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Abstract
This note presents a numerical algorithm to solve a class of multi-point boundary value
problems (MBVPs). Compared to conventional multiple shooting, the proposed method uses
less parameters to exploit advantages of single shooting approaches. Unknown parameters are
updated by a two-step algorithm which improves the convergence of parameters over existing
one-step algorithm. The main idea of the two-step algorithm is to decouple the effects on
boundary conditions between two sets of parameters: state and costate, and switch times.
The proposed algorithm can compute the solution of a class of MBVPs faster than various
existing methods. An application example illustrates the effects of the algorithm.
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1 Introduction

Optimal control theory has a wide range of applica-

tions such as minimum fuel or optimal landing problems in

aerospace [1], time optimal problem in manufacturing [2–7]

etc. Dynamic programming and minimum principle are fun-

damental theories to attack optimal control problems, albeit

numerical optimization-based approaches have been widely

used [8, 9]. When treated with dynamic programming, an

optimal control problem is reduced to Hamiltonian-Jacobi-

Bellman (HJB). The minimum principle yields a set of or-

dinary differential equations (ODEs) with boundary condi-

tions. For a constrained optimal control problem, the min-

imum principle usually gives a set of piecewise ODEs, i.e.,

a multi-point boundary value problem (MBVP). Methods to

solve an MBVP have been investigated for decades. This

note focus on the method to achieve fast computation of the

solution of a class of MBVPs.

Shooting methods [10–16] represent classic but effective

methods to solve an MBVP as an initial value problem [17].

Recent work [18] proposes a continuous method to achieve

fast computation of solutions of boundary value problems.

Single shooting has some pros and cons such as a small num-

ber of parameters, easy implementation, difficulty to con-

verge for problems having nonlinearity or long time hori-

zon, difficulty to handle state constrained problems. Mul-

tiple shooting [10, 12] aims to relieve limitations of single

shooting, and satisfactory in term of robustness, convergence

of solutions etc. However, the computational load of con-

ventional multiple shooting is high, which is mainly due to

overparametrization of the problem. Since multiple shoot-

ing algorithms generally transform the original MBVP into

a large nonlinear programming problem (NLP), it is difficult

to meet the computation time target for real-time applica-

tions.

This note proposes a method which exploits the advan-

tages of the single and multiple shooting to achieve fast com-

putation of the solution of a class of MBVPs. The proposed

method takes a different parametrization scheme to speed up

the computation by introducing less parameters than multi-

ple shooting, as well as allows the handling the state con-

strained problems. The proposed method treats the state and

costate, and switch times as parameters, thus performs as

single shooting for each segment of the system trajectory,

but as multiple shooting for the entire trajectory. The new

method suffers similar convergence issue due to the cou-

pling effects on boundary conditions of the guesses of state

and costate and switch times. A two-step algorithm, which

updates the state and costate parameters, and switch times

alternately, is proposed to decouple the interaction, thus im-

proves the convergence property over single shooting.

This paper is organized as follows. Section 2 states an

optimal control problem of a motivation example. In Sec-

tion 3, the main algorithm is illustrated in details. Section

4 demonstrates the application of the proposed method to a

MBVP associated with the motivation example. Conclusions

are made in Section 5.

2 A Motivation Example

Consider the following model in the state space form

ẋ1 = x2,

ẋ2 = dx2 + bu+ c,
(1)

where d is the viscous friction coefficient, c is the Coulomb
friction, and u is the control input. Assume b, c, d are con-
stant. We shall compute the optimal trajectory minimizing

the following cost function

E =

∫ T

0

(Ru2 +Ks|u|+Kτx2u)t., (2)

where R,Ks,Kτ are constant coefficients. This is equiva-

lent to solve the following optimal control problem.

Problem 2.1 Given the plant (1), the initial state x(0) =
x0 = (0, 0)T , the final state x(T ) = (r, 0)T , and the final

time T , find the control u∗ which minimizes the cost function

(2) subject to acceleration and velocity constraints

0 ≤ x2 ≤ vmax, |ẋ2| ≤ amax, (3)

where vmax, amax, r are known constants.



