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Abstract
An orthogonal cocyclic framework of the block-wise inverse Jacket transform (BIJT) is
proposed over the finite field. Instead of the conventional block-wise inverse Jacket matrix
(BIJM), we investigate the cocyclic block-wise inverse Jacket matrix (CBIJM), where the
high-order CBIJM can be factorized into the low-order sparse CBIJMs with a successive
block architecture. It has a recursive fashion that leads to a fast algorithm concerned for
reducing computational load. The fast transforms are also developed for the
two-dimensional cocyclic block-wise inverse Jacket transform (CBIJT). The present
CBIJM may be used for many matrix-based applications, such as the DFT signal
processing, combinatorics, and the Reed-Muller code design.

Introduction

The orthogonal transforms, such as the discrete Fourier transform (DFT) and the
Walsh-Hadamard transform (WHT), have been widely employed in images processing,
feature selection, signal processing, data compressing and coding, and other areas [1–7].
Using orthogonality of the WHT, the interesting orthogonal matrices, such as the
element-wise or block-wise inverse Jacket matrices (BIJMs) [8–12], have been developed.
More details of these matrices can be referred to [13–19].



Definition 1. An n × n matrix Jn = (αij)n×n is called the element-wise inverse Jacket matrix
(EIJM) of order n if its inverse matrix J−1

n can be simply obtained by its element-wise inverse,
i.e., J−1

n = 1
n(α−1

ij )T
n×n, ∀ i, j ∈ Zn := {0, 1, . . . , n − 1}, where the superscript T denotes the

transpose.

Many interesting orthogonal matrices, say the Hadamard matrices and the DFT matrices,
belong to the Jacket matrix family. With the rapid technological development, different forms
of such transforms were improved and generalized. It has been discovered that the newly
proposed transforms have been widely used in various signal processing, CDMA, cooperative
relay MIMO system [20–28].

Recently, the BIJM [ J]n has been investigated while the complex unit exp
√−1(2π/p) of the

EIJM Jn is substituted for a suitable matrix unit [15–17]. However, the CBIJM does not attract
much attention even though the cocyclic matrix has been very useful for the data coding and
processing [5, 14, 29, 30].

Definition 2. If G is a finite group of order r with operation ◦ and C is a finite Abelian group of
order t, a cocycle is a mapping ϕ : G × G → C satisfying

ϕ(a, b)ϕ(a ◦ b, c) = ϕ(a, b ◦ c)ϕ(b, c), (1)

where a, b, c ∈ G. A square matrix M(ϕ) whose row a and column b can be indexed by G with
entry ϕ(a, b) ∈ C in position (a, b) under some fixed ordering, i.e., M(ϕ) = (ϕ(a, b))a,b∈G , is
called a cocyclic matrix. If ϕ(1, 1) = 1, then it is the normalized cocyclic matrix for the
standard usage [5, 29, 30].

Definition 3. Let Jp = (ω⟨i◦j⟩p)p×p, ∀ i, j ∈ Zp := {0, 1, . . . , p − 1}, be a matrix of order p,
where ω = exp(

√−1(2π/p)) and ⟨i ◦ j⟩p = i × j mod p, i.e., the subscript p implies
modulo-p arithmetic for the argument. Then the matrix Jp and its s-fold matrix of order ps

Jps = J⊗s
p = Jp ⊗ Jp · · · ⊗ Jp︸ ︷︷ ︸

s

are the conventional cocyclic element-wise inverse Jacket matrices (CEIJM), where ⊗ denotes
the Kronecker product and p is a prime number.

As a generation of the Hadamard matrix, the BIJM inherits the merits of the Hadamard matrix,
at the same time, without the restriction that entries must be ‘±1’. On the other hand, this
matrix has very amicable properties, such as reciprocal orthogonality. The inverse transform
can be easily obtained by the reciprocal relationships and the fast algorithms. However, the
versions of cocyclic block-wise inverse Jacket matrix (CBIJM) are still absent since the
existence of the CEIJM has attracted minor attention in the existing literature [8, 21]. The
purpose of this article is to develop the CBIJM and its generalizations, instead of the CEIJM.
In addition, the present CBIJM has some potential practical applications in signal sequence
transforms [1–7], coding design for wireless networks [22, 27, 28], and cryptography [31].

This article is organized as follows. Section ‘Cocyclic block-wise inverse Jacket transforms’
presents a simple framework of the fast CBIJT. Section ‘Designs of the CBIJM over finite
field GF(2m)’ reports the CBIJM over finite field GF(2p). Section ‘Two-dimensional fast



CBIJM’ proposes the structure of the two-dimensional CBIJM. Finally, conclusions are drawn
in Section ‘Conclusion’.

Cocyclic block-wise inverse Jacket transforms

In this section, we show that the EIJM can be generalized for the constructions of the CBIJT.

