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Abstract
This paper presents a computationally very efficient, robust, automatic tracking method that
does not require any implanted fiducials for low-contrast tumors. First, it generates a set
of motion hypotheses and computes corresponding feature vectors in local windows within
orthogonal-axis X-ray images. Then, it fits a regression model that maps features to 3D tumor
motions by minimizing geodesic distances on motion manifold. These hypotheses can be
jointly generated in 3D to learn a single 3D regression model or in 2D through back projection
to learn two 2D models separately. Tumor is tracked by applying regression to the consecutive
image pairs while selecting optimal window size at every time. Evaluations are performed
on orthogonal X-ray videos of 10 patients. Comparative experimental results demonstrate
superior accuracy (approx 1 pixel average error) and robustness to varying imaging artifacts
and noise at the same time.
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Wis paper presents a computationally very eXcient, robust, automatic tracking method that does not require any implanted
Zducials for low-contrast tumors. First, it generates a set of motion hypotheses and computes corresponding feature vectors in
local windows within orthogonal-axis X-ray images. Wen, it Zts a regression model that maps features to 3D tumor motions
by minimizing geodesic distances on motion manifold. Wese hypotheses can be jointly generated in 3D to learn a single 3D
regression model or in 2D through back projection to learn two 2D models separately. Tumor is tracked by applying regression
to the consecutive image pairs while selecting optimal window size at every time. Evaluations are performed on orthogonal X-ray
videos of 10 patients. Comparative experimental results demonstrate superior accuracy (∼1 pixel average error) and robustness to
varying imaging artifacts and noise at the same time.

1. Introduction

Tumor tracking is an essential component of image-guided
radiation therapy (IGRT) systems for treating lung and
abdominal area tumors, which move signiZcantly due to res-
piration. With accurate tracking, large margins added to the
planning target volumes can be eliminated, and thus, adverse
ecects of radiation on healthy tissue can be minimized.
Duration of treatment sessions can be shortened considerably
by tracking tumors and applying radiation continuously.

Conventional tracking approaches determine tumor
position using internal and/or external surrogates. Oeen,
multiple passive (metallic) [1] and active (electromagnetic)
[2] internal Zducials are implanted around tumor to con-
tinuously monitor its motion in X-ray videos. However,
surgical implantation of such invasive internal Zducials are
harmful as they destroy healthy tissues, and patients have
greater chance of developing pneumothorax during CT-
guided Zducial placement. Besides, internal Zducials slide
and relocate during the course of multiple treatment sessions
causing uncertainty in their reference positions.

It is also possible to apply correspondence models
between external markers (chest and abdominal area point-
ers) and internal Zducials to indirectly estimate tumor posi-
tion in optical images [3, 4]. Yet, the correlation between

external markers and tumor position may be violated easily
as a result of complex respiratory biomechanics [5]. Alterna-
tively, parametricmodels of motion patterns are used to track
tumors [6]. Such methods, however, require manual labeling
of surrogate regions and tumor positions for a long period of
time in order to train models. A multiple template matching
method for X-ray images is described in [7]. It should be
noted that templatematchingmay fail for low-contrast tumor
regions where the image quality is low.

Here, we present a tumor tracking method that does not
require any invasive internal Zducials or external markers.
Unlike the traditional methods, we consider the tumor
tracking problem as a regression model Ztting task between
orthogonal X-ray videos and underlying tumor motion as
illustrated in Figure 1. Our intuition is that tumor motion
in orthogonal planes can be approximated by aXne motion
(or a similar parametric motion) and image features can be
linearly correlated with these tumor motion parameters. In
other words, the feature vector we compute within the tumor
region is supposed to be an indicator of the tumor motion.
For this, we use an image feature that is sensitive to motion
unlike the insensitive features such as intensity histograms
that conventional motion estimation methods oeen require.

We learn an online regression model, which is a single
matrix that maps image features to motion parameters using



2 Computational and Mathematical Methods in Medicine

the initial pair of the orthogonal X-ray images. We randomly
generate a set of 3D motion hypotheses (aXne motion
matrices) around the initial tumor location. To eXciently
cover the parameter space, we generate motion hypotheses
conditioned on the respiratory biomechanics (e.g., depending
on the position of the tumor, the motion can be constrained
to be translational only).