2.1 Benchmark: Direct Transcription with Mesh Re-

finement

Direct transcription methods solve optimal control prob-

lems by converting them directly into equivalent mathe-

matical programming problems without applying any opti-

mality conditions. In particular, consider the direct tran-

scription of Problem 2.1 using trapezoidal integration rule

on a mesh 0 = t0 < t1 < · · · < tN = T . The

control u(t) is discretized on (t0 + t1)/2, . . . , (tN−1 +
tN )/2 as u1, . . . , uN , and the states x1(t), x2(t) are des-
critized as x1,0, x1,1, . . . , x1,N and x2,0, x2,1, . . . , x2,N , re-

spectively. Let X = [x1,0, . . . , x1,N , x2,0, . . . , x2,N ], U =
[u1, . . . , uN ],∆i = ti− ti−1, i = 1, . . . , N . The discretized

problem is given by

Problem 2.2 (Discretized problem)

min
X,U

N
∑

i=1

(

Ru2
i +Ks|ui|+Kτui

x2,i−1 + x2,i

2

)

∆i

s.t.
x1,i+1 − x1,i

∆i

=
x2,i + x2,i+1

2
,

x2,i+1 − x2,i

∆i

= d
x2,i + x2,i+1

2
+ bui + c

for i = 0, . . . , N − 1,

0 ≤ x2,i ≤ vmax,
∣

∣

∣

∣

d
x2,i + x2,i+1

2
+ bui + c

∣

∣

∣

∣

≤ amax, i = 0, . . . , N

x1,0 = 0, x1,N = r,

x2,0 = 0, x2,N = 0.

The mathematical programming problem 2.2 is then

solved using optimization solvers to find approximate solu-

tions to the original optimal control problems. Unlike shoot-

ing methods, direct transcription methods do not require the

user’s expertise in optimal control theory, and therefore, are

easy to use.

Themesh refinement techniquewas introduced to enhance

the accuracy, computational efficiency, and robustness of di-

rect transcription methods [19]. In this paper, we use a re-

cent direct transcription method with density function based

mesh refinement scheme, which is introduced in [20], as a

benchmark for evaluating the proposed method.

In that density function based mesh refinement method

[20], the optimal control problem is first directly transcribed

into a nonlinear programming problem (NLP) in the form

of 2.2 by discretizing the integral cost function (2), system

dynamics differential equations (1) and other constraints (3)

on an uniform mesh (t0, . . . , tN are uniformly distributed on

[0, T ]).
After the first solution is obtained, a grid density func-

tion is computed based on the solution, and mesh points are

added and redistributed according to the density function.

Once a new mesh is obtained, the optimal control problem is

discretized on the new mesh again to form another nonlinear

program, and solved for a more accurate solution. Such a

process is repeated until certain stopping criterion has been

satisfied. The mesh refinement process allocates the grid

points over the whole time interval while putting emphasis

on the points of discontinuity of the state and control vari-

ables addressed by the density function. Hence, the size of

the resulting NLP problems are typically much smaller than

those obtained using direct transcription on an uniformmesh

with similar resolution, which helps reducing the computa-

tion time.

2.2 Indirect Method

Problem 2.1 has been investigated thoroughly in [21, 22],

where the minimum principle and the optimal principle are

applied to establish necessary optimality conditions, the

complete set of structures of optimal solutions, and the com-

plete set of multi-point boundary value problems (MBVPs)

corresponding to the set of structures. We cite a few results

to make this note self-contained.

We express the HamiltonianH piecewisely,

H =

{

H11 = Ru2 +Ksu+Kτx2u+ H̄1, u ≥ 0,

H12 = Ru2 −Ksu+Kτx2u+ H̄1, u < 0,

(4)

where

H̄1 =λT (Ax+Bu+ C) + µT

[

dx2 + c+ bu
−dx2 − c− bu

]

+ νT
[

dx2 + c+ bu− amax

−amax − dx2 − c− bu

]

.

Lagrange multipliers µ, ν correspond to the velocity and ac-
celeration constraints, respectively.