Based on the one-dimensional BIJM [ J]p of order p, which can be partitioned to the p × p
block matrix, we can transform a suitable vector x into another vector y through a BIJT, i.e.,

y =[ J]p x. (2)

In order to derive the CBIJT, we denote a matrix unit by α such that αp = Ip for a given prime
number p, where Ip denotes the p × p identity matrix. As an example, let α be a square matrix
of size 2 × 2 defined as

α =
(

0 1
1 0

)
. (3)

It is easy to prove that α2 = I2. Actually, matrix α in (3) has been employed for the existence
of the BIJM [15–17]. Fortunately, it will be shown that the s-fold block Jacket matrix
[ J]2s , α⊗s is also a CBIJM.

In what follows we illustrate the cocyclicity of the BIJM [ J]ps based on the matrix unit α of
size p × p. In particular for the given prime number p, we define the matrix unit αh =[ ei,j]p,
where

ei,j =
{

1, for i = ⟨j + h⟩p;
0, otherwise, (4)

where ⟨j + h⟩p = j + h mod p, ∀ i, j, h ∈ Zp := {0, 1, . . . , p − 1}. It can be shown that
A := {αh : h ∈ Zp} forms an Abelian group with the traditional matrix multiplication.
Namely, for the given number p, one obtains the matrix units as follows

α0 =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


, α1 =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


, · · ·

αp−2 =



0 0 1 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
1 0 0 · · · 0 0
0 1 0 · · · 0 0


, αp−1 =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


. (5)



Example 1. Let p = 3, and we have

α0 =
1 0 0

0 1 0
0 0 1

 , α1 =
0 0 1

1 0 0
0 1 0

 , α2 =
0 1 0

0 0 1
1 0 0

 . (6)

It is obvious that Zp with the multiplication operation ⟨a · b⟩p is a finite field of order p. For
∀ a, x ∈ Zp, we define an multiplication function fa(x) over Zp, i.e.,

fa(x) := ⟨a · x⟩p. (7)

With the aid of the multiplication function fa(x), we define a block matrix of size p × p2 by
concatenating p matrices αhi of size p × p, ∀ hi ∈ Zp, i.e.,

[ β] :=
[
αh0 , αh1 , . . . , αhp−1

]
(8)

and hence

[ βa] :=
[
αfa(h0), αfa(h1), . . . , αfa(hp−1)

]
. (9)

Lemma 1. For block matrices [ βa] and [ βb], ∀ a, b ∈ Zp, we have

[ βa] ·[ βb]T =
{

pI, for ⟨a + b⟩p = 0;
0, for ⟨a + b⟩p ̸= 0. (10)

The proof of Lemma 1 is illustrated in Appendix.

Example 2. Let us consider α with p = 2 in (3). It is obvious that α2 = I is an identity matrix
of size 2 × 2. Let [ β] = [

α0, α1], then we have

[ β0] =
[
α0, α0

]
=

[
1 0 1 0
0 1 0 1

]
, (11)

[ β1] =
[
α0, α1

]
=

[
1 0 0 1
0 1 1 0

]
. (12)

It is straightforward to show that

[ β0] ·[ β0]T =[ β1] ·[ β1]T = 2I2. (13)

The p-order CBIJM

In [15–17], Lee et al. expanded the EIJM to the BIJM.

Definition 4. An np × np block matrix [ J]n = ([ αij]p )np×np is called the BIJM of order n if
[ J]−1

n = 1
c ([ αij]−1 )T

np×np where c is the normalized value and [ αij]p×p denotes a matrix unit
of size p × p.



Definition 5. For a given prime number p, let α be a p × p matrix unit such that αp = I and

[ β] =
[
α0, α1, . . . , αp−1

]
. (14)

Define the p-order BIJM [ J]p of size p2 × p2 as follows

[ J]p :=


[ β0]
[ β1]
[ β2]

...
[ βp−1]

 =


α0 α0 · · · α0

α0 α1 · · · αp−1

α0 α2 · · · α2(p−1)

...
... . . . ...

α0αp−1· · ·α(p−1)(p−1)

 (15)

and thus its inverse

[ J]−1
p := 1

p


α0 α0 · · · α0

α0 α⟨−1⟩p · · · α⟨−(p−1)⟩p

α0 α⟨−2⟩p · · · α−2(p−1)

...
... . . . ...

