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ABSTRACT

This paper describes speaker localization and speech detection tech-
niques for domestic environments. In real environments, it is hard to
localize speakers because reverberation causes discrepancy from the
simple spherical wave assumption. We propose a template-based
method that calibrates the localization errors included in conven-
tional methods. In addition, we use statistical speech detection meth-
ods to deal with noises. However, in this challenge, there are five
rooms and leaked utterances from other rooms must be rejected. This
kind of rejection is hard to perform by only using speech detection
results. To address this problem, we also propose a method that in-
tegrates speech localization and speech detection using a minimum
cost criterion or a classifier-based strategy. The proposed method
achieved an accuracy of 0.712 for speaker localization and an F value
of 0.743 for speech detection on the development set compared with
the baseline 0.559 and 0.570, and 0.666 and 0.706 on the test set
compared with the baseline 0.517 and 0.602.

Index Terms— Speaker localization, speech detection, calibra-
tion, rejection

1. INTRODUCTION

Speaker localization and speech detection are important and effec-
tive techniques for distant applications. One such application is au-
tomatic speech recognition using distant microphones, e.g., in home
devices. Under such conditions, it is necessary to enhance the tar-
get speech. Although there are many ‘blind’ speech enhancement
methods solely exploiting speech characteristics [1], the additional
use of speakers’ positions has been shown to improve robustness and
effectiveness [2, 3] over blind approaches. For example, speaker lo-
calization techniques can effectively suppress directive noise.

The Distant-speech Interaction for Robust Home Applications
(DIRHA) project [4] tackles the problem of distant speech interac-
tion in home environments using multiple microphones. A challenge
was derived from this project, comprising two major tasks: speaker
localization and speech detection.

For speaker localization, speakers must be localized in 2D or
3D. It is fairly easy to determine the speaker direction only (1D).
For example, the Cross Spectrum Phase (CSP) method [5] with prior
distributions is shown in [6] to be effective even under noisy environ-
ments. However, 2D speaker localization is much harder than direc-
tion estimation, because it is susceptible to errors, but it is also more
attractive. Recently, some 2D localization techniques have been pro-
posed. Among them, the 2D-CSP method [7] is simple and effec-
tive. This method compares the observed time difference of arrivals
(TDOAs) to the theoretical TDOAs for candidate points and picks

up the point that achieves the smallest difference between them, but
its performance degrades under reverberant environments because,
due to reverberation, observed TDOAs do not match their theoreti-
cal TDOAs. To reduce the effect of these errors, some passive cal-
ibrations are needed [8]. We propose a template-based method that
replaces the reference (theoretical) TDOAs by observed TDOAs for
correct points to compensate the effect of discrepancy.

For speech detection, statistical methods [9, 10] have achieved
great success. These methods are robust to noise. However, one
difficulty of this challenge is that there are five rooms and the ut-
terances from other rooms must be rejected. Speech detectors can
discriminate speech from noise but cannot easily discriminate be-
tween speech from the target room and speech from other rooms. To
address this problem, integration of speaker localization and speech
detection is needed. We propose to utilize speaker localization re-
sults for speech detection through the use of either a minimum cost
criterion or a classifier-based strategy.

This paper first describes the conventional 2D-CSP source local-
ization method [7] and proposes a template-based method that cali-
brates errors in Section 3. Next, statistical speech detection methods
[9, 10] are described in Section 4, and finally, an integration method
of speaker localization and speech detection is described in Sec-
tion 5. Experiments show that the proposed template-based method
improves the localization performance and that our classifier-based
strategy improves speech detection performance in Section 6.