2.2.1 Optimal Control

Assuming that at any time instant, only one constraint is

active. Control on constrained segments is given by

u =











− dx2+c
b

= uvel, x2 = vmax,
amax−dx2−c

b
= upacc, ẋ2 = amax,

−amax−dx2−c
b

= unacc, ẋ2 = −amax.

(5)

We solve unconstrained positive and negative controls, de-

noted by u1 and u2, from ∂H11/∂u = 0, ∂H12/∂u = 0
respectively

u =

{

−Kτx2+Ks+bλ2

2R , u ≥ 0,

−Kτx2−Ks+bλ2

2R , u < 0.

If neither ∂H11/∂u = 0 has a positive solution nor

∂H12/∂u = 0 gives a negative solution, the optimal con-

trol is u = 0.

2.2.2 Dynamics

Given the knowledge of x, λ, and the control, x-dynamics
is well-defined. We therefore focus on the costate dynamics.

Since the partial derivative of H w.r.t. x is well-defined, the

costate dynamics can be readily obtained.

λ̇ =−ATλ−

[

0
Kτu

]

−

[

0 0
d −d

]

(µ+ ν). (6)

When the system trajectory is along unconstrained arcs, µ =
ν = 0. If an acceleration constraint is active, ν is solved

from

H11u

∣

∣

u=upacc
= 0, ẋ2 − amax ≤ 0 is active, (7a)



H12u

∣

∣

u=unacc
= 0, −amax − ẋ2 ≤ 0 is active, (7b)

whose solutions are

ν1 =
−1

b
{2Ru+Ks +Kτx2 + bλ2},

ν2 =
1

b
{2Ru−Ks +Kτx2 + bλ2}.

(8)

For the velocity constraint x2 − vmax ≤ 0, we have the

Lagrange multiplier µ determined fromH11u = 0 with u =
upvel

µ1 =
−1

b
{2Ru+Ks +Kτx2 + bλ2}, x2 = vmax.

(9)

2.2.3 An MBVP

Assuming the knowledge of the structure of the optimal

trajectory, the MBVP to be solved is well-defined and takes

the following form

ẋa = f(xa, uk, ν, µ), t ∈ [tk−1, tk],

g(xa(t
+
k−1), xa(t

−

k−1), π) = 0, 1 ≤ k ≤ m− 1,

h(xa(t0), xa(T )) = 0,

(10)

where xa = [x, λ]T , g, h are appropriate functions, k de-

notes the kth segment of the optimal trajectory, m is the

number of segments the optimal trajectory includes, and tk
is the entry time of the k+1th segment. The MBVP (10) can

be established from applying the minimum principle [17, 23]

to more general optimal control problems.

3 The Main Algorithm

We first make a few assumptions, then give the algorithm

solving a class of MBVPs in the form of (10).

Assumption 3.1 The MBVP (10) admits a solution

(x∗

a(t), u
∗(t)) where u∗(t) is continuous over [0, T ].

Remark 3.2 Assumption 3.1 allows us to use the continuity

of control as a part of Boundary Conditions (BCs) to deter-

mine switch times. This is without loss of generality, because

without Assumption 3.1, the BCs determining switch times

will still be well-defined.

The main algorithm to solve the MBVP (10) is given

in Figure 1, where β1, β2 are two sets of parameters, and

BC1, BC2 are two sets of BCs. The main difference be-

tween the proposed and the one-step algorithm used in con-

ventional multiple shooting solvers is that the former alter-

nately updates two parameter sets β1, β2 on the basis of two

sets of BCs BC1 and BC2, respectively. This is important

to improve the convergence of the proposed algorithm which

aims to achieve fast computation of the optimal trajectory at

the expense of the convergence advantage of conventional

multiple shooting methods.