α0α⟨−(p−1)⟩p· · ·α⟨−(p−1)(p−1)⟩p

 . (16)

Consequently, we have

[ J]p ·[ J]−1
p =[ J]−1

p ·[ J]p = Ip2×p2 . (17)

Example 3. Taking [ β0] and [ β1] for p = 2, we have

[ J]2 =
[

α0 α0

α0 α1

]
=


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 , (18)

and its inverse

[ J]−1
2 = 1

2

[
α0 α0

α0 α⟨−1⟩2

]
= 1

2


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 . (19)

Actually, we have

[ J]2 [ J]−1
2 =

[
α0 α0

α0 α1

] [
α0 α0

α0 α1

]
=

[
I2 0
0 I2

]
, (20)

where α0 + α1 = 0 since α2 = I and α ̸= I over the finite field.

We note that the above-mentioned BIJM was first proposed by Lee and Hou [13] for the proof
of existence of Jacket matrices over the finite field. Next, we illustrate that this BIJM is also a
CBIJM in essence.

Theorem 1. Let G = Zp with an operation a ◦ b := ⟨a + b⟩p, ∀ a, b ∈ Zp, and
C := {αi : i ∈ Zp} with the traditional multiplication. The BIJM [ J]p in (15) whose rows and



columns are both indexed in G under the increasing order (i.e., 0 ≺ 1 ≺ · · · ≺ p − 1) and
entries ϕ(a, b) in position (a, b) is the normalized CBIJM.

The proof of Theorem 1 is illustrated in Appendix.

Example 4. We consider p = 3 with

α =
0 0 1

1 0 0
0 1 0


3×3

.

It is easy to verify that α3 = I3×3. Let [ β] = [
α0, α1, α2] be a block matrix of size 3 × 9.

Thus we obtain the three-order BIJM [ J]3 of size 9 × 9 as follows

[ J]3 =
α0 α0 α0

α0 α1 α2

α0 α2 α1

 , (21)

and its inverse

[ J]−1
3 =

α0 α0 α0

α0 α⟨−1⟩3 α⟨−2⟩3

α0 α⟨−2⟩3 α⟨−1⟩3

 , (22)

where α−1 = α⟨−1⟩3 = α2 and α−2 = α⟨−2⟩3 = α. Moreover, the indexed BIJM [ J]3 can be
mapped in Table 1. It shows that the present BIJM [ J]3 is a three-order CBIJM in
C = {I3, α, α2} and G = Z3 under the increasing order 0 ≺ 1 ≺ 2.

Table 1 Correspondence between indexes and entries of [ J]3
a\b 0 1 2

0 α0 α0 α0

1 α0 α1 α2

2 α0 α2 α1

The multi-fold CBIJM

In order to derive the high-order recursive CBIJM [ J]ps for any prime number p and
nonnegative integer s, let us introduce some lemmas [1–5].

Lemma 2. Let A, B, C, and D are matrices with suitable sizes. Then we have

(A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D),
(A ⊗ B)−1 = (A−1 ⊗ B−1),
(A ⊗ B)T = (AT ⊗ BT). (23)

Theorem 2. For a given prime number p, let [ A]p =[ αi,j]p and [ B]p =[ γs,t]p, ∀ i, j, s, t ∈ Zp, be
two CBIJMs of order p that corresponds to the matrix units α and γ such that αp = I and



γ p = I, respectively. Then the two-fold Kronecker product matrix

[ J]p2 =[ A]p ⊗[ B]p (24)

is a two-fold CBIJM of order p2.

The proof of Theorem 2 is shown in Appendix.

Corollary 1. For any prime number p and non-negative integer number s, let [ J]ps =[ J]⊗s
p be

an s-fold block matrix, i.e.,

[ J]ps = [ J]p ⊗ · · · [ J]p︸ ︷︷ ︸
s

. (25)

Then the block matrix [ J]ps is a CBIJM of order ps.

Example 5. For p = 2 and s = 2, we consider a matrix unit α of size 2 × 2 in (3). Thus we
have the four-order BIJM [ J]22 given by

[ J]22=[ J]2 ⊗[ J]2

=
[

α0 α0

α0 α1

]
4×4

⊗
[

α0 α0

α0 α1

]
4×4

=


α0α0 α0α0 α0α0 α0α0

α0α0 α0α1 α0α0 α0α1

α0α0 α0α0 α1α0 α1α0

α0α0 α0α1 α1α0 α1α1


8×8

. (26)

Similarly, we have an index order matrix in Table 2, where the row and column index orders
are

00 ≺ 01 ≺ 10 ≺ 11 (27)

and for ∀ a1, b1, a2, b2 ∈ Z2,

a1a2 ◦ b1b2 = ⟨a1 + b1⟩2⟨a2 + b2⟩2. (28)

As an example, if a = 2 and b = 3, then we have

α10◦11 = α⟨1+1⟩2⟨0+1⟩2 = α01 = α.