Wese hypotheses map an initial support window volume
tumor in both orthogonal X-ray image pairs by simple 3D-
2D projection. In addition, we determine an optimal tracking
window size in each orthogonal view. We then compute two
image feature vectors (e.g., histogram of oriented gradients)
in the corresponding image windows, and we concatenate
these vectors.

To learn the regression model, we solve an overcomplete
least-squares Ztting problem between the motion hypotheses
and concatenated feature vectors using the geodesic dis-
tances. In [8, 9], a linear regression function is consid-
ered. Since aXne motion matrices constitute a Riemmanian
manifold, motion hypotheses distances should be computed
through geodesics. We beneZts of using Riemmanian mani-
fold over previously used motion models in Euclidean space
(e.g., just vectorizing the motion hypothesis matrix) can be
found in [10] for nonmedical examples. We are inspired by
[10], yet we signiZcantly extend its basic idea to 3D tumor
motion, multiple orthogonal videos, and joint feature com-
putation while further reZning it with an adaptive optimal
window selection.

To estimate the current tumor position in a new X-
ray pair, we simply apply the learned regression model to
the concatenated feature vector computed in the new X-ray
images within the previous tumor windows.

Note that we track the tumor position but not its
boundary. Boundary tracking can be done by segmenta-
tion, registration, boundary Ztting, B-splines, and so forth.
However, for a low-contrast and invisible tumor, boundary
trackingmay not be possible since the tumor boundary is not
distinct from its surrounding tissues. Our method can track
the position of low-contrast tumors and does not require
registration.

We presented regression method is possibly one of the
fastest tumor tracking algorithms (and the fastest that we
tested) as it only requires a feature vector and a matrix mul-
tiplication without any expensive search operation (template
matching, etc.), iterative updates (mean shie), optimization
with smoothing or total variation constraints (optical-now),
or testing a large number of hypotheses during the tracking
process (particle Zltering) as other tracking techniques. It
does not require any ooine training or patient-speciZc
adaptation. It does not require a tumor detector either.

Extensive experiments with challenging real patient
datasets demonstrate that the proposed method is robust to
dicerent tumor locations and very accurate for low-contrast
tumors.

Figure 1: Orthogonal X-ray imaging. Due to breathing, projected
regions in sagittal and coronal X-rays move signiZcantly up to
3∼4 cm.

2. Regression Tracking

Regression tracking learns an online regression model Ω to
correlate the observed image features X to underlying tumor
motion Y. Wis can be done either learning a single model in
3DEuclidean space (3DR) or learning two separate regression
models in 2D planar space then intersecting them in 3D space
(2DR).

We formulate the model learning as a Ztting problem,
which Znds the regression coeXcientsΩ throughminimizing
the geodesic distance between the tumor motion matrices Y
and its estimates XΩ as

min
Ω
‖XΩ − Y‖2 + $‖Ω‖2, (1)

where $ determines the weight of Tikhonov regularization,
that is, preference to solutions with smaller smooth norms.
We solve (1) through ridge regression to determine Ω. We
solution is given as

Ω = (X⊤X + $I)−1X⊤Y. (2)

At the Zrst image pair (' = 0) of orthogonal X-ray sequences,
we learn Ω using the initial location(0. Wen, for any given
image pair ' > 0, we simply compute a feature vector ℎ" and
applyΩ to Znd the tumor position:

(" = ("−1 ⋅ exp (ℎ⊤" Ω) . (3)

A now diagram of our method is given in Figure 2. Next,
we explain how to compute ℎ", X, and Y and details of our
3DR/2DR formulations.

2.1. Training. For a single X-ray sequence, the tumor motion
between two consecutive frames can be modeled as a
3 × 3 aXne matrix ( (represented by 6 independent
motion parameters in 9 coeXcients). We use aXne motion
(translation, rotation, scale change, and skew) to represent
the incremental movement of the tumor. Considering the
biomechanical tissuemodels and respiratorymechanics, such
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Figure 2: Learning of regression model and tracking tumor.
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Figure 3: AXne transformation(0 maps a unit square from object space to image space. We generate / training hypotheses Δ(−1# in object
space and compute corresponding features in image space.

an aXne model is an adequate model. [11] further states that
the tumor motion can be modeled as a simpler periodic
function, featuring more time spent at the exhale phrase.
When there is no hysteresis with the patient’s respiratory
system, the pathways for inspiration and expiration of one
respiratory cycle are approximately the same and almost
linear. Even with the presence of hysteresis, the maximum
deviation between the two pathways is usually much smaller
than the distance along the primary direction of the tumor
motion. Wus, a simple translation only motion would be
suXcient in most cases; however, we consider full aXne
motion in our analysis for the completeness of the discussion.

