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Abstract

Model Predictive Control (MPC) of vapor compression systems (VCSs) offers several advan-
tages over conventional control methods (such as multivariable process control with selector
logic) in terms of 1) the resulting closed-loop performance and 2) the control engineering design
process. VCSs are multivariable systems and feature constraints on system variables and actua-
tors that must be enforced during steady-state and transient operation. We present the design and
validation of an MPC for a split ductless VCS. The design regulates room temperature with zero
steady state error for unknown changes in the thermal load and enforces constraints on system
variables such as compressor discharge temperature and actuator ranges and rates. We show how
the MPC design can evolve during the engineering process by adding and modifying constraints
and process variables. The design methodology provides guarantees in terms of closed loop sta-
bility and convergence. Importantly, in contrast to other published results on MPC for VCSs, our
design makes use of only available temperature measurements and does not require pressure or
mass flow measurements which are typically not available in production VCSs.
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ABSTRACT

Model Predictive Control (MPC) of vapor compression systems (VCSs) offers several advantages over conventional
control methods (such as multivariable process control with selector logic) in terms of 1) the resulting closed-loop
performance and 2) the control engineering design process. VCSs are multivariable systems and feature constraints
on system variables and actuators that must be enforced during steady-state and transient operation. We present the
design and validation of an MPC for a split ductless VCS. The design regulates room temperature with zero steady
state error for unknown changes in the thermal load and enforces constraints on system variables such as compressor
discharge temperature and actuator ranges and rates. We show how the MPC design can evolve during the engineering
process by adding and modifying constraints and process variables. The design methodology provides guarantees
in terms of closed loop stability and convergence. Importantly, in contrast to other published results on MPC for
VCSs, our design makes use of only available temperature measurements and does not require pressure or mass flow
measurements which are typically not available in production VCSs.

1. INTRODUCTION

Model Predictive Control (MPC) (Garcia et al., 1989) of vapor compression systems (VCSs) offers several advantages
over conventional control methods (such as multivariable process control with selector logic) in terms of 1) the re-
sulting closed-loop performance and 2) the control engineering design process. VCSs are multivariable systems and
feature constraints on system variables and actuators that must be enforced during steady-state and transient operation.
Control requirements typically include regulation of process variables such as room temperatures, high bandwidth
transient response for rapid pull down, constraint enforcement during transient and steady-state operation, and optimal
steady-state energy efficiency. Conventional methods of control use classical or multivariable process control theory to
meet the requirements associated with regulation, transient response, and steady-state efficiency, together with selector
logic designed to prioritize the process variables in order to enforce constraints (Amano, 2012). However, for multi-
variable systems with more than one constraint, the interactions among the selector logic make it difficult to design
and validate the feedback controller; feedback gains are often detuned resulting in a conservative feedback controller
that is intended to stay away from the constraints. At best, this results in slow transient response and poor rejection of
disturbances and at worst, in a controller that is unable to maintain the system within the constraints.

In contrast, MPC is a technology that is well suited to the requirements of VCS control. Elliott and Rasmussen (2008)
and Koeln and Alleyne (2013) investigate decentralized MPC for multi-evaporator VCSs to regulate evaporator super-
heat and cooling capacity while mitigating coupling between individual evaporators. However, evaporator superheat
and cooling capacity are feedback variables that may require pressure or mass flow measurements which are typically
not available in production VRF systems. To overcome model uncertainty between a linear MPC and the nonlinear
VCS, Wallace et al. (2012) use a state estimator with an input disturbance model that results in zero steady-state reg-
ulation error. Heuristic tuning guidelines are provided for the input disturbance model. Like Elliott and Rasmussen
(2008), Wallace et al. (2012) use MPC to control the cooling capacity of the VCS, while a supervisory controller is
used to determine appropriate setpoints to regulate zone temperature(s).
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However, when considering zone temperature rather than cooling capacity as a feedback variable, the unknown and
unmeasurable thermal loads on the VCS are disturbances that must be rejected by the MPC. Our approach is to
formulate the state estimator in such a way that the effect of disturbances are lumped into auxiliary output disturbance
states, thereby eliminating the need to measure the thermal load. This approach has the added benefit of offset-free
estimation (Pannocchia and Rawlings, 2003; Maeder et al., 2009) of all measured outputs. This means that our closed-
loop system will achieve zero steady-state error between set point variables and regulated variables for constant but
unmeasured and unknown values of the thermal load disturbance. Moreover, we show that MPC offers a flexible
and systematic design process in which the constraints, for example, can be modified as the design evolves, and the
resulting controller can be computed and analyzed immediately, providing rigorous guarantees on optimality, transient
performance, and stability.