Table 2 Correspondence between indexes and entries of the 2-fold CBIJM [ J]22 based on
the basic CBIJM [ J]2

a⃗\b⃗ ◦ 00 01 10 11
◦ a\b 0 1 2 3
00 0 α0α0 α0α0 α0α0 α0α0

01 1 α0α0 α0α1 α0α0 α0α1

10 2 α0α0 α0α0 α1α0 α1α0

11 3 α0α0 α0α1 α1α0 α1α1



It can be easily verified that the two-fold matrix [ J]22 in (26) is a four-order CBIJM of size
8 × 8. In addition, using the same index mapping in Table 1, we obtain the index matrix I4 as
follows

I4 =


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

 , (29)

which is a generator matrix of the first order binary Reed-Muller code [3]. We note that this
phenomena exists in the generalized s-fold CBIJM [ J]ps of order ps for any prime number p.

Actually, the two-fold CBIJM [ J]22 in (26) based on the factorization algorithm can be
rewritten as

[ J]22 =[ J]2 ⊗[ J]2 = (I2⊗[ J]2 ) ([ J]2 ⊗I2) . (30)

Namely, we have

[ J]22 =


α0 α0 α0 α0

α0 α1 α0 α1

α0 α0 α1 α1

α0 α1 α1 α0

 =


α0 α0 0 0
α0 α1 0 0
0 0 α0 α0

0 0 α0 α1




α0 0 α0 0
0 α0 0 α0

α0 0 α1 0
0 α0 0 α1

 .

The comparison between the direct computation and fast transform in terms of operations
(i.e., additions and multiplications) is illustrated in the Table 3. From this table, it is shown
that for N = 4 if we compute directly there are 12 additions and 16 multiplications, but if we
use the fast transform algorithm the numbers of additions and multiplications can be reduced
to 8 and 4, respectively. It is obvious that the proposed algorithm has a greater efficiency for
computation than that of the direct approach.

Table 3 Complexity of the fast algorithms for N = ps, where ADD and MUL denote addi-
tions and multiplications

Direction method Fast algorithms
ADD (N − 1)N sps(p − 1)

MUL N2 sps−1(p − 1)2

Example 6. From Equation (23), we have p = 3, s = 2 and

α0 =
1 0 0

0 1 0
0 0 1

 , α1 =
0 0 1

1 0 0
0 1 0

 , α2 =
0 1 0

0 0 1
1 0 0

 ,



then we can derive the two-fold CBIJM [ J]32 =[ J]3 ⊗[ J]3, i.e.,

[ J]32 =



α0 α0 α0 α0 α0 α0 α0 α0 α0

α0 α1 α2 α0 α1 α2 α0 α1 α2

α0 α2 α1 α0 α2 α1 α0 α2 α1

α0 α0 α0 α1 α1 α1 α2 α2 α2

α0 α1 α2 α1 α2 α0 α2 α0 α1

α0 α2 α1 α1 α0 α2 α2 α1 α0

α0 α0 α0 α2 α2 α2 α1 α1 α1

α0 α1 α2 α2 α0 α1 α1 α2 α0

α0 α2 α1 α2 α1 α0 α1 α0 α2


27×27

, (31)

which can be factorized as

[ J]32 =[ J]3 ⊗[ J]3 = (I3⊗[ J]3 )([ J]3 ⊗I3)

=



α0 α0 α0 0 0 0 0 0 0
α0 α1 α2 0 0 0 0 0 0
α0 α2 α1 0 0 0 0 0 0
0 0 0 α0 α0 α0 0 0 0
0 0 0 α0 α1 α2 0 0 0
0 0 0 α0 α2 α1 0 0 0
0 0 0 0 0 0 α0 α0 α0

0 0 0 0 0 0 α0 α1 α2

0 0 0 0 0 0 α0 α2 α1


27×27

×



α0 0 0 α0 0 0 α0 0 0
0 α0 0 0 α0 0 0 α0 0
0 0 α0 0 0 α0 0 0 α0

α0 0 0 α1 0 0 α2 0 0
0 α0 0 0 α1 0 0 α2 0
0 0 α0 0 0 α1 0 0 α2

α0 0 0 α2 0 0 α1 0 0
0 α0 0 0 α2 0 0 α1 0
0 0 α0 0 0 α2 0 0 α1


27×27

. (32)

with the signal flow graph in Figure 1. It is obvious that I3⊗[ J]3 and [ J]3 ⊗I3 are both sparse
matrices, and the two-fold matrix [ J]32 is a nine-order CBIJM of size 27 × 27. The index
matrix I9 of [ J]32 is given by

I9 =



0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2


9×9



which can be used for the generalization of the first order 3-ary Reed-Muller code [3].

Figure 1 Signal flow graph for the two-fold CBIJM [ J]32 of order nine

Consequently, the s-fold CBIJM [ J]ps of order ps can be generated from the following
factorization algorithm

[ J]ps =[ J]ps−1 ⊗[ J]p =
s∏

i=1

(
Ips−i⊗[ J]p ⊗Ipi−1

)
(33)

where Ipi denotes the identity matrix of size pi × pi and Ip0 = 1 for the simple description.

