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Abstract

In this paper we study the iterative decoding threshold performance of non-binary spatially-
coupled low-density parity-check (NB-SC-LDPC) code ensembles for both the binary erasure
channel (BEC) and the binary-input additive white Gaussian noise channel (BIAWGNC), with
particular emphasis on windowed decoding (WD). We consider both (2, 4)-regular and (3, 6)-
regular NB-SC-LDPC code ensembles constructed using protographs and compute their thresh-
olds using protograph versions of NB density evolution and NB extrinsic information transfer
analysis. For these code ensembles, we show that WD of NB-SC-LDPC codes, which provides
a significant decrease in latency and complexity compared to decoding across the entire parity-
check matrix, results in a negligible decrease in the near-capacity performance for a sufficiently
large window size W on both the BEC and the BIAWGNC. Also, we show that NBSC-LDPC
code ensembles exhibit gains in the WD threshold compared to the corresponding block code
ensembles decoded across the entire parity-check matrix, and that the gains increase as the fi-
nite field size q increases. Moreover, from the viewpoint of decoding complexity, we see that
(3, 6)-regular NB-SC-LDPC codes are particularly attractive due to the fact that they achieve
near-capacity thresholds even for small q and W.
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Abstract— In this paper we study the iterative decoding thresh-
old performance of non-binary spatially-coupled low-density
parity-check (NB-SC-LDPC) code ensembles for both the binary
erasure channel (BEC) and the binary-input additive white Gaus-
sian noise channel (BIAWGNC), with particular emphasis on
windowed decoding (WD). We consider both (2, 4)-regular and
(3, 6)-regular NB-SC-LDPC code ensembles constructed using
protographs and compute their thresholds using protograph
versions of NB density evolution and NB extrinsic information
transfer analysis. For these code ensembles, we show that WD
of NB-SC-LDPC codes, which provides a significant decrease in
latency and complexity compared to decoding across the entire
parity-check matrix, results in a negligible decrease in the near-
capacity performance for a sufficiently large window size W
on both the BEC and the BIAWGNC. Also, we show that NB-
SC-LDPC code ensembles exhibit gains in the WD threshold
compared to the corresponding block code ensembles decoded
across the entire parity-check matrix, and that the gains increase
as the finite field size q increases. Moreover, from the viewpoint
of decoding complexity, we see that (3, 6)-regular NB-SC-LDPC
codes are particularly attractive due to the fact that they achieve
near-capacity thresholds even for small q and W .

I. INTRODUCTION

Non-binary low-density parity-check (NB-LDPC) block
codes constructed over finite fields of size q > 2 outperform
comparable binary LDPC block codes [1], in particular when
the blocklength is short to moderate; however, this perfor-
mance gain comes at the cost of an increase in decoding
complexity. A direct implementation of the belief-propagation
(BP) decoder [1] has complexity O(q2) per symbol. More
recently, an implementation based on the fast Fourier trans-
form [2] was shown to reduce the complexity to O(q log q).
Beyond that, a variety of simple but sub-optimal decoding
algorithms have been proposed in the literature [3] [4]. As for
computing iterative decoding thresholds, a non-binary extrinsic
information transfer (NB-EXIT) analysis was proposed in [5]
and was later developed into a corresponding version P-NB-
EXIT [6] suitable for protograph-based codes.

A protograph [7] is a small Tanner graph, which can
be used to produce a structured LDPC code ensemble by
applying a graph lifting procedure, such that every code in
the ensemble maintains the structure of the protograph, i.e., it
has the same degree distribution and the same type of edge
connections. Figure 1 illustrates a (3, 6)-regular protograph,
which can be used to produce a (3, 6)-regular LDPC block
code ensemble. A protograph with (c − b) check nodes and
c variable nodes can be represented equivalently by a base
(parity-check) matrix B consisting of non-negative integers,

This work was partially done when the first author was an intern at MERL
during fall, 2013. This work was also supported by the U.S. National Science
Foundation under grant CCF-1161754.

Variable node Check node 

� �3 3�B

Fig. 1. A (3, 6)-regular protograph and its corresponding base-matrix
representation.

in which the (i, j)-th entry (1 ≤ i ≤ c − b and 1 ≤ j ≤ c)
is the number of edges between check node i and variable
node j. To calculate the BP threshold of a protograph-based
code ensemble, conventional tools must be adapted to take the
edge connections into account. Although some freedom is lost
in the code design when the protograph structure is adopted,
one can use these modified protograph-based analysis tools
to find “good” protographs with better BP thresholds than
corresponding unstructured ensembles with the same degree
distribution.

