For reference, we show the next four eigenvectors in Figure

8, which tend to reveal smaller scale structures.

B. Braiding of almost-cyclic sets

Recall from Sec. II B that while the three period-3 fixed

points cease to exist for sf < 1 (see Figure 4(d)), we can see

from Figure 7 that the three ACS, each of period-3, still exist

in the same region in phase space for sf � 0:99. In what fol-

lows, we examine the trajectories of these sets in space-time

in order to determine if the corresponding braid is of PA

type. We use sf � 0:975 for our analysis in this case. To con-

struct the physical braid for the ACS trajectories, we form a

discretized family of time-shifted versions of the transfer

operator Pti;sf
for ti ¼ ði� 1Þsf=k, where i ¼ 1; 2;…; k. That

is, we are considering transfer operators corresponding to a

family of period-sf flow maps, Eq. (7), i.e.

FIG. 6. (Left) The stable (magenta) and unstable (green) manifolds of the period-3 saddle points for sf � 1:06. (Right) The manifolds superimposed with a

two-set decomposition of the phase space, shown near the point ðx; yÞ ¼ ð3; 0Þ.

FIG. 7. AIS structure for sf � 0:99 based on v2. The zero contour (black) is

the boundary between the two almost invariant sets. Compare with the

Poincar�e section for the same sf shown in Figure 4(d).
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/
tiþsf

ti : D! D;

of different initial phases ti 2 ½0; sf Þ.
For each of the corresponding Rti;sf

, we find the almost-

invariant structure based on the second eigenvector as men-

tioned previously, which reveals the three period-3 ACS for

sf � 0:975. We take k ¼ 20, and in Figures 9(a)–9(f) we

show these structures for the first half-period of the flow.

This physical braid for this half-period of motion corre-

sponds to the mathematical braid generator r2. Similarly, for

the second half of the time-period of the flow (not shown),

the stirring protocol is the one given by the braid generator

r�1. Hence, the physical braid formed by the ACS trajecto-

ries for sf � 0:975 is represented by the mathematical braid

r�1r2, which is identical to the mathematical braid formed

by periodic points for sf ¼ 1 or by elliptical islands for

sf � 1. Three periods of the flow (one period of the braid)

are shown in (2þ 1)-dimensional space-time in Figure 9(g),

which can be seen to be isotopic to the braid shown in

Figure 1(c). Hence the lower bound on topological entropy is

again given by hTN � 0:962, and we can see from Figure 3

that this lower bound is still valid.

C. Persistence and bifurcation of almost-invariant
sets

As the parameter sf is varied, one expects to see contin-

uous variation in the eigenvalues of Rt;sf
. Since the eigenval-

ues of Rt;sf
are independent of the phase t, we can consider

the initial phase case, R0;sf
. In Figure 10, we plot the first few

eigenvalues of R0;sf
in dependence on the parameter sf , simi-

lar to.59

Although several “crossings” of eigenvalue curves seem

visible, care must be taken to determine if these are genuine

crossings or simply close approaches, as eigenvalues generi-

cally “avoid” crossings if there is no symmetry present.60

Our concern is not necessarily to resolve families of eigen-

value curves, i.e., to determine whether genuine eigenvalue

curve crossings occur. Instead, we are interested in determin-

ing families of eigenvectors by the method of continuation.

In particular, we want to determine the family of eigenvec-

tors that generate a consistent trend of PA braiding for

sf � 1.

We find that such a structure can be found by continuity

of the branch of eigenvectors of R0;sf
that are connected to v2

of R0;1, since v2 of R0;1 captures the braiding structure cor-

rectly for the reference case. The continuation of this three-

strand eigenvector for sf < 1 is carried out as follows.

First, we discretize the parameter space 0:8 < sf � 1

into intervals of size Dsf � 0:0021. Then we calculate the

reversibilized Perron-Frobenius operator R0;sf
for each of

those parameter values. We compute the top 10 non-trivial

eigenvectors (normalized to unity) ðvsf

2 ; ::; v
sf

11Þ for each sf .