2. SYSTEM OVERVIEW

Figure 1 shows a schematic diagram of the proposed system, which
consists of a speaker localization part and a speech detection part.
For the speaker localization part, M input pairs are selected from
N microphone inputs and the corresponding M TDOAs τ are cal-
culated by the CSP method. Comparing these TDOAs with the the-
oretical TDOAs, the 2D-CSP method outputs localized coordinates
s with costs P (s), and the template-based method compensates for
errors using reference TDOAs. For the speech detection part, like-
lihood ratio approaches are adopted. Here, Sohn’s method [9] and
a switching Kalman filter based method [10] are used. Detections
are done per microphone input, and the N detection results are com-
bined using majority voting. In the real data, there are system replies
between utterances. These replies are detected separately, and the
corresponding utterances are deleted if they exist in the above de-
tection results. Finally, the detection results are modified using a
minimum cost criterion or a classifier-based strategy which combine
costs P and average powers in each room.
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Fig. 1: Schematic diagram of the proposed system for the “Liv-
ingroom” localization and detection. (CSP: cross spectrum phase
analysis, TDOA: time difference of arrival, Sohn: Sohn’s speech de-
tection, SKF: switching Kalman filter based speech detection, MIN:
minimum cost criterion, SVM: support vector machine, NNET: neu-
ral network)

3. LOCALIZATION METHODS

3.1. 2D-CSP method

The original CSP method [5] only estimates the direction of arrival
under the plane wave assumption. Under the condition that the mi-
crophones are distributed over a broad area, the source locations can
be estimated using triangulation. On the other hand, the 2D-CSP
method localizes speakers under the spherical wave assumption [7].
When the speaker position is s and the ith microphone position
among N microphones is ri, the theoretical TDOA τ theo

ij between
microphones i, j (1 ≤ i, j ≤ N ) is

τ theo
ij (s) =

|ri − s| − |rj − s|
c

, (1)

where c is the speed of sound. The CSP method estimates the
TDOAs from the cross spectra of observed short-time Fourier trans-
form coefficients Xi and Xj [5]. TDOA τ csp

ij is obtained as the
optimal solution of the problem:

τ csp
ij = argmax

τ

(
F−1

(
Xi ⊙X∗

j

|Xi||Xj |

))
, (2)

where F is a short-time Fourier transform, and * and ⊙ respectively
denote the complex conjugate and the element-wise multiplication
of two vectors.

For each candidate point s for a speaker, the cost function P (s)
is calculated by adding the difference between observed TDOAs
τ csp of M arbitrary pairs of microphones (2 ≤ M ≤ NC2) and
the corresponding theoretical ones τ theo. If τ theo is near to τ csp,

the cost function P will be small. The speaker position s is selected
from the candidate points S as that which minimizes P (s):

argmin
s∈S

P (s) = argmin
s∈S

M∑
m=1

∣∣∣τ theo
φ(m)(s)− τ csp

φ(m)

∣∣∣2 , (3)

where φ(m) is the mth microphone pair. Because one microphone
pair can only indicate that the sound source is located on a hyper-
bola, two and more different microphone pairs (i.e., three and more
microphones) are needed to estimate the location.

3.2. Template-based method

In real situations, the theoretical TDOA and the observed TDOA for
the correct position can differ, due for example to reverberation or
measurement errors. The cost function P in Eq. (3) can be general-
ized, resulting in the following optimization problem:

argmin
s∈S

P (s) = argmin
s∈S

M∑
m=1

∣∣∣τref
φ(m)(s)− τ csp

φ(m)

∣∣∣2 , (4)

where τref (s) is a reference TDOA for position s. In the 2D-CSP
method, the theoretical TDOA is used as a reference, but observa-
tions generally contain errors ϵ, such that

τ theo
φ(m)(s) ≈ τ csp

φ(m) − ϵφ(m)(s). (5)

To reduce the influence of errors, we propose a template-based
method that modifies the reference TDOA τref

φ(m) as in Eq. (6). These
errors ϵ are calculated for every point s ∈ S on the development set.

τref
φ(m)(s) ≈ τ theo

φ(m)(s) + ϵφ(m)(s). (6)

These modified references are expected to cancel out the errors.