The paper is organized as follows. Section 2 describes the nonlinear model of a single zone split ductless vapor
compression system and its linearization for controller design. The design of the MPC is presented in Section 3 and
simulation results showing the performance and capabilities of the controller are presented and discussed in Section 4.
Concluding remarks are offered in Section 5.

2. SYSTEM MODELING

A nonlinear dynamic model of a 2.6 kW capacity split ductless VCS is developed using the THERMOSYS Toolbox
for MATLAB/Simulink (Alleyne, 2012). THERMOSYS uses a lumped parameter moving boundary approach for
modeling the dynamics of the heat exchangers. The system-level model contains component models of the condenser,
electronic expansion valve (EEV), evaporator, and the compressor, as well as a model of the zone that is interact-
ing with the VCS. Disturbances from thermal loads and changes in the outdoor air temperature are included in the
nonlinear model.

The MPC state estimator and constrained optimizer used in this approach both require linear models. The chosen
constrained optimizer, a parallel quadratic programming (PQP) algorithm (Di Cairano et al., 2013a), is motivated by its
execution speed and convergence guarantee. Therefore, the nonlinear model VCS model is linearized around a 2.6 kW
load operating point. Individual open-loop step responses are collected between the control inputs and the measured
outputs (Table 1) in simulation. Transfer functions are fit to each of the open loop step responses and combined into
a transfer function matrix that is subsequently approximated using the optimal Hankel norm model order reduction
technique (Skogestad and Postlethwaite, 2005). The resulting sixth-order continuous linear time-invariant model of
the VCS is written in state space form as

ẋ(t) = Ax(t) + Bu(t)
ym(t) = Cx(t),

(1)

where x(t) are the dynamic states, ym(t) are the measured outputs, and u(t) are the controlled inputs. Note that the
states of the model may not have physical significance due to the model reduction procedure as well as the empirical
nature of the identified transfer functions.

Table 1: DEFINITION OF SIGNALS

Signal Signal Signal
Type Symbol Description Units

Control Input

u1 compressor frequency Hz
u2 EEV aperture counts
u3 condenser fan speed rpm

Measured Output

ym1 compressor discharge temperature ◦C
ym2 compressor discharge superheat temperature ◦C
ym3 evaporating temperature ◦C
ym4 room air temperature ◦C

Thermal load disturbances are not included in the linearized model because in general, these disturbances are difficult
to measure or predict. Furthermore, in some controller designs, the evaporator fan speed may be considered a con-
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trol input and included in a straightforward manner. However, in the design that we consider, the evaporator fan is
controlled by the occupant and its influence may instead be considered as a measured disturbance. Specifically, the
evaporator fan speed will be fixed at a constant value in this design.
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Figure 1: (A) VCS schematic and (B) Block diagram of controller interacting with the VCS and Zone.

3. CONTROLLER DESIGN

A schematic of the online implementation of the controller is shown in Figure 2. The controller consists of two
elements: i) a state estimator and ii) an MPC. In this section we discuss the key design principles for both of these
elements and highlight how they provide a flexible and systematic methodology for modifying and iterating on the
design.

MPC

VCS and 
Zone

sensors

Controller

ym(k)

r(k)

u(k)

d(k)

State 
Estimator x̂(k)

ym(k)

u(k)

Figure 2: Block diagram describing the VCS controller.