Our aim is to identify an eigenvector for each sf that can

be used to obtain an AIS whose corresponding ACSs give a

braiding structure similar to the reference case. We denote

this eigenvector by v
sf
� . By definition, for sf ¼ 1 the eigen-

vector that gives the relevant braiding structure is the second

eigenvector, thus v1
� ¼ v1

2. We calculate the inner product of

v1
� with each of the 10 eigenvectors of the next lowest sf

value, i.e., sf ¼ 1� Dsf , and we compute the absolute value

of the inner product, bj ¼ jhv1
�; v

1�Dsf

j ij, for j ¼ 2; :::; 11. We

select the eigenvector v
1�Dsf

j that gives the highest value of

bj, and refer to this eigenvector as v
1�Dsf
� . We denote this

value as bsf
, i.e., bsf

¼ jhvsf
� ; v

sf�Dsf
� ij. Similarly, this proce-

dure is carried out for sf ¼ 1� 2Dsf by taking the norm of

the inner products with v
1�Dsf
� , and so on.

Using this procedure, we make some observations based

on Figure 10. The AIS structure consisting of 3 ACSs seems

to persist until sf � 0:96. We also observe that as the value

of sf decreases further, the structure consisting of 3 ACSs

starts breaking up, and at sf � 0:95 a structure consisting of

16 ACSs can be seen, as shown in Figure 10(c). Further

decreasing sf produces another change in the AIS structure,

and Figure 10(d) shows an AIS with 13 ACSs. Moving fur-

ther to the left on the sf axis, we see AIS structures with 10

and 8 ACSs in Figures 10(e) and 10(f), respectively. See sup-

plementary material61 for additional details.

FIG. 8. The eigenvectors 3 through 6 of the reversibilized transfer operator,

R0;sf
, for sf � 0:99. Here red denotes highly positive regions, blue denotes

highly negative regions, and green/yellow are close to 0.
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This break-up of the AIS structure can be better under-

stood by plotting the bsf
values, shown in Figure 11. The bsf

value measures the closeness of the eigenvectors along the

v� branch for two nearby sf values, and hence captures

changes in the eigenvector morphology. We observe that in

regions where we can clearly identify the different AIS struc-

tures consisting of 3, 16, 13, 10, or 8 ACSs, the value of bsf

remains almost constant. On the other hand, in the transition

regions where there is no clearly distinguishable AIS struc-

ture there is a sharp drop in the bsf
value, signifying a signifi-

cant change in the structure of the eigenvector. Intuitively,

this behavior of bsf
means that the AIS structure persists for

a range of sf and then undergoes a transition (or bifurcation)

into another AIS structure. Comparing Figure 10 with Figure

11, we see that the dips in the graph of bsf
versus sf seem to

accurately capture the boundaries of different AIS structures

and transition regions.

The ACS found using the above method can each be

identified with a braid, with the number of strands in the

braid corresponding to the number of ACS in the domain.

For parameter ranges over which bsf
remains essentially con-

stant, we find that the number of strands in each braid

remains constant and the braids are isotopic to each other.

We also find that dips in the value of bsf
correspond to

FIG. 10. Almost-invariant set structure via continuation of the three-strand eigenvector found at (a) for various values of sf . The structures shown in (a) and

(b) can clearly be seen to again have three strands. The structure in (c) consists of 16 strands, while (d) can be seen to have 13 strands. (e) has 10 strands while

(f) consists of 8 clearly identifiable strands. Also shown are the four largest eigenvalues of the reversibilized discretized transfer operator R0;sf
(except 1),

k2 > � � � > k5, which are colored according to their ordering. One of these is singled out as the k� branch (shown with large squares), which is the eigenvalue

corresponding to v
sf
� , the continuous eigenvector family of interest (see text for details).

FIG. 9. Braiding in (2þ 1)-dimensional space-time via three almost-cyclic sets for sf � 0:975, a parameter value for which corresponding periodic points no

longer exist. The 2nd eigenvector, v2, of Rt;sf
is shown for different phases for the first half-period, specifically t=sf ¼ (a) 0, (b) 0:1, (c) 0:2, (d) 0:3, (e) 0:4, (f)

0:5. (g) The 3 ACSs shown braiding in space-time for 3 periods of flow. The braid is isotopic to the braid shown in Figure 1(c) (enhanced online) [URL: http://

dx.doi.org/10.1063/1.4768666.1] [URL: http://dx.doi.org/10.1063/1.4768666.2].
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changes in the number of strands in the representative braid

and changes in the braid topology. We determine the space-

time braid structure produced by the ACSs in each case by

computing the time-shifted transfer operators as was done

for the braid on three strands in Sec. III B.