Remark 3.3 It is not difficult to observe that the proposed

algorithm actually tries to solve a sequence of optimal con-

trol problems, where at the qth iteration to update β
(q)
1 and

β
(q)
2 , the corresponding optimal control problem is

min
t
(q)
k

(

min
x(q),λ(q),u(q)

E(x, λ, u, tk)

)

, (11)
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Fig. 1: Flow chart of the main algorithm

for 1 ≤ k ≤ m − 1. The solution of Problem (11) at the

qth iteration is the input of the algorithm to solve Problem

(11) at the q + 1th iteration. As a comparison, the original

optimal control problem is

min
tk,x,λ,u

E(x, λ, u, tk), (12)

for 1 ≤ k ≤ m − 1. Problems (11) - (12) clearly may have
different solutions. The proposed algorithm tries to solve

(11) instead of (12) is based on the realization that it is rel-

atively difficult to compute the solution of (12).

Without loss of generality, we assume that the solution to

the MBVP has m segments. Hence, the optimal trajectory

switches at time instant tk, 1 ≤ k ≤ m− 1. We also denote

t0 = 0, tm = T .

3.1 Parametrization of the MBVP

To simplify the presentation, we only consider parameters

for the kth segment (βk1, βk2)

βk1 = ((x(tk−1), λ(tk−1)),

βk2 = tk.

Define β1 = (β11, . . . , βm1), β2 = (β12, . . . , βm2). The set
β1 consists of parameters representing the state and costate

values at switch times tk, 1 ≤ k ≤ m − 1, and the set β2

consists of parameters representing switch times tk, 1 ≤ k ≤
m− 1. Denote β = (β1, β2) the entire set of parameters.

3.2 Boundary Conditions

For simplicity, we consider the BCs for the kth segment.
If no state constraint is active, the BCs at the end of the kth
segment take the form of

φx(x(tk−1), λ(tk−1), tk−1, t
−

k ) = x(t+k ),

φλ(x(tk−1), λ(tk−1), tk−1, t
−

k ) = λ(t+k ),

u(t−k ) = u(t+k ),

(13)

where φx and φλ represent the state and costate trajectories,

respectively. BCs (13) can be partitioned into two setsBCk1



and BCk2 which correspond to parameter sets βk1 and βk2,

respectively

BCk1 :

φx(x(tk−1), λ(tk−1), tk−1, t
−

k ) = x(t+k ),

φλ(x(tk−1), λ(tk−1), tk−1, t
−

k ) = λ(t+k ),

BCk2 :

u(t−k ) = u(t+k ).

The residue corresponding to BCk1, BCk2, denoted by

Fk1, Fk2, are given by

Fk1 :

x(t+k )− φx(x(tk−1), λ(tk−1), tk−1, t
−

k ),

λ(t+k )− φλ(x(tk−1), λ(tk−1), tk−1, t
−

k ),

Fk2 :

u(t+k )− u(t−k ).

Residues correspond to the two parameter sets β1, β2 are de-

noted by

F1 = (F11, . . . , Fm1),

F2 = (F12, . . . , Fm2).

Remark 3.4 If a state constraint is active in the k + 1th
segment, the costate at t = tk will be discontinuous. Hence

the BCs for the kth segment will be slightly different

φx(x(tk−1), λ(tk−1), tk−1, t
−

k ) = x(t+k ),

u(t−k ) = u(t+k ).

Meanwhile, λ(tk) is excluded from the parameter set.

3.3 Sensitivity Equations

The procedure to find parameters satisfying BCs gener-

ally includes the computation of the jacobian of BCs or the

residue F = (FT
1 , FT

2 )T w.r.t. parameters, which consists

of the following components

∂x

∂β1
,

∂λ

∂β1
,

∂x

∂β2
,

∂λ

∂β2
.

It is well-established that the gradient of BCs can be obtained

from integrating sensitivity equations. For the completeness

of the presentation, we recall how to compute the gradient of

F1 w.r.t. β1. For the kth segment, the sensitivity equations
of x(tk) w.r.t. λ(tk−1) are computed from

d

dt

∂x(t)

∂λ(tk−1)

= (fx + fuux)
∂x

∂λ(tk−1)
+ fuuλ

∂λ

∂λ(tk−1)
,

where t ∈ [tk−1, tk), and

fx =
∂f(x, u(x, λ))

∂x
, fu =

∂f(x, u(x, λ))

∂u
,

ux =
∂u(x, λ)

∂x
, uλ =

∂u(x, λ)

∂λ
.