3.1 State Estimator Design
The MPC algorithm requires an estimate of the dynamic state of the system. Estimators typically use measured output
and input signals with a model of the system dynamics, Eq. (2), to estimate the dynamic states. However, when
unmodeled disturbances such as changes in the thermal load act on the VCS and zone, the estimator will typically not
estimate the state correctly, thereby compromising the performance of the MPC by introducing steady-state offsets
between the measured and desired values of performance variables. Here we show how the effect of unmodeled
disturbances and model uncertainty are captured by the addition of auxiliary output disturbance states in the estimation
model. The continuous-time dynamics in Eq. (1) are discretized with a sample time of T se, resulting in the discrete-
time system

x(k + 1) = Aex(k) + Beu(k)
ym(k) = Cex(k),

(2)
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where k is the sampling index. The set of measured outputs ym is divided into two (potentially overlapping) subsets:
performance outputs and constrained outputs. The MPC relies on a prediction model to determine the optimal control
inputs that achieve offset-free tracking of the performance outputs and to guarantee that the constrained outputs stay
within their bounds in the presence of unmodeled disturbances or modeling error. This can be achieved by augmenting
the estimator model with auxiliary states w ∈ Rp×1, where p is the number of measured outputs in the system (Pan-
nocchia and Rawlings, 2003; Maeder et al., 2009). Each of the auxiliary states is defined as the difference between an
output as predicted by Eq. (2) and the actual measured value of the output.

The augmented estimator model takes the form

x(k + 1) = Aex(k) + Beu(k) (3a)
w(k + 1) = Iw(k) (3b)

ym(k) = Cex(k) + Iw(k), (3c)

where I is the p × p identity matrix. Finally, the estimator dynamics are given by[
x̂(k + 1)
ŵ(k + 1)

]
=

[
Ae − Le1Ce −Le1
−Le2Ce I − Le2

] [
x̂(k)
ŵ(k)

]
+

[
Be

0

]
u(k) +

[
Le1
Le2

]
ym(k), (4)

where Le =
[
L′e1 L′e2

]′
is the static estimator gain which can be designed using standard Kalman filtering techniques

(Simon, 2006).

3.2 MPC Design
The MPC relies on the design of a prediction model and a cost function to be minimized.

3.2.1 Prediction Model For MPC, a discrete-time model of the system dynamics is used to predict the system response
over the chosen prediction horizon.

x(k + 1) = Apr x(k) + Bpru(k) (5a)
yc(k) = Cpr x(k) (5b)
yp(k) = Epr x(k) (5c)

Equation (5) provides a state-space realization of the prediction model and is based on a discretization of the system of
Eq. (1) with a sample time of T spr such that T spr ≥ T se. To emphasize that the discretization of the prediction model
is not necessarily the same as that of the estimator model, the subscript pr is appended to the state, input, and output
matrices. The output matrix Cpr contains those rows of C such that yc, Eq. (5b), describes the outputs to be constrained
by the MPC. Similarly, Epr contains those rows of C such that yp, Eq. (5c), describes the performance outputs that
are explicitly characterized in the MPC cost function (Section 3.2.2). The structure of the prediction model allows for
constrained variables and performance variables to be added or removed from the controller design, highlighting the
flexibility of the MPC design process.

Multiple augmentations need to be made to Eq. (5) so that the resulting MPC problem can be solved as a constrained
quadratic program (QP). First, the prediction model is augmented with the same auxiliary output disturbance states
that were added to the estimator model so that the prediction model predicts the effect of control decisions on the
constrained and performance outputs, [

x(k + 1)
w(k + 1)

]
=

[
Apr 0
0 I

] [
x(k)
w(k)

]
+

[
Bpr

0

]
u(k) (6a)

yc(k) =
[
Cpr Cw

] [ x(k)
w(k)

]
(6b)

yp(k) =
[
Epr Ew

] [ x(k)
w(k)

]
, (6c)

where Cw and Ew are matrices of zeros and ones such that Eqs. (6b) and Eq. (6c) are consistent with Eq. (3c).
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The second modification involves expressing the input as a discrete integrator (Di Cairano et al., 2013b). This change
of variables enables constraints to be placed on the rate of change of the control input and ensures that the cost function
has a minimum at zero. Furthermore, we append the constrained output vector, yc, with yu = xu as shown in Eq. (7c)
in order to enforce constraints on the actual values of the control inputs. Let u(k) = u(k − 1) + du(k), xu(k) = u(k − 1),
and ū = du(t), giving  x(k + 1)

w(k + 1)
xu(k + 1)

 =
Apr 0 Bpr

0 I 0
0 0 I


 x(k)
w(k)
xu(k)

 +
Bpr

0
I

 ū(k) (7a)