Consider the case sf � 0:93, for which the ACSs form a

13-stranded braid. In Figure 12, we show the time-shifted

eigenvectors at several different times during the first half-

period of the flow, and we illustrate the motion of the 13

strands during one full period of the flow in Figure 13. The

overall structure of the braid consists of four strands each on

the left and right of the domain, and five strands in the mid-

dle. During the first half-period, strands B1 through B4 move

together to the right while C1 through C4 move to the left,

similar to the r2 motion of the middle and right strands in

the reference case, but strand B5 remains in the middle. Sim-

ilarly, during the second half-period, strand C1 remains in

the middle, while C2 through C4 and B5 move to the left.

This motion of the ACS gives rise to the physical braid rep-

resentation shown in Figure 14(a), which can be written as

rLrR, where

rR ¼ r�3 r�2 r�3 r�1 r�2 r�3 r9 r8 r10 r7 r9 r11

	 r6 r8 r10 r12 r7 r9 r11 r8 r10 r9 (13a)

is the braid over the first half period of the flow, and

rL ¼r10 r11 r10 r12 r11 r10 r�4 r�5 r�3 r�6 r�4 r�2

	 r�7 r�5 r�3 r�1 r�6 r�4 r�2 r�5 r�3 r�4 (13b)

is the braid over the second half period. All strands return

to their original positions after 13 periods of the flow.

This motion is hence topologically distinct from the three-

stranded reference braid shown in Figures 1(c) and 9(g). The

lower bound on the topological entropy of this braid is

hTN;13 � 0:956, which is lower than hTN;3 for the reference

case.

Over the range of parameters considered here,

0:84 � sf � 1:0, we find that decreasing sf from unity gives

ACSs that generate braids on 3, 16, 13, 10, and 8 strands,

successively. The physical braid representations are shown

in Figure 14, and the corresponding braid words are given in

the Appendix. The basic behavior in all of the bifurcations

tends to follow the pattern discussed in the 13-strand case—

one of the strands from the middle of the domain breaks

away from the rest of the strands, and hence we get topologi-

cally different braiding in each case. Table I lists the topo-

logical entropy of these braids, and these values are plotted

in Figure 11. We see that the lower bounds provided by the

FIG. 12. AIS identified by second eigenvectors of time-shifted Rti ;sf
for the first half of the flow period sf , where sf � 0:93. Left to right: Top-row: ti=sf ¼ 0,

0:1, 0:2. Bottom row: ti=sf ¼ 0:3, 0:4, 0:5. The braiding motion of the 13 ACS is evident, and is illustrated in Fig. 13 (enhanced online) [URL: http://

dx.doi.org/10.1063/1.4768666.3].

FIG. 11. bsf
for a range of sf values

(black curve). The regions where this

value stays almost constant are the

regions of persistence of different braid-

ing structures, separated by transition

regions where the value drops signifi-

cantly. The topological entropy of the

flow, hf , computed by line stretching,

reproduced from Figure 3, is shown in

red. The lower bounds computed by the

TNCT for the braids generated by the

ACSs in that parameter range are shown

in blue in the relevant regions.
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TNCT for these braids, hTN;N , are indeed sharp lower bounds

on the actual topological entropy for the flow, hf . Further-

more, hTN;N is a good estimate of hf in these cases. This is a

key result and suggests that ACS-based topological analysis

can be used in the framework of the TNCT.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We give numerical evidence that the almost-invariant

set theory can be applied in conjunction with the Thurston-

Nielsen classification theorem to find estimates of complexity

in a wide class of systems. We have used almost-invariant

sets as central objects in the application of the TNCT by

looking at non-trivial braids corresponding to the space-time

trajectories of these sets. We demonstrate that this procedure

can predict an accurate lower bound on the topological en-

tropy for a flow even in those cases when the system has

been perturbed far from one that contains braiding periodic

orbits. This work shows that predictions regarding chaos can

be made by considering regions in phase space that move to-

gether for a finite amount of time. This application broadens

the scope of problems where such a lower bound can be

established and suggests that they should be of use in time

varying systems that do not have any well-defined periodic

points, such as free surface flows, or in time-independent

systems operating in a parameter regime where there do not

exist any easily identifiable fixed points.