Similarly we have the sensitivity equations of λ(t) w.r.t.
λ(tk−1).

d

dt

∂λ

∂λ(tk−1)
= −HT

xx

∂x

∂λ(tk−1)
−HT

xλ

∂λ

∂λ(tk−1)

−HT
xu(uλ

∂λ

∂λ(tk−1)
+ ux

∂x

∂λ(tk−1)
)

−HT
xµ

(

µλ

∂λ

∂λ(tk−1)
+ µx

∂x

∂λ(tk−1)

+µu(ux

∂x

∂λ(tk−1)
+ uλ

∂λ

∂λ(tk−1)
)

)

−HT
xν

(

νλ
∂λ

∂λ(tk−1)
+ νx

∂x

∂λ(tk−1)

+νu(ux

∂x

∂λ(tk−1)
+ uλ

∂λ

∂λ(tk−1)
)

)

.

where

HT
xx =

∂

∂x

(

∂H

∂x

)T

, HT
xλ =

∂

∂λ

(

∂H

∂x

)T

,

HT
xu =

∂

∂u

(

∂H

∂x

)T

, HT
xµ =

∂

∂µ

(

∂H

∂x

)T

,

HT
xν =

∂

∂ν

(

∂H

∂x

)T

,

µx =
∂µ

∂x
, µλ =

∂µ

∂λ
, µu =

∂µ

∂u
,

νx =
∂ν

∂x
, νλ =

∂ν

∂λ
, νu =

∂ν

∂u
.

Similarly, we have the sensitivity equations on
∂x

∂x(tk−1)
, ∂λ
∂x(tk−1)

. We summarize the sensitivity equations

as follows











d
dt

∂x
∂x(tk−1)

d
dt

∂x
∂λ(tk−1)

d
dt

∂λ
∂x(tk−1)

d
dt

∂λ
∂λ(tk−1)











=









α1I 0 α2I 0
0 α1I 0 α2I

α3I 0 α4I 0
0 α3I 0 α4I



















∂x
∂x(tk−1)

∂x
∂λ(tk−1)

∂λ
∂x(tk−1)

∂λ
∂λ(tk−1)











(14)

where I is the identity matrix with the same dimension as

the state vector x, and

α1 =fx + fuux,

α2 =fuuλ,

α3 =−HT
xx −HT

xuux

−HT
xµ(µx + µuux)−HT

xν(νx + νuux),

α4 =−HT
xλ −HT

xuuλ

−HT
xµ(µλ + µuuλ)−HT

xν(νλ + νuuλ).

Initial conditions of sensitivity equations are

∂x(t)

∂x(tk−1)

∣

∣

∣

∣

t=tk−1

= I,
∂x(t)

∂λ(tk−1)

∣

∣

∣

∣

t=tk−1

= 0,

∂λ(t)

∂x(tk−1)

∣

∣

∣

∣

t=tk−1

= 0,
∂λ(t)

∂λ(tk−1)

∣

∣

∣

∣

t=tk−1

= I.

Note that sensitivity equations for the kth segment is only

defined over [tk−1, tk).



We compute the gradient of the residue F2 w.r.t. the pa-

rameter set β2 from ∂x/∂β2, ∂λ/∂β2, particularly

∂x(t−k )

∂tk
,
∂x(t−k+1)

∂tk
,
∂λ(t−k )

∂tk
,
∂λ(t−k+1)

∂tk
,

which take the following formula

∂x(t−k )

∂tk
= f(x(t), u(t))

∣

∣

∣

∣

t=t
−

k

,

∂λ(t−k )

∂tk
= −HT

x (x(t), λ(t), µ(t), ν(t))

∣

∣

∣

∣

t=t
−

k

,

∂x(t−k+1)

∂tk
= −f(x(t), u(t))

∣

∣

∣

∣

t=t
−

k+1

,

∂λ(t−k+1)

∂tk
= HT

x (x(t), λ(t), µ(t), ν(t))

∣

∣

∣

∣

t=t
−

k+1

.