1
Let ( represent the transformation from a unit square

in the object space to the aXne region enclosing the tar-
get tumor in the image space; that is, (4img, 5img, 1)⊤ =
((4obj, 5obj, 1)⊤. We tumor position (" at time ' can be
computed eXciently from("−1 by

(" = ("−1 ⋅ Δ(", (4)

where Δ(" is the incremental motion.
AXne motion matrices lie on a Riemmanian manifold.

Wis means that we cannot simply vectorize the motion
matrices to compute an Euclidean distance between them.
Geodesic distances should be measured, thus we apply Lie
group exponential map to determine Δ("

Δ(" = exp (ℎ⊤" Ω) , (5)

where ℎ" ∈ R$ is a9× 1 feature vector corresponding to the
unit square in object space warped from :" through("−1,Ω is
a9×;matrix of regression coeXcients, and ; is the number
of motion coeXcients. For 2D (3D) aXne transformation ;
can be set to 6 (12) independent parameters, or all 9 (16)
coeXcients of the 3 × 3 (4 × 4) aXne motion matrix. In
either case, each row of Ω should be reshuoed to obtain the
corresponding motion matrix.

To Znd the optimal solution of (1), we Zrst generate a
training set of / random aXne transformation hypotheses
Δ(# together with their corresponding feature vectors ℎ0,#
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Figure 4: Orthogonal X-ray images from Patient 7. Frame 1 depicts
the overlaid tumor boundary, and Frames 380 and 600 show the
exhale phase and the inhale phase of the lung, respectively. We
compare the performance of 3DR, 2DR, OF, and PHOG with the
ground truth (GT) tumor center positions at Frames 380 and 600
(best in color).
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Figure 5: Estimated tumor trajectories of dicerent tracking algo-
rithms are compared with the ground truth data in the Cranial-
Caudal (CC) direction for Patient 7. Note that Pℓ1 has large tracking
errors in the axial plane.

extracted from image :0, as shown in Figure 3. Wen, we
construct X and Y as

X = (ℎ0,1⊤; . . . ; ℎ0,%⊤)%×$,

Y = ((logΔ(1)
⊤; . . . ; (logΔ(%)

⊤)%×'.
(6)

Keep in mind that we generate more hypotheses than
the feature vector size and signiZcantly more than the
number of motion parameters. Wis means that we obtain
an overcomplete system of equations in above minimization.
Random sampling serves to achieve an ecective and reliable
training set and avoid overZtting. One can also quantize the
motion space and use those quantized motion parameter
values in training. We observed that the value of / has little
impact on the performance as long as it is larger than the

feature vector dimension; that is, / > 9. In our experiments,
we set / = 600 for the 2D regression algorithm.

Since the incremental motion of the tumor is small [11],
we can also limit the sampling bounds using the maximum
translational and rotational motion constraints typical for
tumor motion. Wis not only improves the tracking accuracy
but also stabilizes the tumor trajectories by removing possible
jitters.

We use Histograms of Oriented Gradients (HOG) to
describe the tumor window features ℎ". HOG has 8-bin
histograms for each 5 × 5 block within the tracking window,
concatenated into a single column vector.

During the tracking process, the model Ω can be
relearned to adapt changes if necessary. In our simulations
we have not observed any drie or model distortion issue with
only one training at the initialization.

Note that the regression model Ω built using the Zrst
images of the orthogonal sequences where the initial tumor
position is given (by table alignment, etc). Wen, it auto-
matically tracks the tumor in the newly given images. Our
learningmethod is blind to patient data; it does not make any
patient-speciZc assumption or require any patient-speciZc
information. It does not use any ooine training and does not
require manual marking of the tumor trajectory either.

For 512 × 512 image resolution, automatic generation of
motion hypotheses, computing the corresponding concate-
nated feature vectors and solving ridge regression, takes 0.05
seconds.