4. SPEECH DETECTION METHODS

4.1. Conventional likelihood ratio test (Sohn’s method)

One of the simplest and most effective conventional likelihood ra-
tio test methods [9] is described here. Let X = {Xk}KX

k=1 be the
observed KX -dimensional spectra. The power spectra |Xk|2 are as-
sumed to be independent conditionally on the noisy speech model
λS in noisy speech frames (HS) and on the noise model λN in non-
speech frames (HN ):

p(X|λS , HS) =

KX∏
k=1

1

π[vSk + vNk ]
e
− |Xk|2

vS
k

+vN
k ,

p(X|λN , HN ) =

KX∏
k=1

1

πvNk
e
− |Xk|2

vN
k ,

(7)

where vSk and vNk are the variance of speech and noise spectra, re-
spectively. The log-likelihood ratio of speech and noise at the kth

dimension is then given by

Λk(Xk|λS , λN ) = ln
p(Xk|λS , HS)

p(Xk|λN , HN )
. (8)

The geometric mean of the likelihood ratios is used to determine
whether individual frames are speech or noise, as

Λ(X|λS , λN ) =
1

KX

KX∑
k=1

Λk(Xk|λS , λN )
HS

≷
HN

η, (9)



where if Λ(X|λS , λN ) is greater than some threshold η, the frame
is considered to be in a (noisy) speech state, and otherwise in a noise
state. The noise model is estimated in advance using observed noise,
and the speech model is estimated by maximum likelihood estima-
tion, i.e., ∂Λk(Xk)/∂λ

S
k = 0, which results in the relationship

vSk = |Xk|2 − vNk . This shows that the speech model λS
k is esti-

mated assuming that the speech and noise powers are additive.

4.2. Switching Kalman filter based method

The state-of-the-art switching Kalman filter based speech detection
method [10] builds the noisy speech model frame by frame, from a
prepared clean speech model and a noise model which is estimated
online. The features considered are the KY -dimensional log-Mel
spectra Y = {Yk}KY

k=1. In the log-Mel domain, the observed fea-
tures of speech can be represented as a logarithmic summation of
those of clean speech and noise. The likelihoods under the noisy
speech and the noise models are each given through a Gaussian
mixture model (GMM) whose components are updated by switch-
ing Kalman filters. The likelihood ratio calculation is performed in
the same way as in Eqs (8) and (9), replacing the Gaussians on Xk

by the GMMs on Yk.

5. INTEGRATION OF LOCALIZATION AND SPEECH
DETECTION

In this challenge, the utterances from other rooms must be rejected.
We propose to use localization results in the other rooms to do so.

5.1. Minimum cost criterion

Our first approach is to compare the localization cost P in the target
room Pin with those in the other rooms Pout. If a speaker is local-
ized in multiple rooms, selecting the speaker location which results
in the minimum cost across rooms appears to be the most reasonable.
However, simple comparisons lead to many false rejections, because
the cost features are dependent on the room shape and microphone
settings and thus cannot be simply compared. We thus introduce a
tolerance parameter η′, and for each frame, set a flag f indicating
whether the frame’s cost is close to being the smallest among all
rooms:

f =

{
true ∀Pout, Pin < η′Pout

false otherwise

For each utterance, if the ratio of the number of true flags to the total
number of frames is under some thresholds, the utterance is rejected.

5.2. Classifier-based strategy

In a second approach, we use a classifier C whose input is a concate-
nated vector of features from the target room zin and features from
the other rooms zout. After training the classifier on the develop-
ment set, the classifier outputs are compared with a threshold η′′ to
estimate flags for utterance and each frame, as:

f =

{
true C([zin; zout]) > η′′

false otherwise

These flags are then combined as in 5.1 to determine whether to
reject the utterance.