3.4 Update Parameters

We need to find the parameter set β∗ = (β∗

1 , β
∗

2) s.t.

F1(β
∗

1 ) = 0, F2(β
∗

2 ) = 0, which are a set of nonlinear al-
gebraic equations. The newton method is used to update the

guess of β

βn+1
1 = βn

1 + ρn1

(

∂Fn
1

∂β1

∣

∣

∣

∣

β1=βn
1

)

−1

Fn
1 ,

β
(q+1)
2 = β

(q)
2 + ρ

(q)
2

(

∂F
(q)
2

∂β2

∣

∣

∣

∣

β2=β
(q)
2

)

−1

F
(q)
2 ,

where ρn1 , ρ
n
2 are step lengths of parameter innovation, the

superscript n in β1, F1, ρ1 denotes the nth step while solv-
ing (12) at the q + 1th iteration, 0 ≤ q < +∞.

4 Solving the Motivation Example

The optimal solution to Problem 2.1 may consist of var-

ious segments, and its structure depends on problem data

such as T, r, amax, vmax. Different structure corresponds to

a distinctive MBVP. To simplify the presentation, we illus-

trate the use of the proposed algorithm by solving the MBVP

corresponding to the following problem data, PDATA1 :
T = 0.608s, r = 164m, vmax = 314.16m/s, amax =
3620m/s2, d = −3.8258Ns/m, c = −241.2879N, b =
1031.4N/A. The structure of the optimal solution to Prob-
lem 2.1 could be identified systematically as in [22]. Without

loss of generality, we assume the knowledge of the structure

of the optimal solution to Problem 2.1 with PDATA1. That

is: the optimal trajectory consists of 7 orderly segments

1) positive acceleration constrained arc;

2) unconstrained positive control arc;

3) velocity constrained arc;

4) unconstrained positive control arc;

5) zero control arc;

6) unconstrained negative control arc;

7) negative acceleration constrained positive control arc.

The corresponding MBVP is written as follows

4.1 Parameters and Boundary Conditions

We define parameters for the k segment

(βk1, βk2) =











(λ0, t1)
T , k = 1,

(x(tk), λ(tk), tk+1)
T , 2 ≤ k ≤ 6,

(x(t6), λ(t6))
T , k = 7.

(15)

β1 = (λ0, x(t1), λ(t1), . . . , x(t6), λ(t6)),

β2 = (t1, . . . , t6) ∈ R
6.

We also have the boundary conditions for the kth segment,
1 ≤ k ≤ 7,

BC1 : on state and costate

φx(x(tk−1), λ(tk−1), tk−1, tk) = x(t+k ), 1 ≤ k ≤ 6

φλ(x(tk−1), λ(tk−1), tk−1, tk) = λ(t+k ), k 6= 2, 1 ≤ k ≤ 6

x2(t
−

2 ) = vmax,

λ1(t
−

2 ) = λ1(t
+
2 ),

φx(x(t
+
6 ), λ(t

+
6 ), t6, T ) = xf , k = 7

BC2 : on switch times

u(t−k ) = u(t+k ), 1 ≤ k ≤ 6,

where x(t0) = x0, λ(t0) = λ0. The MBVP has 30 parame-

ters and BCs.

Remark 4.1 The number of parameters can be further re-

duced by removing the costate at the entry of constrained

segments. Thus the parameter sets can be written as

(βk1, βk2) =







































t1, k = 1,

(λ(t1), t2), k = 2,

(x(t2), t3), k = 3,

(x(t3), λ(t3), t4), k = 4,

(x(t4), t5)
T , k = 5,

(x(t5), λ(t5), t6)
T , k = 6.

The corresponding BCs can be similarly simplified.

4.2 Sensitivity Equations

Next we derive the sensitivity equations defining

∂x

∂β1
,

∂λ

∂β1
,

∂x

∂β2
,

∂λ

∂β2
.