Corollary 2. Based on the p-order CBIJM [ J]p for any number p, the s-fold CBIJM [ J]ps of
order ps can be constructed with the recursive formula

[ J]ps =
s∏

i=1

(
Ips−i⊗[ J]p ⊗Ipi−1

)
, (34)

where p is any prime number and s is a nonnegative integer number.

The proof of Corollary 2 is shown in Appendix.

In order to show the factorization of the generalized CBIJM [ J]n of order ps with any prime
number p, we propose several construction approaches in Table 4. In this table, the second
column is the decomposition for the numbers (order) of the CBIJM, and the third column is
the construction for CBIJM. It shows that the large-order CBIJM can be designed on the basis
of the lower order CBIJM [ J]p with sparse matrices in the successive architecture.

Table 4 Decompositions of orders for the CBIJM [ J]ps with density 1/p
Order Decomposition CBIJM Density

2 2 = 2 [ J]2 =[ J]2 1/2
3 3 = 3 [ J]3 =[ J]3 1/3
4 22 = 2 × 2 [ J]4 =[ J]⊗2

2 1/2
5 5 = 5 [ J]5 =[ J]5 1/5
7 7 = 7 [ J]7 =[ J]7 1/7
8 23 = 22 × 2 [ J]8 =[ J]⊗3

2 1/2
9 32 = 3 × 3 [ J]9 =[ J]⊗2

3 1/3
11 11 = 11 [ J]11 =[ J]11 1/11
13 13 = 13 [ J]13 =[ J]13 1/13
16 24 = 23 × 2 [ J]16 =[ J]⊗4

2 1/2
17 17 = 17 [ J]17 =[ J]17 1/17
19 19 = 19 [ J]19 =[ J]19 1/19
23 23 = 23 [ J]23 =[ J]23 1/23
25 52 = 5 × 5 [ J]25 =[ J]⊗2

5 1/5



Low-density of the CBIJM

In what follows, we consider the density of 1’s in the s-fold CBIJM [ J]ps .

According to the afore-mentioned CBIJM [ J]p, it is known that matrix [ J]p whose matrix unit
is α in (4) is a p2 × p2 binary matrix. The total number of 1’s is p in each matrix unit αh,
∀ h ∈ Zp. Then the density of 1’s in αh is

ρ(αh) = p
p2 = 1

p
. (35)

Therefore the density of 1’s in [ J]p is calculated as

ρ([ J]p ) = ρ(αh) = 1
p

, (36)

and the density of 1’s in the s-fold matrix [ J]ps is

ρ([ J]ps ) = ρ([ J]p ) = 1
p

, (37)

which shows that the larger matrix order p means the lower density of 1’s in both [ J]p and
[ J]ps .

As an example, we consider the CBIJM [ J]2 in Example 3 and the two-fold CBIJM [ J]22 in
Example 5 with matrix unit α = [ ei,j]2×2 in (4). It is easy to verify that the densities of 1’s in
[ J]2, and [ J]22 are all 1/2, i.e., ρ([ J]22 ) = ρ([ J]2 ) = 1/2. Generally, for any prime number
p we have ρ([ J]p2 ) = ρ([ J]p ) = ρ(α) = 1/p, as shown in Table 5.

Table 5 Densities of the matrix units α, CBIJM [ J]p, and s-fold CBIJM [ J]ps

2 3 5 7 11
α 1/2 1/3 1/5 1/7 1/11

[ J]p 1/2 1/3 1/5 1/7 1/11
[ J]ps 1/2 1/3 1/5 1/7 1/11

Designs of the CBIJM over finite field GF(2m)

In this section, we consider the generalized CBIJM over finite field GF(2m) and derive the
high-order CBIJM for p = 2m − 1.

Let α be a matrix unit of size p × p over GF(2m) such that α2m−1 = I and α ̸= I. Then we
obtain the (2m − 1)-order CBIJM [ J]2m−1 as follows.

Theorem 3. Let
[ J]2m−1 ,[ αij]2m−1

be a (2m − 1)-order block matrix over GF(2m), ∀ i, j ∈ Z2m−1, where α is a matrix unit of size
(2m − 1) × (2m − 1) satisfying α2m−1 = I and α ̸= I. Then block matrix [ J]2m−1 is a CBIJM.



The proof of Theorem 3 are shown in Appendix.

Example 7. We consider the seven-order block matrix [ J]23−1 with the primitive polynomial
x3 + x + 1 = 0 over GF(23). Let α be an arbitrary matrix unit such that α7 = I and α ̸= I.
Then any matrix element β over GF(23) can be represented as a binary vector (b0, b1, b2),
∀ bi ∈ Z2 and i ∈ {0, 1, 2}, such that

β = b0 + b1α + b2α
2.