6. EXPERIMENTAL SETUP

6.1. Database description

Synchronously recorded sound files (approximately 1-2 minutes)
were provided by the DIRHA consortium. For simulating realis-
tic environments, these databases were recorded in a real house,
which consisted of five rooms: Kitchen, Livingroom, Corridor,
Bathroom, and Bedroom. Localization and speech detection were
limited to the Kitchen and Livingroom. For Kitchen and Livin-
groom, six-microphone circular microphone arrays were installed at
the center of the room. Additionally, for all rooms, several two- or
three-microphone arrays were installed on the walls encompassing
the room. In total, 40 microphones were used. Microphone pairs
were selected within each array, because microphones belonging to
separate arrays, were far away and their correlations were too small.

A development set (dev) and a test set (test) were provided. Ac-
cording to the regulations, any parameter can be tuned on the dev
set. Both sets consist of REAL and SIMULATIONS subsets. In the
REAL set, for each task, there is only one speaker in one room, mov-
ing around the room. To simulate the dialog between speaker and
system, system replies sometimes break in, but they are provided
separately. In the SIMULATIONS set, there can be multiple speak-
ers speaking in different rooms, but the speakers are still. System
performance was evaluated using the provided evaluation tools.

6.2. Localization

Because height localization is less important than horizontal local-
ization, we focused on the 2-D localization. (the -2D option was
used for the evaluation tool.) The speech data were down-sampled
from the original 48 kHz to 16 kHz for our experiments. The frame
size was 960 and the frame shift was 800. We compared the per-
formances of the 2D-CSP and the proposed template-based method
with those of the multi-channel CSP method [11] and the SRP-
PHAT1 [12] with a long frame size (1 second). Fine errors were
defined as localization errors less than 50 cm.

6.3. Speech detection

The speech detection performance was evaluated per utterance in
terms of precision, recall, and F value. The frame size was 960 and
the frame shift was 160 (with 16 kHz sampling). The maximum
silence duration in utterances and minimum duration of utterances
were set to 500 ms and 300 ms, respectively. For SKF, the number
of Gaussian mixture components was 32, and 20-dimensional Mel-
spectra were used. HMM hangover scheme [9] was used for both
methods. After performing speech detection per file, majority voting
was used to obtain the final speech detection results per room.

6.4. Integration

Localization costs P and segmental speech powers averaged over
microphones in each room were used as the features zin and zout.
For the classifier-based strategy, we used SVM-light (v.6.02)2 for
support vector machine (SVM) based classification (linear SVM)
and pyBrain (v.0.31)3 for neural network (NNET) based classifi-
cation, after normalizing the features to have unit variance. SVM
and NNET were trained using binary outputs indicating whether the

1http://www.lems.brown.edu/array/tools/srplems.m
2http://svmlight.joachims.org/
3http://pybrain.org/



Table 1: Localization and speech detection results on the development set (dev). Methods are indicated for speech activity detection (SAD),
source localization (LOC), and their integration (INT). Performance criteria for source localization are Fine Error (FE), Gross Error (GE), and
Percentage of Correct localization (PCor). For speech detection, utterance-based criteria are used: Precision (P), Recall (Re), and F value.

Methods REAL SIMULATIONS AVERAGE
SAD LOC INT FE GE PCor P Re F FE GE PCor P Re F FE GE PCor P Re F

Oracle

2D-CSP

-

298 602 .685 - - - 309 925 .504 - - - 306 870 .540 - - -
Template 303 592 .719 - - - 160 864 .643 - - - 200 817 .658 - - -
M-CSP 347 1307 .177 - - - 348 1433 .208 - - - 348 1409 .202 - - -

SRP-PHAT 289 826 .537 - - - 248 987 .509 - - - 257 957 .515 - - -

Sohn

2D-CSP - 295 565 .709 .693 .957 .804 308 836 .525 .354 .905 .509 305 794 .559 .414 .919 .570

Template

- 301 537 .746 .693 .957 .804 161 769 .657 .354 .905 .509 197 732 .673 .414 .919 .570
MIN 301 537 .748 .744 .957 .837 161 769 .657 .354 .905 .509 197 732 .673 .419 .919 .575
SVM 304 528 .757 .740 .826 .781 159 749 .681 .670 .836 .744 197 714 .695 .689 .833 .754
NNET 299 498 .779 .797 .826 .811 151 732 .685 .800 .693 .743 193 692 .704 .799 .729 .762