Spatially-coupled LDPC (SC-LDPC) codes, also known as
terminated LDPC convolutional codes [8], have been shown to
exhibit a phenomenon called “threshold saturation” [9], where,
as the termination length grows, the BP decoding threshold
saturates to the maximum a-posteriori (MAP) threshold of a
(dv, dc)-regular underlying LDPC block code ensemble, which
in turn improves to the channel capacity as the density (dv
and dc) of the parity-check matrix increases. Iterative decoding
threshold results on the binary erasure channel (BEC) for non-
binary SC-LDPC (NB-SC-LDPC) code ensembles have been
reported by Uchikawa et al. [10] and Piemontese et al. [11],
and the corresponding threshold saturation was proved by
Andriyanova et al. [12]. In each of these papers, the authors
assumed that decoding was carried out across the entire parity-
check matrix of the code; for simplicity, this will be referred
to as the flooding schedule (FS) in our paper.

A major problem with FS decoding of SC-LDPC codes is
latency. To resolve this issue, a more efficient technique, called
windowed decoding (WD), was proposed in [13]. Compared
to FS decoding, WD exploits the convolutional nature of the
SC parity-check matrix to localize the decoder and thereby
reduce latency; under WD, the decoding window contains only
a portion of the parity-check matrix, and within that window
BP decoding is performed.

In this paper, assuming that the binary image of a codeword
is transmitted, we analyze the WD threshold performance of
(2, 4)-regular and (3, 6)-regular NB-SC-LDPC code ensem-
bles based on protographs. In particular,

1) for the BEC, we develop the NB density evolution (NB-
DE) analysis as proposed in [14] into a protograph
version, which we call P-NB-DE, and



2) for the binary-input additive white Gaussian noise chan-
nel (BIAWGNC) with binary phase-shift keying (BPSK)
modulation, we apply the P-NB-EXIT [6] analysis (orig-
inally proposed for NB-LDPC block codes) to NB-SC-
LDPC codes.

The finite field size q is constrained to be 2m, where m is a
positive integer.

In both cases, our primary contribution lies in the scenario
when WD is implemented, so that decoder latency can be
reduced at the cost of a small loss in decoder performance.
For three NB-SC-LDPC ensemble examples, we show in
Sections III and IV that WD provides two of the ensembles
with non-decreasing threshold performance as the window
size W and/or m increases. In fact, their WD thresholds are
numerically capacity-achieving for sufficiently large W and
m. As for the third ensemble, although its WD threshold
diverges slightly from capacity when m is large (observed on
the BEC), it is the strongest candidate for low-latency and/or
low-complexity applications due to its excellent performance
when W and m are both small; this conclusion is further
strengthened in our analysis of WD complexity in Section V.
In all, the results of this paper provide theoretical guidance for
designing and implementing practical NB-SC-LDPC codes for
WD.

II. NB-SC-LDPC CODE ENSEMBLES

An SC-LDPC code ensemble can be constructed from a
LDPC block code ensemble using an edge spreading tech-
nique [15], which can be described conveniently by pro-
tographs.

As shown in Figure 1, let B denote a block base matrix
of size (c − b) × c, which corresponds to a protograph
representation of an LDPC block code ensemble with design
rate R = b/c. An SC base matrix corresponding to an SC-
LDPC code ensemble can then be constructed using (ms+1)
component base matrices {Bi}ms

i=0, each of size (c − b) × c,
where the edges of B are spread such that

ms∑
i=0

Bi = B,

and ms is the memory size. The resulting SC base matrix is
given in its transpose form in (1) at the bottom of this page,
where L is called the termination length. The design rate of
the code is

RL = 1− (c− b)(L+ms)

cL
.

As a result of the termination, there is a rate loss compared
to the block code design rate; however, this diminishes as L
increases, i.e., RL → R = b/c when L → ∞. In WD, the
window size W is defined as the number of column blocks of

size c covered by the decoding window, which slides over a
portion of BSC of fixed size W (c − b) by Wc (in symbols,
see [13] for details).

In this paper, we use the following three protographs as
examples, where C denotes the SC-LDPC code ensembles and
B denotes the underlying LDPC block code ensembles:

1) B[2,4] and C[2,4]: The block base matrix B representing
a (2, 4)-regular LDPC block code ensemble B[2,4] and
the component matrices used to construct an SC base
matrix BSC representing an SC-LDPC code ensemble
C[2,4], are given by

B =
[
2 2

]
⇒ B0 = B1 =

[
1 1

]
.