We stress the fact that while the TNCT can be (in

theory) applied to any orientation-preserving flow (on a two-

dimensional domain) that results in a diffeomorphism, the

difficulty lies in finding the appropriate isotopy class. In

the cases, where low-order periodic orbits exist (and can be

found), the isotopy class is defined relative to the periodic

orbits. In these cases, the stretching produced by the TN rep-

resentative is a strict lower bound on the stretching for any

flow in the isotopy class. For the cases in which no obvious,

low-order periodic orbits exist and the braiding is instead

identified via almost-cyclic sets, the predictions of stretching

are only approximate, since the ACSs do not rigorously qual-

ify as punctures in phase space. However, this ACS approach

identifies a small set of “approximate punctures” that give an

accurate representation of the topological entropy for the

cases we have considered.

The class of set-oriented transfer operator methods dis-

cussed in this paper have been applied to systems accessible

solely by time series data,62 systems with stochasticity,63 and

non-autonomous systems defined by data over finite time,

where finite-time coherent sets become the objects of inter-

est.64 Hence, the connection between set-oriented statistical

methods and topological methods in dynamical systems

made in this paper provides an additional tool for analyzing

FIG. 13. Movement of the 13 ACSs

identified from Figure 12 over one period

of the flow. The ACSs return to their ini-

tial positions after 13 periods. Note that

what was formerly the central set (strand)

in the reference case now consists of five

disjoint sets (strands), shown in red. The

strand B5 is “left behind” in the center of

the domain during the first half-period

and subsequently moves to the left dur-

ing the second half-period, generating a

topologically distinct braid from that

shown in Figure 9. We find this braiding

motion of the ACS to persists for roughly

0:910 � sf � 0:935.

043135-12 Grover et al. Chaos 22, 043135 (2012)



complex systems, including those defined by data. Ideally,

one would want to apply the notion of braiding coherent sets

to an experimental setting, where one could ask questions

regarding the role of braiding coherent sets in complex phys-

ical systems. For example, what implications does large-

scale braiding have for stirring in geophysical flows?

There is work on spectral analysis of the “mixing

matrix”65 that is closely related to the identification of almost

invariant sets and ACSs, and connections have been made

between this mixing matrix analysis and the “strange

eigenmode” that arises from spectral analysis of the continu-

ous advection-diffusion operator.66,67 The topological infor-

mation available from analyzing trajectories of ACS

suggests that a similar approach can be applied to the braid-

ing of eigenvectors in these related methods.

We note that for the lid-driven cavity system, some dy-

namical “memory” of the saddle point stable and unstable

manifolds remains even where there are no more saddle
points; compare Figure 6, where such objects exist, with the

wisp-like features of Figures 7 and 8, where they do not tech-

nically exist. Transfer operator methods seem to reveal struc-

tures resembling stable and unstable manifolds of invariant

sets, but these are now associated with almost-invariant sets.

Given the importance of stable and unstable manifolds in

applications, future work could extend this concept of stable

and unstable ‘almost-invariant manifolds’ to systems that

are not exactly periodic, and possibly far from periodic.

For example, in applications to stability and control,68–71

“almost-invariant manifolds” may prove useful for geometric

interpretations of stable and unstable directions in the phase

space. They may also help in making connections with invar-

iant manifold-like objects detected by other methods; cf.

Figure 15.

Another intriguing possibility is opened up by consider-

ing the spectral dependence of transfer operators. Even in

relatively simple systems such as shown in Figure 10, one

sees interesting changes in the eigenvectors of the discretized

Perron-Frobenius operator as a system parameter is varied.

Some modes increase in importance while other modes

decrease. Different modes can correspond to dramatically

different behavior. This observation may have an interesting

application to systems defined from data: prediction of dra-

matic changes in system behavior based on mode variations.