SKF

2D-CSP - 300 559 .699 .697 .812 .750 303 798 .548 .416 .894 .568 302 762 .574 .461 .872 .603

Template

- 306 532 .744 .697 .812 .750 158 714 .678 .416 .894 .568 194 686 .689 .461 .872 .603
MIN 306 528 .752 .699 .768 .732 158 709 .679 .414 .889 .565 194 682 .692 .457 .857 .596
SVM 310 535 .741 .823 .783 .802 157 688 .699 .661 .841 .740 196 663 .707 .694 .826 .754
NNET 292 503 .756 .837 .609 .705 149 663 .704 .733 .778 .755 180 642 .712 .753 .733 .743

Table 2: Localization and speech detection results on the test set (test).

Methods REAL SIMULATIONS AVERAGE
SAD LOC INT FE GE PCor P Re F FE GE PCor P Re F FE GE PCor P Re F

Oracle 2D-CSP - 301 622 .582 - - - 302 1076 .461 - - - 302 965 .497 - - -
Template 297 584 .658 - - - 186 1094 .564 - - - 228 972 .592 - - -

Sohn

2D-CSP - 298 585 .610 .868 .962 .913 303 1004 .479 .368 .944 .530 302 904 .517 .441 .949 .602

Template
- 293 550 .673 .868 .962 .913 185 969 .590 .368 .944 .530 225 870 .613 .441 .949 .602

MIN 293 545 .677 .882 .962 .920 186 970 .591 .365 .934 .525 225 868 .616 .441 .942 .600
SVM 299 505 .678 .917 .316 .470 185 961 .592 .678 .939 .788 204 920 .602 .700 .762 .730
NNET 287 542 .657 .900 .532 .668 178 969 .567 .720 .707 .714 211 889 .588 .755 .657 .703

SKF

2D-CSP - 296 846 .624 .657 .937 .772 304 922 .526 .411 .859 .556 301 823 .557 .462 .881 .606

Template
- 292 513 .683 .657 .937 .772 184 859 .637 .411 .859 .556 225 768 .651 .462 .881 .606

MIN 292 512 .684 .651 .937 .768 184 857 .639 .411 .843 .553 225 766 .653 .461 .870 .602
SVM 299 518 .668 .571 .367 .447 180 838 .644 .684 .813 .734 203 798 .647 .664 .686 .675
NNET 284 507 .662 .692 .608 .647 187 768 .667 .712 .742 .727 215 710 .666 .707 .704 .706

source was in the target room or not. Parameters and thresholds for
SVM and NNET were tuned using the dev set. For NNET, the num-
ber of hidden layers was two and the number of nodes in the hidden
layers was 15 and 10 from the bottom. Finally, for REAL, the speech
powers of the detected utterances in Livingroom and Kitchen were
compared and only the highest one was used because there can be an
active speaker only in one room.

7. RESULTS

7.1. Localization accuracy with oracle speech detection

To compare the localization accuracies among the above-mentioned
methods, the first parts of Tables 1 and 2 show the results for oracle
speech detection cases. The performance of the 2D-CSP method
was higher than those of the multi-channel CSP and SRP-PHAT
method. Moreover, the computational complexity was much smaller
than those of the multi-channel CSP and SRP-PHAT method. We
thus adopted the 2D-CSP method as a baseline. The performance
of the template-based method was better than that of the 2D-CSP
method significantly, proving effective for the localization in domes-
tic environments.

7.2. Speech detection accuracy

The second and third parts of Tables 1 and 2 show the results with
speech detection. The performance of SKF was slightly higher
than that of Sohn’s method. However, neither method by itself was
very effective in rejecting noises or leaked utterances from the other
rooms. Integration with localization proved effective, but only for
the classifier-based strategy. As the classifiers are trained on dev
data, we compare the results on the test set. The performance of the
minimum cost criterion was equivalent to that of the baseline. SVM
significantly improved the F value, especially with Sohn’s method,
while NNET improved the F value more consistently with Sohn’s
method and SKF.