[
yc(k)
yu(k)

]
=

[
Cpr Cw 0
0 0 I

]  x(k)
w(k)
xu(k)

 (7b)

yp(k) =
[
Epr Ew 0

]  x(k)
w(k)
xu(k)

 . (7c)

Finally, the state vector is augmented with the reference signal(s), i.e., the setpoints for the performance outputs: room
air temperature and compressor discharge temperature. By augmenting the prediction model in this manner, the cost
function (Section 3.2.2) can be designed to minimize z = yp − r, the error between the measured and desired values
of the performance outputs as shown in Eq. (8c). The room air temperature reference r1 is an exogenous signal and is
assumed to be constant over the prediction horizon, i.e. r1(k + 1) = r1(k). The compressor discharge temperature is
defined as a linear function of the compressor frequency: r2(k + 1) = r2(k) + c · u2(k). Let xr = r, giving

x(k + 1)
w(k + 1)
xu(k + 1)
xr(k + 1)

 =

Apr 0 Bpr 0
0 I 0 0
0 0 I 0
0 0 0 I




x(k)
w(k)
xu(k)
xr(k)

 +

Bpr

0
I

Br

 ū(k) (8a)

[
yc(k)
yu(k)

]
=

[
Cpr Cw 0 0
0 0 I 0

] 
x(k)
w(k)
xu(k)
xr(k)

 (8b)

z(k) =
[
Epr Ew 0 −I

] 
x(k)
w(k)
xu(k)
xr(k)

 , (8c)

where Br =
[

c 0 0
0 0 0

]
.

3.2.2 Cost Function For any type of optimal controller, one needs to mathematically describe the quantity to be
minimized or maximized. For linear MPC, it is common to design a quadratic cost function,

J = x̄(N)′Px̄(N) +
N−1∑
k=0

z̄(k|t)′Qzz̄(k|t) + ū(k|t)′Rū(k|t), (9)

where x̄(k) =
[
x(k)′ w(k)′ xu(k)′ xr(k)′

]′
, z̄ = yp − r, ū = u(k) − u(k − 1), and the term x̄(N)′Px̄(N) is the terminal

cost that is included to guarantee local asymptotic stability of the model predictive controller. See the Appendix for
a sketch of the proof of stability and the determination of the terminal cost weight P. The matrices Qz and R are
tunable weights that influence the transient performance of the controller by penalizing the individual terms of the cost
function. Finally, the cost function is minimized such that constraints

ȳmin ≤ ȳ(k|t) ≤ ȳmax, k = 0, . . . ,Nc (10a)
ūmin ≤ ū(k|t) ≤ ūmax, k = 1, . . . ,Nu (10b)
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(b) t = 2000 until t = 5000 seconds.

Figure 3: Regulation of performance variables.

are satisfied, where Nc and Nu are the time horizons over which the output and input constraints are enforced in the
MPC. The prediction model, cost function, and constraints are converted into a quadratic program as described in Di
Cairano and Bemporad (2010).

4. SIMULATED CASE STUDY

In order to demonstrate the advantages of MPC for VCSs, a linear MPC was designed according to the procedure
outlined in the previous section and then tested on the nonlinear 2.6kW split-ductless VCS model. The outdoor air
temperature is held constant at 34◦C throughout the simulation. The sample time of the estimator, T se, is 1 second,
and the control inputs are updated at T spr = 15 seconds. Finally, the prediction horizon has a length of 64 steps, or 16
minutes. The 5000 second simulation highlights the ability of the MPC to reject unknown thermal loads and operate
the system within specified input and output constraints while still optimizing performance tracking objectives.

During the first half of the simulation from t = 0 until t = 2,000 seconds, the desired room air temperature setpoint
is decreased by 4◦C at t = 200 seconds; 400 seconds later, there is a 500W decrease in the thermal load acting on the
room. Figures 3a, 4a, and 5a show that the controller is able to reject the disturbance and achieve steady-state offset-
free tracking of the room temperature and compressor discharge temperature. Recall that the MPC does not have
knowledge of the magnitude of the thermal load, but its effect on the measured outputs is estimated by the estimator.
Moreover, these results show that the linear model identified based on the nonlinear model suitably represents the
dynamics of the VCS.