2.2. 3D Regression (3DR). To learn a joint regression model
that correlates the 3D tumor motion directly with the
orthogonal X-ray sequences, we group the feature vectors
from the two views and estimate a 3D aXne motion cor-
responding to them directly. We construct the combined

feature vectors (ℎ10,#; ℎ20,#) from the two X-ray views :10 and
:20 based on the labeled tumor position at time ' = 0
and randomly generate / 3D aXne matrices Δ(⋆# in 3D
Euclidean space. Next, we project Δ(⋆# on the orthogonal
X-ray image planes. Within the corresponding regions, we

extract the features ℎ10,# and ℎ20,# for the Zrst and second X-

ray views. In this case, Ω⋆ maps combined feature vectors

(ℎ1",#; ℎ2",#) (' = 0, C = 1, . . . , /) to their corresponding 3D

aXne motion matrices Δ(⋆# , where Δ(⋆# is a 4 × 4 aXne

matrix. Wus, X⋆ = ((ℎ10,1; ℎ20,1)
⊤; . . . ; (ℎ10,%; ℎ20,%)

⊤), Y⋆ =
((logΔ(⋆1 )

⊤; . . . ; (logΔ(⋆% )
⊤).

2.3. 2D Regression (2DR). Instead of learning a 3D regression
model, we could simply learn two separate regression matri-
cesΩ1 andΩ2 for the two X-ray views, and we apply (4) and
(5) iteratively to track the tumor in each X-ray view. Once we

have the two individual tracking results E1" and E2" of the two
orthogonal X-ray views at time ', we can simply compute the
tumor position E" in 3D through back projection. To do this,

we Zrst connect E1" and F1 to form lines G1" , E2" , and F2 to form
line G2" and then compute E" as the intersection of G1" and G2" ,
while F1 and F2 are the source points of the two orthogonal

X-ray radiation. In practice, G1" and G2" may not necessarily
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intersect with each other; thus we choose the midpoint of the
shortest path connecting these lines to represent the tumor
positions.

2.4. Optimal Tracking Window. Tracking window size plays
an important role in tumor tracking in soe tissues, especially
in lung and abdomen areas. To yield valid tracking results
for template based methods, the tracking window should not
be too big (may underestimate motion) or too small (may
lose track). We examine the self-similarity in the local tumor
region to Znd the optimal tracking window size for each
patient data.

Given a candidate window size H) × H*, we deZne the
local search region of size 2H)× 2H* with the same center, and

J = (H) ×4*)(H⋆) × H⋆*)
−1 ∈ [0.52, 1.52], whereH⋆) ×H⋆* is the

bounding size of the tumor. We compute the feature distance
for any pair of image patches within the searching region

using ℓ2 norm and use the mean error as an indicator to
describe the discriminatory power of the candidate window
size.

Intuitively, the larger this mean error the more discrimi-
natory power the candidate size has. However, theremay exist
dicerent distance distributions, which have the same mean
error. To take into account these cases, we give preference to
the small (20% of) feature distances and use their mean as
the indicator. In our experiments, the ratio J of the optimal
windows size to the tumor bounding box varies from 0.9 to
1.2 for the coronal view and from 1.1 to 1.3 for the sagittal view
for dicerent X-ray data sets.

3. Results

For objective performance evaluations, we test our track-
ing algorithm on digitally reconstructed radiograph (DRR)
sequences obtained from real-patient 4DCT data.WeseDRR
sequences have manually labeled ground-truth 3D landmark
positions.

Using X-ray videos has several issues. To annotate
ground-truthmotion, X-ray videos should depict tissues with
embedded metallic marker. However, it is problematic to
make a tracking algorithm to ignore high contrast marker
regions, which are oeen close to tumor and yet compute
uncontaminated image features for an unbiased evaluation.
Besides, markers themselves introduce uncertainty on the
ground-truth data since they may dislocate from the initial
calibrated positions or occlude each other in X-ray videos.

We use orthogonal DRR sequences obtained from 10
patients’ 4DCT data [12]. Wis data has dicerent tumor
locations, shapes, and internal volume characteristics.

Using a state-of-the-art simulator [13], we embed low-
contrast tumors in dicerent shapes, sizes, and locations in the
original 4DCT data and then generate DRR sequences rep-
resenting dicerent breathing patterns. Tumor shapes range
from spheroids to very intricate 3D polytopes. Each test
case is tested with a dicerent regular breathing signal and
two irregular breathing patterns. Since we do not impose
any temporal smoothing or linear dynamical model (Kalman
Zlter), the performance is not acected by the dicerent

breathing patterns. Each DRR sequence we test has around
900 frames. Figure 4 shows sample coronal and sagittal views.