As noted above, the value of an entry in B (resp.
BSC) is equal to the number of edges connecting the
corresponding check node and variable node in the
protograph for B (resp. C).

2) B[3,6] and Cms=1
[3,6] : The block base matrix B correspond-

ing to a (3, 6)-regular LDPC block code ensemble B[3,6]
and the component matrices B0 and B1 corresponding
to an SC-LDPC code ensemble Cms=1

[3,6] are given by

B =
[
3 3

]
⇒ B0 =

[
2 1

]
,B1 =

[
1 2

]
.

3) Cms=2
[3,6] :

B =
[
3 3

]
⇒ B0 = B1 = B2 =

[
1 1

]
.

For each example, the termination length is chosen as L =
100, so that RL is close to R. We will refer to the “(2, 4)
group” as the collection of ensembles B[2,4] and C[2,4] and the
“(3, 6) group” as B[3,6], Cms=1

[3,6] , and Cms=2
[3,6] .

In practice, an NB-SC-LDPC code is generated from BSC
in two steps, similar to the procedure for generating an NB-
LDPC block code from B [7]:

1) “Lifting”: Replace the nonzero entries in BSC by an
M×M permutation matrix (or a sum of non-overlapping
M × M permutation matrices), and replace the zero
entries by the M × M all-zero matrix; M is called
the lifting factor. In this way, the structure of BSC
is maintained in the lifted SC-LDPC matrix, so the
threshold analysis of the SC-LDPC code ensemble C
can be carried out directly based on BSC.

2) “Labeling”: Randomly assign to each non-zero entry
in the lifted parity-check matrix a non-zero element in
GF(q), where q = 2m is the finite field size.

After the lifting step, the parity-check matrix is still binary,
i.e., the non-binary feature does not arise until labeling. Both
the permutation matrices and the selection of labels can be
optimized in order to obtain a good code [6], but this is not our
emphasis here, since we are interested in a threshold analysis

Bᵀ
SC =

 Bᵀ
0 Bᵀ

1 . . . Bᵀ
ms

Bᵀ
0 Bᵀ

1 . . . Bᵀ
ms

. . . . . . . . . . . .
Bᵀ

0 Bᵀ
1 . . . Bᵀ

ms


cL×(c−b)(L+ms)

(1)
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Fig. 2. Comparison of the thresholds based on the flooding schedule (FS)
for the (2, 4) and (3, 6) groups on the BEC.

of the general non-binary ensemble, where the dimension of
the message model used in the threshold analysis depends on
the size of the finite field [5] [14].

III. THRESHOLD ANALYSIS OF
NB-SC-LDPC CODE ENSEMBLES ON THE BEC

A. P-NB-DE Analysis on the BEC

We extended the NB-DE algorithm for the BEC [14] to
a protograph version, which we denote P-NB-DE, similar to
the procedure used to extend NB-EXIT to P-NB-EXIT in [6].
Since edge connections are taken into account, P-NB-DE is
essentially the BP algorithm performed on a protograph. The
resulting BP threshold is denoted εBP.

B. Numerical Results

In this section, we present the numerical results for the
BEC, with emphasis on the threshold performance of NB-SC-
LDPC code ensembles when WD is used. As a benchmark,
Figure 2 first compares the FS threshold performance of the
(2, 4) group and the (3, 6) group, where FS decoding is carried
out on the entire parity-check matrix and not restricted to a
window. We observe that the NB-SC-LDPC codes perform
extremely well compared to their block code counterparts,
in particular for large field size m. Unlike the block code
case, Cms=2

[3,6] always outperforms C[2,4], and the thresholds of
these two ensembles increase monotonically with m. However,
this monotonic increase is not observed for Cms=1

[3,6] , where the
obtained threshold actually decreases very slightly for m > 5.
(See the related discussion of Figure 3(b) below.)

Figure 3(a) shows that, for a sufficiently large window size
W , WD provides threshold performance nearly the same as the
FS, i.e., the performance loss is negligible while the decoder
benefits from greatly reduced delay. We define W ∗ to be
the smallest window size such that WD provides a threshold
within 3% of the FS threshold universally for all field sizes
m.1 For C[2,4], we find W ∗ = 30.