By the Table 6, it is straightforward that Theorem 3 is true over GF(23). Then we obtain the
BIJM [ J]7 and its inverse [ J]−1

7 , i.e.,

Table 6 Binary representation of β over GF(23)
Elements Binary representation

0 (0 0 0)
α0 (1 0 0)
α1 (0 1 0)
α2 (0 0 1)
α3 (1 1 0)
α4 (0 1 1)
α5 (1 1 1)
α6 (1 0 1)

[ J]7=



α0 α0 α0 α0 α0 α0 α0

α0 α1 α2 α3 α4 α5 α6

α0 α2 α4 α6 α1 α3 α5

α0 α3 α6 α2 α5 α1 α4

α0 α4 α1 α5 α2 α6 α3

α0 α5 α3 α1 α6 α4 α2

α0 α6 α5 α4 α3 α2 α1


, (38)

and

[ J]−1
7 =1

7



α0 α0 α0 α0 α0 α0 α0

α0 α6 α5 α4 α3 α2 α1

α0 α5 α3 α1 α6 α4 α2

α0 α4 α1 α5 α6 α2 α3

α0 α3 α6 α2 α5 α1 α4

α0 α2 α4 α6 α1 α3 α5

α0 α1 α2 α3 α4 α5 α6


. (39)

Actually, according to the index mapping of the present matrix in Table 7, it can be shown that
matrix [ J]7 in (38) is a seven-order CBIJM over GF(23).



Table 7 Index mapping of CBIJM [ J]7 over GF(23)
g \ h 0 1 2 3 4 5 6

0 α0 α0 α0 α0 α0 α0 α0

1 α0 α1 α2 α3 α4 α5 α6

2 α0 α2 α4 α6 α1 α3 α5

3 α0 α3 α6 α2 α5 α1 α4

4 α0 α4 α1 α5 α2 α6 α3

5 α0 α5 α3 α1 α6 α4 α2

6 α0 α6 α5 α4 α3 α2 α1

Two-dimensional fast CBIJM

In the previous section, we consider the one-dimensional CBIJT based on the CBIJM. Now
we extend it to the version of the two-dimensional CBIJT.
The fast two-dimensional CBIJM can be similarly derived from the two-dimensional Jacket
transform [15]

Y =[ J]ps X[ J]T
ps ,

which can be expressed by the transformation of the column-wise stacking vector X as

vec(Y) = ([ J]ps ⊗[ J]ps )vec(X).

Namely, if X = (x0, x1, . . . , xps−1), then vec(X) = (xT
0 , xT

1 , . . . , xT
ps−1)

T, where xi denotes the
ith column of X, ∀ i ∈ Zps . It shows that the fast algorithm of the two-dimensional CBIJM can
be designed from the two-fold one-dimensional CBIJM, i.e.,

[ J]p2s =[ J]ps ⊗[ J]ps .

Based on the fast algorithm of [ J]ps ⊗[ J]ps , we have the fast algorithm of two-dimensional
CBIJM [ J]p2s in the recursive fashion expressed in (40). It illustrates that the two-dimension
CBIJM can be concerned with the sparse matrix factorizations based on the factorizations of
one-dimensional CBIJM. A successive architecture for reducing the computational load can
also be developed in the similar fast algorithms as that of one-dimensional CBIJM while
factorizing two-dimensional CBIJM into the lower order sparse matrices with low
complexities.

[ J]p2s = (
[ J]ps ⊗Ips

) (
Ips ⊗ [ J]ps

)
= [(

[ J]ps−1 ⊗[ J]p
) ⊗ Ips

] [
Ips ⊗ (

[ J]ps−1 ⊗[ J]p
)]

= {[(
[ J]ps−1 ⊗Ip

) (
Ips−1 ⊗ [ J]p

)] ⊗ Ips
} {

Ips ⊗ [(
[ J]ps−1 ⊗Ip

) (
Ips−1 ⊗ [ J]p

)]}
= (

[ J]ps−1 ⊗Ip ⊗ Ips
) (

Ips−1⊗[ J]p ⊗Ips
) (

Ips⊗[ J]ps−1 ⊗Ip
) (

Ips ⊗ Ips−1 ⊗ [ J]p
)

. (40)

Example 8. We consider the two-dimensional four-order CBIJM

[ J]24 = [ J]22 ⊗[ J]22

= ([ J]2 ⊗I2 ⊗ I4) (I2 ⊗ [ J]2 ⊗ I4) · (I4 ⊗ [ J]2 ⊗ I2) (I4 ⊗ I2 ⊗ [ J]2) . (41)

It is shown in the previous section that block matrix [ J]22 is a four-order CBIJM that can be
constructed in the recursive fashion on the basis of [ J]2 with fast algorithm. Therefore, the



two-dimensional CBIJM [ J]24 can be similarly designed in the recursive fashion with fast
algorithm based on two-fold four-order CBIJT [ J]22 , as shown in Figure 2. Compared with
the fast algorithm of the one-dimensional CBIJM [ J]32 in Figure 1, the present fast algorithm
needs four steps for calculations, instead of two steps for the factorizing decomposition.