8. CONCLUSIONS

We have introduced an effective template-based method that can
compensate the discrepancy between the simple spherical wave as-
sumption and the observations, and showed its effectiveness for real
domestic environments. In addition, to reject utterances that cannot
be easily rejected only by speech detection, we proposed to integrate
speaker localization and speech detection. Doing so using classifiers
such as SVMs and neural networks improved the speech detection
performance.



9. REFERENCES

[1] C. Wooters and M. Huijbregts, “The ICSI RT07s speaker di-
arization system,” in Multimodal Technologies for Perception
of Humans, pp. 509–519. Springer, 2008.

[2] M. Delcroix, K. Kinoshita, T. Nakatani, S. Araki, A. Ogawa,
T. Hori, S. Watanabe, M. Fujimoto, T. Yoshioka, T. Oba,
Y. Kubo, M. Souden, S.J. Hahm, and A. Nakamura, “Speech
recognition in living rooms: Integrated speech enhancement
and recognition system based on spatial, spectral and temporal
modeling of sounds,” Computer Speech and Language, vol.
27, pp. 851–873, 2013.

[3] Y. Tachioka, S. Watanabe, J. Le Roux, and J. Hershey, “Dis-
criminative methods for noise robust speech recognition: A
CHiME challenge benchmark,” in Proceedings of the 2nd In-
ternational Workshop on Machine Listening in Multisource En-
vironments, 2013, pp. 19–24.

[4] L. Cristoforetti, M. Ravanelli, M. Omologo, A. Sosi, A. Abad,
M. Hagmueller, and P. Maragos, “The DIRHA simulated cor-
pus,” in Proceedings of LREC, 5 2014.

[5] C. Knapp and G. Carter, “The generalized correlation method
for estimation of time delay,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 24, pp. 320–327, 8 1976.

[6] Y. Tachioka, T. Narita, and T. Iwasaki, “Direction of arrival
estimation by cross-power spectrum phase analysis using prior
distributions and voice activity detection information,” Acous-
tical Science & Technology, vol. 33, pp. 68–71, 1 2012.

[7] D.V. Rabinkin, R.J. Renomeron, A. Dahl, J.C. French, J.L.
Flanagan, and M.H. Bianchi, “A DSP implementation of
source location using microphone arrays,” in Proceedings of
SPIE, 1996, pp. 88–99.

[8] K. Ho and L. Yang, “On the use of a calibration emitter for
source localization in the presence of sensor position uncer-
tainty,” IEEE Transactions on Signal Processing, vol. 56, pp.
5758–5772, 2008.

[9] J. Sohn, N.S. Kim, and W. Sung, “A statistical model-based
voice activity detection,” IEEE Signal Processing Letters, vol.
6, pp. 1–3, 1 1999.

[10] M. Fujimoto and K. Ishizuka, “Noise robust voice activity de-
tection based on switching Kalman filter,” IEICE Transactions
on Information and Systems, vol. E91-D, pp. 467–477, 3 2008.

[11] K. Hayashida, M. Morise, and T. Nishiura, “Near field sound
source localization based on cross-power spectrum phase anal-
ysis with multiple channel microphones,” in Proceedings of
INTERSPEECH, 9 2010, pp. 2758–2761.

[12] H. Do, H. Silverman, and Y. Yu, “A real-time SRP-PHAT
source location implementation using stochastic region con-
traction(src) on a large-aperture microphone array,” in Pro-
ceedings of ICASSP, 4 2007, vol. 1, pp. 121–124.


	Title Page
	Title Page
	page 2


	Ensemble integration of calibrated speaker localization and statistical speech detection in domestic environments
	page 2
	page 3
	page 4
	page 5