1This “3%” value is actually loose for moderate to large m. For the code
ensembles that we examined, the WD threshold with W = W ∗ typically lies
within 0.5% of the FS threshold for m > 2, i.e., the value of W ∗ is mostly
determined by the cases m = 1 and 2.

Similar observations can be made for WD of Cms=1
[3,6] and

Cms=2
[3,6] in Figure 3(b) and 3(c):

• For Cms=1
[3,6] , W ∗ = 8. The WD threshold grows to a

value within 0.1% of the channel capacity when m = 5,
and then decreases very slightly as m increases further.
Nevertheless, the WD threshold remains very close to
capacity even for large m.

• For Cms=2
[3,6] , W ∗ = 10. The WD threshold does not

degrade as m increases, but instead saturates to a value
numerically indistinguishable from capacity. However,
when W is small (e.g., W = 5), Cms=2

[3,6] does not perform
as well as Cms=1

[3,6] due to its larger memory size, which
increases the delay required to make reliable decisions
(see [13]).

To summarize, for the three considered NB-SC-LDPC code
ensembles, the gain introduced by spatial coupling compared
to the corresponding uncoupled NB-LDPC block code en-
sembles grows with increasing field size m for sufficiently
large window size W . Furthermore, the thresholds of the
C[2,4] and Cms=2

[3,6] NB-SC-LDPC code ensembles saturate to
a value numerically indistinguishable from capacity for large
m with either FS decoding or WD with a sufficiently large
W . This is analogous to the case where the thresholds of
binary (dv, dc)-regular SC-LDPC code ensembles saturate to
capacity as dv and dc get large. It is interesting to note that
for binary ensembles the graph density (dv and dc) must get
large to approach capacity, whereas for non-binary ensembles
capacity can be approached for fixed density by increasing the
field size. In other words, the increase in complexity needed
to approach capacity is different in the two cases.

IV. THRESHOLD ANALYSIS OF
NB-SC-LDPC CODE ENSEMBLES ON THE BIAWGNC

A. P-NB-EXIT Analysis on the BIAWGNC
We use the P-NB-EXIT algorithm presented in [6] to

analyze the threshold performance of NB-SC-LDPC code
ensembles on the BIAWGNC, assuming that the binary image
of a codeword is transmitted and that BPSK modulation is
used. Similar to the P-NB-DE analysis on the BEC, the P-
NB-EXIT analysis is also a BP algorithm performed on the
protograph, where the messages represent mutual information
(MI) values, a model obtained by approximating the distri-
bution of the log-likelihood ratios as (jointly) Gaussian. The
threshold is obtained by determining the smallest signal-to-
noise ratio Eb/N0 such that decoding is successful, i.e., the
smallest value of Eb/N0 such that the a-posteriori MI between
each variable node and a corresponding codeword symbol goes
to 1 as the number of iterations increases.

B. Numerical Results
Figure 4(a) compares the FS thresholds of the (2, 4) and

(3, 6) groups on the BIAWGNC and Figure 4(b) shows the
WD thresholds of Cms=1

[3,6] for different W .2 Both figures

2Due to computational complexity, the BIAWGNC thresholds were calcu-
lated only up to m = 8. However, similar to the approach taken by Uchikawa
et al. in [10], the BIAWGNC threshold performance for m = 9 and 10 is
conjectured to be consistent with the corresponding BEC results.
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Fig. 3. FS and WD thresholds of the (2, 4) and (3, 6) groups on the BEC.
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Fig. 4. FS thresholds of the (2, 4) and (3, 6) groups and WD thresholds of
Cms=1
[3,6]

on the BIAWGNC.

illustrate similar behavior as the BEC results presented in Sec-
tion III-B, and the same is true for the WD thresholds of C[2,4]
and Cms=2

[3,6] (not included in the figure due to space limitations).
To summarize, small gains are observed for C[2,4] compared
to B[2,4] until the field size m gets large, whereas numerically
capacity-achieving WD thresholds that are significantly better
than the corresponding block code thresholds are observed for
both Cms=1

[3,6] and Cms=2
[3,6] . Moreover, we find that W ∗ = 10

for C[2,4] and Cms=2
[3,6] , while Cms=1

[3,6] is a better choice for WD,
since W ∗ = 8.