Figure 2 Signal flow graph for the two-dimensional two-fold four-order CBIJM [ J]16
based on [ J]2, i.e., [ J]16 =[ J]22 ⊗[ J]22

Conclusion

A simple method of developing the fast CBIJM is proposed over finite field. This method is
presented for its simplicity and clarity, which decomposes the high-order CBIJM into multiple
sparse matrices with the lower-order CBIJMs, instead of the conventional BIJMs or EIJMs.
This factorization algorithm is valid for the generalized s-fold CBIJM of order ps over finite
field with a suitable matrix unit α of size p × p. Also, the present CBIJM is useful for
developing the fast two-dimensional CBIJM based on sparse matrices in the recursive forms.
It may have potential applications in combinatorial designs (CD) [8], space-time block
codes [23, 27], and odd-order code design [20] thanks to its successive architecture.
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Appendix

Proof of Lemma 1

If a = b = 0, then [ β0] = [I, I, . . . , I], and hence [ β0] ·[ β0]T = pI. If ⟨a + b⟩p = 0,
∀ a, b ∈ Zp, then for ∀ hi ∈ Zp,

fa(hi) + fb(hi) = ⟨ahi⟩p + ⟨bhi⟩p = ⟨(a + b)hi⟩p = 0. (42)

Therefore, it is easy to verify that

[ βa] ·[ βb]T =
p∑

i=1

αfa(hi)+fb(hi) = pI.



But if ⟨a + b⟩p ̸= 0, then for 0 < ⟨a + b⟩p < p,{⟨c(a + b)⟩p : c ∈ Zp
} = Zp. (43)

Consequently, we have

[ βa] ·[ βb]T =
p−1∑
i=0

αi, (44)

which can be proved to be equal to zero over the finite field since αp − I = 0 but for α ̸= I.

Proof of Theorem 1

According to the defined BIJM [ J]p in (15), we have ϕ(a, b) := α⟨a·b⟩p . For ∀ c ∈ Zp, we have

ϕ(a, b)ϕ(a ◦ b, c) = α⟨a·b⟩p · α⟨(a+b)c⟩p = α⟨a·b+(a+b)·c⟩p . (45)

On the other hand,

ϕ(a, b ◦ c)ϕ(b, c) = α⟨a·(b+c)⟩p · α⟨b·c⟩p = α⟨a·(b+c)+b·c⟩p . (46)

Combining (45) and (46), we have

ϕ(a, b)ϕ(a ◦ b, c) = ϕ(a, b ◦ c)ϕ(b, c). (47)

Thus the BIJM [ J]p is also a CBIJM.

Proof of Theorem 2

Since [ A]p =[ αi,j]p and [ B]p =[ γs,t]p are both BIJM, we have the inverse

[ A]−1
p = 1

p
[ α−1

i,j ]T
p , [ B]−1

p = 1
p

[ γ −1
s,t ]T

p . (48)

Let
[ A]p ⊗[ B]p = [

σip+s,jp+t
]

p2 ,

where σip+s,jp+t = αi,j · γs,t denotes the traditional multiplication of two matrices. Therefore,
we have the inverse matrix [ J]−1

p2 that can be calculated directly from the block-wise inverse
of the original block matrix [ J]p2 in (24), i.e.,

[ J]−1
p2 = (

[ A]p ⊗[ B]p
)−1 =

(
[ A]−1

p ⊗[ B]−1
p

)
= 1

p2

[
α−1

i,j · γ −1
s,t

]T

p2
= 1

p2

[
σ−1

ip+s,jp+t

]T

p2
.(49)

It implies that [ J]p2 is a block Jacket matrix.