That is, a system may contain hints of a bifurcation before a

bifurcation occurs, and this premonition may be teased out

TABLE I. Topological entropy values, hTN;N , for the braids on N strands

generated by the ACSs for the various sf values considered here.

sf range N hTN;N

0:960 � sf � 1 3 0.962

0:941 � sf � 0:949 16 0.961

0:910 � sf � 0:935 13 0.956

0:861 � sf � 0:890 10 0.936

0:840 � sf � 0:852 8 0.894

FIG. 14. Physical representations of different braids. The time is increasing from bottom to top. (a) The braid on 16 strands, 0:941 � sf � 0:949. (b) The braid

on 13 strands, 0:910 � sf � 0:935. (c) The braid on 10 strands, 0:861 � sf � 0:890. (d) The braid on 8 strands, 0:840 � sf � 0:852.
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via a transfer operator approach, similar to.59 To take a vivid

example, consider Figure 15, where we show the splitting of

the ozone hole in 2002,72 which we might classify as a

“Duffing bifurcation,” where the bifurcation parameter is

some physical quantity changing slowly with time. Given

only the weather observations up to some time, tnow, before

the split, e.g., September 20, 2002 (Figures 15(a) and 15(b)),

might the spectrum of the discretized Perron-Frobenius oper-

ator reveal an emerging, and topologically distinct, eigenvec-

tor which is increasing in importance, soon to become the

dominant mode (Figure 15(e))? To determine trends in the

change of spectrum of a transfer operator in real-time, one

may need to consider the possibility of using the infinitesi-

mal generator of the discretized Perron-Frobenius operator,

which could give several orders of magnitude increase in

speed for determining the spectral characteristics.73
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APPENDIX: BRAID WORDS FOR DIFFERENT BRAIDS

We give braid words for two pulses (i.e., one complete

flow period) in each case. Here, rR refers to first half of the

time period and rL refers to second half. The complete braid

word for each braid is formed by composing the two words,

i.e., rLrR.

• Braid on 3 strands.

rL ¼ r�1

rR ¼ r2

• Braid on 16 strands.

rL ¼r12r13r12r14r13r12r15r14r13r12r�5r�6r�4r�7

	 r�5r�3r�8r�6r�4r�2r�9r�7r�5r�3r�1r�8r�6

	 r�4r�2r�7r�5r�3r�6r�4r�5

rR ¼r�4r�3r�4r�2r�3r�4r�1r�2r�3r�4r11r10r12r9

	 r11r13r8r10r12r14

	 r7r9r11r13r15r8r10r12r14r9r11r13r10r12r11:

• Braid on 13 strands.

rL ¼r10r11r10r12r11r10r�4r�5r�3r�6r�4r�2r�7r�5

	 r�3r�1r�6r�4r�2r�5r�3r�4

rR ¼r�3r�2r�3r�1r�2r�3r9r8r10r7r9r11r6r8r10r12

	 r7r9r11r8r10r9:

• Braid on 10 strands.

rL ¼ r�3r�4r�2r�5r�3r�1r�4r�2r�3r�1r�2r�1

rR ¼ r9r8r9r7r8r6r9r7r5r8r6r7

• Braid on 8 strands.

rL ¼ r�1r�3r�4r�2r�3r�1r�2

rR ¼ r6r7r5r6r4r5r7

FIG. 15. (a,c) Atmospheric LCSBs for days surrounding an Antarctic polar

vortex splitting event in September 2002 (based on NCEP/NCAR reanalysis

data); attracting (repelling) curves are shown in blue (red). Before and after

the splitting event in late September, we see an isolated blob of air, bounded

by LCSB curves, slowly rotating over Antarctica. The vortex pinches off,

sending the northwestern part of the ozone hole off into the midlatitudes

while the southwestern portion goes back to its regular position over Antarc-

tica. We note that the time-varying structures that bound the ozone hole

fragments provide a framework for understanding the geometry of atmos-

pheric transport; they act as analogs of stable and unstable manifolds of

saddle-like almost cyclic sets. (b,d) The corresponding daily ozone concen-

tration (based on NASA TOMS satellite data). (Adapted from Ref. 72.) (e)

Shown in schematic is a possible change in ordering of the leading eigenvec-

tors for the polar vortex, suggesting a new means to determine global bifur-

cations of a system. Even when the “single-blob” eigenvector is dominant,

there may be “double-blob” eigenvector whose eigenvalue is increasing.

Somewhere near the crossover point, the “double-blob” eigenvector will be

dominant and determine the large-scale characteristics of the flow.
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