V. DECODING COMPLEXITY

In practice, we would like to compare the performance of
NB-SC-LDPC codes and the corresponding NB-LDPC block
codes when their decoding latency is the same. Since it is
assumed that the binary image of a codeword is transmitted, it
is convenient to measure the latency in terms of bits, denoted
as Wb, which is the number of columns in the window for
WD of SC-LDPC codes and the blocklength of LDPC block
codes, both measured in bits (instead of GF (q) symbols). To
be more specific, if the lifting factor (see Section II) is M
for SC-LDPC codes and M ′ for LDPC block codes, then the
equal latency condition is given by

Wb =Wc ·M ·m = c ·M ′ ·m,

i.e., M ′ =WM , which means that SC-LDPC codes must use
permutation matrices W times smaller than LDPC block codes
to maintain the same latency, where c is the number of columns
in the B and Bi matrices. For the codes we considered from
the (2, 4) and (3, 6) groups, c = 2. For fixed M , Wb then
depends on Wm. (The threshold analysis corresponds to the
case when M →∞.)

As stated in [3] and the references therein, for NB-LDPC
codes, if the BP algorithm employs the fast Fourier trans-
form, then the computational complexity at a check node is
O(qm) = O(q log2 q) per symbol per iteration, while that
at a variable node is O(q).3 In our case, however, due to the
constraint of equal latency, the decoding complexity should be
estimated per window for an SC-LDPC code, or equivalently,
per blocklength for an LDPC block code.

Like the protograph examples in this paper, an SC-LDPC
code is typically derived from a (dv, dc)-regular LDPC block
code. Consequently, if the window size is moderate to large,
the part of the SC parity-check matrix covered by the window
can be considered as (dv, dc)-regular as well and thus has
(approximately) the same number of non-zero entries as the
parity-check matrix of an LDPC block code. This indicates

3The influence of the number of iterations on the decoding complexity is
not considered in this paper.
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Fig. 5. The order of decoding complexity O (W · c · dv (q + qm)) when an
LDPC block code and an SC-LDPC code have the same decoding latency
and thus have the same decoding complexity.

that the decoding complexity of an SC-LDPC code and an
LDPC block code is the same when the decoding latency is
the same.4 The total number of non-zero entries in the window
is dvWb/m, so the decoding complexity per window is

O
(
Wb

m
dv (q + qm)

)
=MO (W · c · dv (q + qm)) . (2)

Ignoring the M factor on the right-hand side of (2), Figure 5
shows the order of the decoding complexity when dv = 2 and
3 with FS decoding and WD (W = 5 and 10); note that FS
decoding is equivalent to WD with W = L+ms ≈ L = 100,
i.e., FS decoding corresponds to an increase in the window
size by approximately an order of magnitude and to a corre-
sponding order-of-magnitude increase in decoding complexity.
The five specific points highlighted in the figure are all cases
when FS decoding or WD threshold of an SC-LDPC code
ensemble numerically achieves (or is very close to) capacity
(recall that the FS threshold of an LDPC block code ensemble
cannot be capacity-achieving, as shown in Figures 2 and 4(a)).
We observe that
• Comparing FS decoding to WD for the same ensemble,

both the complexity and the latency are significantly
reduced by adopting the latter.

• Comparing C[2,4] (Wm = 100), Cms=2
[3,6] (Wm = 50), and

Cms=1
[3,6] (Wm = 25) for WD, both the complexity and

the latency of Cms=1
[3,6] are lower than for the other two

ensembles for the same performance (near-capacity).
As a result, the (3, 6)-regular construction (especially

Cms=1
[3,6] ) is better than the (2, 4)-regular construction when

designing an NB-SC-LDPC code with decoding latency and
complexity constraints and stringent performance require-

4In fact, due to the check-node irregularity at the beginning of the window
and the variable-node irregularity at the end of the window, the actual decoding
complexity of the SC-LDPC code is slightly lower than the LDPC block code.
Nevertheless, we keep this “regularity” assumption for simplicity.

ments. This result is supported by decoding performance
simulations of finite-length codes (see [17]).

VI. CONCLUSIONS

This paper analyzed the windowed decoding threshold per-
formance of several ensembles of non-binary spatially coupled
LDPC codes; this was done for both the binary erasure
channel and the BPSK-modulated additive white Gaussian
noise channel. It was observed that windowed decoding (with a
sufficiently large window) provides the spatially-coupled codes
with capacity-approaching performance as the field size grows.
Moreover, the gain compared to the corresponding block code
ensembles increases as well. One particular ensemble of (3, 6)-
regular NB-SC-LDPC codes with memory size ms = 1 was
shown to exhibit near-capacity performance even for relatively
small field and window sizes, i.e., low decoding complexity
and small decoding latency.
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