Next, we show that matrix [ J]p2 is a CBIJM under the indexed row and column. Assume that



[ A]p and [ B]p are both CBIJMs under the row and column index over Zp, respectively,{
as1 ≺ as1 ≺ · · · ≺ asp, for asj ∈ Zp, ∀ j ∈ Zp;
bs1 ≺ bs1 ≺ · · · ≺ bsp, for bsk ∈ Zp, ∀ k ∈ Zp, (50)

where s ∈ {r, c}, arj and acj denote the jth row and the jth column index of block matrix [ A]p,
brk and bck denote the kth row and the kth column index of block matrix [ B]p, and ≺ denotes
the increasing order. Then for the p2-order block matrix [ J]p2 over Zp2 , the row and column
index order can be defined as follows

asjbsk ≺ asibsh if
{

asj ≺ asi;
asj = asi, bsk ≺ bsh. (51)

Also the entries of [ J]p2 are defined on the basis of [ J]p as

ϕp2(aribrh, acjbck) = ϕp(ari, acj) · ϕp(brh, bck). (52)

As for the entries ϕp(ai, aj) and ϕp(bh, bk) of [ A]p and [ B]p, ∀ ai, aj, al ∈ Zp and
∀ bh, bk, bt ∈ Zp, we have

ϕp(ai, aj)ϕp(ai ◦ aj, al) = ϕp(ai, aj ◦ al)ϕp(aj, al), (53)
ϕp(bh, bk)ϕp(bh ◦ bk, bt) = ϕp(bh, bk ◦ bt)ϕp(bk, bt). (54)

Therefore, it can be easily verified that

ϕp2(aibh, ajbk)ϕp2(aibh, ajbk ◦ albt) = ϕp2(aibh, ajbk ◦ albt)ϕp2(ajbk, albt). (55)

It shows that block matrix [ J]p2 is also a CBIJM under the indexed order in (51). This
completes the proof of this theorem.

Proof of Corollary 2

We deploy induction on index s. If s = 1, then it is clearly true, i.e., [ J]p1 =[ J]p. In what
follows, we assume the hypothesis is true for s. Namely, for ∀ i ∈ {1, 2, . . . , s} we have the
following hypothesis:

[ J]ps =
s∏

i=1

(
Ips−i⊗[ J]p ⊗Ipi−1

)
. (56)

Then we show it must therefore hold for s + 1. Actually, by induction based on properties of
the Kronecker product we have

[ J]ps+1 = [ J]p ⊗[ J]ps

= (
[ J]p ·Ip

) ⊗ (
Ips · [ J]ps

)
= (

[ J]p ⊗Ips
) (

Ip ⊗ [ J]ps
)

. (57)



Combining (56) and (58), we obtain

[ J]ps+1 =
s+1∏
i=1

(
Ips−i⊗[ J]p ⊗Ipi−1

)
. (58)

This completes the proof of this corollary.

Proof of Theorem 3

In order to prove Theorem 3, we introduce a lemma as follows.

Lemma 3.

2m−2∑
i=0

αir =
{

(2m − 1)I, for r = 0;
0, for 1 ≤ r ≤ 2m − 2. (59)

Proof. It is evident that
∑2m−2

i=0 αir contains 2m − 1 terms. If r = 0, then
∑2m−2

i=0 αir is a sum of
2m − 1 identity matrices. Thus the first equation is proved. We now consider the case of
1 ≤ r ≤ 2m − 2 such that αr ̸= I, i.e., αr − I ̸= 0. Since α2m−1 = I, then we have
αr(2m−1) = I and

0 = αr(2m−1) − I = (
αr − I

) 2m−2∑
i=0

αir,

from which we obtain
2m−2∑
i=0

αir = 0.

Then the proof is completed.

With the aid of Lemma 3, we show the existence of CBIJM for Theorem 3.

According to the definition of the (2m − 1)-order block matrix [ J]2m−1, we let

[ J]−1
2m−1 = 1

2m − 1
[ α⟨−ij⟩2m−1]T

2m−1 .

By the simple calculation, it can be verified that

[ J]2m−1 [ J]−1
2m−1 =[ J]−1

2m−1 [ J]2m−1 = I2m−1.

It shows that block matrix [ J]2m−1 is a BIJM. In order to prove that it is a CBIJM, we let
ϕ(i, j) be an entry in position (i, j), where the order of rows and columns is from 0 to 2m − 2
over Z2m−1. Consequently, for i, j, h, k ∈ Z2m−1 we have

ϕ(i, j) = α⟨i·j⟩2m−1 ,
ϕ(i, j ◦ h) = α⟨i·(j+h)⟩2m−1 ,
ϕ(i, j)ϕ(h, k) = α⟨i·j+h·k⟩2m−1 . (60)



Then we achieve

ϕ(i, j ◦ k)ϕ(j, k) = α⟨i·(j+k)⟩2m−1α⟨j·k⟩2m−1 = α⟨i·j+i·k+j·k⟩2m−1 , (61)

and

ϕ(i, j)ϕ(i ◦ j, k) = α⟨i·j⟩2m−1α⟨(i+j)·k⟩2m−1 = α⟨i·j+i·k+j·k⟩2m−1 . (62)

It is obvious to verify
ϕ(i, j ◦ k)ϕ(j, k) = ϕ(i, j)ϕ(i ◦ j, k), (63)

which implies that the BIJM [ J]2m−1 is a CBIJM over GF(2m).
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