The sensitivity equations corresponding to (15) are summa-

rized as follows

d

dt

∂xa

∂β1
= Aa

∂xa

∂β1
(16)

where xa = [x, λ], and

Aa =

[

α1I48 α2I48
α3I48 α4I48

]

,

∂xa

∂β1
=
[

∂x
∂β1

∂λ
∂β1

]

∈ R
96.

From (1), we have

fx =

[

0 1
0 d

]

,



fu = [0, b]T ,

ux =











[0,− d
b
], |ẋ2| = amax or x2 = vmax,

[0,−Kτ

2R ], u = u1 or u = u2,

[0, 0], otherwise.

uλ =

{

[0,− b
2R ], u = u1 or u = u2,

[0, 0], otherwise,

HT
xλ = AT ,

HT
xu =

{

[0,Kτ ]
T , if u 6= 0,

[0, 0]T , u = 0,

HT
xx = 0,

HT
xµ =











[

0 0

d −d

]

, u 6= 0,

0, u = 0,

HT
xν = HT

xµ,

µx =































[

0 Kτ

−b

0 0

]

, x2 = vmax,

[

0 0

0 Kτ

−b

]

, x2 = 0,

0, otherwise,

µλ =































[

0 −1

0 0

]

, x2 = vmax,

[

0 0

0 −1

]

, x2 = 0,

0, otherwise,

µu =



















[

2R
−b

0
]T

, x2 = vmax,
[

0 2R
−b

]T

, x2 = 0,

0, otherwise,

νx =































[

0 Kτ

−b

0 0

]

, if ẋ2 = amax,

[

0 0

0 Kτ

b

]

, if ẋ2 = −amax,

0, otherwise,

νλ =































[

0 −1

0 0

]

, ẋ2 = amax,

[

0 0

0 1

]

, ẋ2 = −amax,

0, otherwise,

νu =



















[

2R
−b

0
]T

, if ẋ2 = amax,
[

0 2R
b

]T

, if ẋ2 = −amax,

0, otherwise.

Thus we obtain α1, . . . , α4. Following the procedure in Sec-

tion 3, the sensitivity ofBC2 w.r.t. switch times can be read-

ily computed.

4.3 Update Parameters

According to Section 3, we first use the residue F1 and the

gradient ∂F1/∂β1 to update parameter set β1 s.t. F1(β
∗

1 ) =
0, then use the residue F2 and the gradient ∂F2/∂β2 to up-

date parameter set β2 s.t. F2(β
∗

2 ) = 0.

4.4 Simulation

We code the algorithm in Matlab 7.0 to solve the MBVP

associated with problem data PDATA1. The solver per-

forms 9 iterations to update the parameter set β2. The bench-

mark mesh refinement direct transcription method in Section

2 is started from a uniform mesh containing 20 mesh points,

and stopped after 4 iterations with a final mesh of 80 grid

points. The final mesh has a finest local resolution equiv-

alent to a uniform mesh containing 300 grid points. The

NLP problem 2.2 is solved using the Matlab function fmin-

con with the SQP method. The control iteration and mesh

refinement iterations of the benchmark method are shown in

Figure 4 and Figure 5, respectively. The total computation

time of the benchmark method is 5.4 seconds. The proposed

algorithm finds the solution of the MBVP within 1s, which

is more than 5 times faster than benchmark method. The op-

timal control trajectory is given in Figure 2. The iteration

of updating β2 is shown in Figure 3, where the iteration is

illustrated by the control trajectory during each iteration of

β2.
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Fig. 2: Control trajectory

5 Conclusions

This note presents a method to solve a class of multi-point

boundary value problems (MBVPs). The proposed method

is a tradeoff between multiple and single shooting. A satis-

factory computation speed and performance is achieved by

requiring much less parameters, and the introduction of a

two-step algorithm. Different from the existing one-step al-

gorithm, the two-step algorithm improves the convergence

property by decoupling the interaction between two sets of

parameters: state and costate, and switch times. Simulation

shows that the proposed method can compute the solution of

a class of MBVPs faster than various existing methods.
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