Compared with higher resolution nat-panel X-ray digi-
tizer, this data presents considerable challenges.

(i) Since the patient CT has limited number of slices, it is
low resolution and drastically blurred particularly in
the cranial-caudal direction of the coronal view; for
example, ∼100 × 256 pixels (underlying DRR are of
256 × 256) for Patients 1–5 and ∼128 × 512 (DRR 512 ×
512) for Patients 6–10. On the other hand, a typical of
the nat panel X-ray digitizer has 2048 × 2048 pixels.
Limited resolution causes less discriminative features
leading potential tracking failures.

(ii) It has low contrast. We typical dynamic range of a
commercial nat-panel digitizer is 16 bits. However, the
DRRs we use are 8 bits encoded to push the algorithm
to its limit.

(iii) It contains noise and imaging artifacts. Unlike X-
ray videos from digitizer, DRR sequences inherit all
4DCT imaging artifacts due to limited CT scanning
speed.

(iv) We add white random Gaussian noise to the DRR
sequences considering that DRR images might not
sucer from X-ray image acquisition noise.

Wese issues certainly make tumor tracking more diXcult in
our dataset.

We compare the performance of our 3DR and 2DR
methods with the state-of-the-art including the best existing
optical now implementation (OF) [14] and ℓ1-based particle
Zlter (Pℓ1) [15]. [14] combines the “classical” now formulation
with image boundaries and designs an optimization frame-
work that utilizes median Zltering for now Zeld estimation.
[15] is a template-based robust visual trackingmethod, which
enforces sparse representation on the template set and follows
a particle Zlter-based Bayesian state inference.

We also implemented a HOG based particle Zlter
(PHOG) algorithm, which uses the same number of 3D
particles as the Pℓ1 method but computes the observation
likelihood from HOG feature matching. We OF algorithm
Zrst Znds the tumormotions on the twoX-ray views and then
estimates the 3D tumor position through back projection.We
compute the optical now between two consecutive frames in
full resolution since that the magnitude of the tumor motion
is unknown and far away feature points can also contribute to
the motion estimation of tumor regions.

Table 1 presents the detailed performance comparison
of these algorithms as well as their average processing time
per frame. For each test case, we also list the tumor motion
magnitude in the last column. We use the Euclidean distance
between the estimated and the ground truth (GT) tumor
center in 3D as the error measurement (in pixels). We GT
tumor center is calculated as themass center of theGT tumor,
while the estimated tumor center is the center of the estimated
tracking window.

Our results using 10 dicerent patient data show that 2DR
gives 1.05 pixel, 3DR 1.16 pixel, OF 3.57 pixel, Pℓ1 5.01, and
PHOG 5.68 pixel error on average where the average tumor
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Table 1: Performance comparison (in pixel) of dicerent tracking algorithms. 3DR and 2DR are very robust and consistently achieve most
accurate tracking results (the best tracking result is in bold).

3DR 2DR OF PHOG Pℓ1 Total displacement
∼0.03 secs ∼0.06 secs ∼2.8mins ∼3.2 secs ∼34.4 secs

Patient 1 0.78 ± 0.34 0.52 ± 0.29 2.15 ± 0.79 1.63 ± 0.36 3.28 ± 1.30 8.03

Patient 2 2.61 ± 1.62 2.27 ± 1.37 2.12 ± 0.90 1.88 ± 0.96 7.54 ± 3.99 7.76

Patient 3 0.83 ± 0.42 0.70 ± 0.38 1.10 ± 0.43 2.06 ± 2.11 3.39 ± 0.83 10.47

Patient 4 2.86 ± 1.48 2.67 ± 1.41 4.20 ± 1.10 2.54 ± 0.84 4.38 ± 1.59 10.98

Patient 5 1.07 ± 0.54 0.92 ± 0.50 2.16 ± 0.90 2.14 ± 1.28 4.36 ± 1.19 5.23

Patient 6 0.65 ± 0.54 0.67 ± 0.48 10.98 ± 3.40 2.45 ± 1.50 5.76 ± 1.18 18.31

Patient 7 0.99 ± 0.49 0.94 ± 0.45 4.80 ± 1.87 4.71 ± 2.80 5.94 ± 1.49 22.13

Patient 8 0.69 ± 0.37 0.72 ± 0.39 3.15 ± 1.29 7.45 ± 8.30 5.19 ± 1.22 22.36

Patient 9 0.33 ± 0.29 0.35 ± 0.27 1.20 ± 0.60 3.07 ± 3.27 3.09 ± 1.01 7.28

Patient 10 0.82 ± 0.46 0.77 ± 0.45 3.92 ± 1.80 28.94 ± 11.52 7.16 ± 3.14 26.07

displacement in the GT is 13.86 pixels. Wis means that 2DR
estimates are 92.5% accurate (1.05 is 7.5% of 13.86).

From Table 1, we can see that 3DR and 2DR consistently
achievemost accurate tracking results. Other algorithms vary
signiZcantly for dicerent test cases and may lose track of the
tumor under certain scenarios (e.g., for Patient 10).

We do not claim that just because we achieve a 1.05 pixel
average error on lower-resolution images we may obtain the
same error at higher resolutions. Our experimental results
on the 256 × 256 and 512 × 512 datasets clearly show that
the estimation errors in terms of pixels remains the same (in
fact becomes lower: from 1.63 pixel average error for 256 ×
256 to 0.69 pixel average error for 512 × 512) when the image
resolution increases.

In Table 1, 4DCTdata for Patients 1–5 have 256× 256DRR
image size, while Patients 6–10 have 512 × 512. Even though
the underlying total displacement doubled from 8.49 pixel
to 19.23 pixel on average (implying the tracking problem
becomes more challenging), the tracking errors in terms of
pixels are better for 512 × 512 sequences. In other words,
we can conZdently expect similar pixel errors when we use
even higher resolution images (as a result, get lower mm
error). Instead of DRR, if we used a commercial product (e.g.,
Siemens Axiom Luminos dRF nat detector), 1.05 pixel error
would correspond to 0.14mm to 0.42mm error.

Here, we also like to mention that, for a fair assessment
of tracking methods, it is essential to report pixel errors
rather thanmm errors that is commonly conveyed inmedical
literature due to bottom-line clinical requirements. However,
by measuring mm error, the same algorithm can produce
dicerentmmerrors using dicerent resolution input data.Wis
does not mean that the algorithm gets any better or worse as
nothing algorithmically changes.

In Figure 4, we show the tracking results of dicerent
algorithms on data set Patient 7, and our 3DR/2DR tracks the
tumor verywell for both inhale and exhale phases. In Figure 5,
we draw the estimated tumor positions in the Cranial-Caudal
(CC) direction along with the ground truth for Patient 7.
It is apparent that the optical now based tracker tends to
underestimate the tumor motion causing signiZcant errors
when the tumor motion is large. We particle Zlter based

algorithms (Pℓ1 and PHOG), on the other hand, exaggerates
the tumormotions at the two extremities and produces jittery
results. Another issue with the particle Zlter based trackers is
that the lack of suXcient texture in X-ray images sometimes
causes the selection of wrong motion hypothesis as the mode
of the approximated pdf aeer the importance sampling.

Computationally optical now based tracker (OF) is the
slowest one among all trackers taking about 2.8 minutes to
process a single frame on an Intel 3.4 GHz CPU, which is
prohibitive for real-time tasks. Were are of course faster OF
methods, but their accuracy is worse. Our method can track
the tumor in real time: 3DR (2DR) in less than 0.03 (0.06)
seconds. 3DR algorithm can be preferred over 2DR for two
reasons. First, 3DRgenerates tracking results twice faster than
2DR. Second, 3DR can avoid the divergence between two
orthogonal views by learning a joint 3D regressionmodel and
maintaining the tumor positions in 3D space as opposed to
two 2D planes.

Note that we do not train and test on the same images.
We train on the initial pairwhere the tumor position is known
and then track on the rest of the sequence automatically. Since
the training step takes less than 0.05 seconds, this algorithm
can run under any real-time clinical setting.

4. Conclusion

We presented a noninvasive tumor tracking method and
demonstrated that this tracker outperforms the state-of-the-
art both in accuracy (∼1 pixel error) and speed (0.03 sec).Wis
corresponds to 7.5% tumor positioning error with respect to
maximum tumor dislocation. Such a small tumor location
error signiZcantly reduces the prescribed treatment volume
margins from several centimeters to millimeter range, and
thus, prevents radiating healthy tissue in IGRT systems [16].
As a future study, we will extend the regression model
to incorporate biomechanical tissue constraints for very
complex tumor shapes.
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Composition Comments

1. We redrew some parts in Figures 2, 4, and 5. Please

check.
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