During the second half of the simulation from t = 2,000 until t = 5,000 seconds, the desired room air temperature
setpoint is decreased by another 4◦C. However, at t = 1,300 seconds, the evaporating temperature constraint becomes
active (see Figure 5b). The compressor speed and EEV aperture do not increase further because doing so would
cause the evaporating temperature to decrease, thereby violating the constraint. Instead, the condenser fan speed
decreases to drive the room air temperature as close as possible to its setpoint. Ultimately, the condenser fan speed
saturates at its lower limit. Due to the enforcement of the evaporating temperature constraint and the condenser fan
speed constraint, there is a steady-state offset between the room air temperature and the desired setpoint as shown in
Figure 3b. This highlights how a system with more control inputs than performance outputs is advantageous in the
context of MPC. With the compressor and EEV unable to drive the room air temperature to a lower value without
violating the evaporating temperature constraint, the outdoor fan is able to drive the room air temperature closer to the
desired value until it too reaches its lower bound (see Figure 4b). Finally, it is worth noting that the MPC enforces
these competing objectives while maintaining stable operation of the VCS.

For multivariable systems (like VCSs) with complex interactions, the flexible and systematic control design process
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Figure 4: Optimal control inputs; dashed lines represent saturation bounds on each control input.

0 500 1000 1500 2000

10
20
30
40
50

C
o
m

p
. 

D
is

c
h
a
rg

e

S
u
p
e
rh

e
a
t 

(
C

)

 

 

0 500 1000 1500 2000
0

5

10

E
v
a
p
o
ra

ti
n
g

T
e
m

p
. 

(
C

)

Time (s)

Measured Signal

Constraint

(a) t = 0 until t = 2000 seconds.

2000 2500 3000 3500 4000 4500 5000

10
20
30
40
50

C
o
m

p
. 

D
is

c
h
a
rg

e

S
u
p
e
rh

e
a
t 

(
C

)

 

 

2000 2500 3000 3500 4000 4500 5000
0

5

10

E
v
a
p
o
ra

ti
n
g

T
e
m

p
. 

(
C

)

Time (s)

Measured Signal

Constraint

(b) t = 2000 until t = 5000 seconds.

Figure 5: Constrained output variables.

offered by MPC is beneficial. In order to highlight this feature, the previous simulation is repeated but with a third
constrained variable added to the MPC - the compressor discharge temperature. In order to make this change, only the
matrix Cpr in Equation (5) is modified so that the vector yc of constrained variables includes the compressor discharge
temperature. The controller synthesis is otherwise unchanged.

The performance outputs yp, control inputs u, and constrained outputs yc for the 5000 second simulation are shown
in Figures 6, 7, and 8. The MPC determines the optimal control inputs that minimize the regulation error of the
performance variables (room air temperature and compressor discharge temperature) while enforcing constraints on
the constrained variables. Note that the compressor discharge temperature Td is now both a performance variable and
a constrained variable. After a decrease in the room air temperature setpoint at t = 2200 seconds, both the compressor
discharge temperature and evaporating temperature constraints become active, and as a result, there are steady-state
offsets between the performance variables and their setpoints as shown in Figure 6. In contrast to the first simulation
(Figures 3-5) the condenser fan cannot decrease to its lower bound without causing a violation of the compressor
discharge temperature constraint.

5. CONCLUSION

In this paper we showed that model predictive control (MPC) of vapor compression systems (VCSs) offers several
advantages over conventional control methods in terms of 1) the resulting closed-loop performance and 2) the control
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Figure 6: Sim. 2 – Regulation of perfor-
mance variables.
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Figure 8: Simulation 2 – Constrained outputs.

engineering design process. Rather than designing multiple individual loops to address the various constraints in the
system, a single MPC was systematically designed for the VCS with multiple control inputs, performance objectives,
and constraints. Moreover, the addition or subtraction of performance objectives or constraints requires only minor
changes to the state-space representation of the estimator and prediction models. Through a simulated case study
it was shown that with the state estimator augmented with auxiliary output disturbance states, unmeasured thermal
load disturbances are rejected in the steady state by the controller to achieve offset-free tracking performance. The
MPC also maintains system operation within input and output constraints. Finally, the design presented here uses only
temperature measurements typically available in production VCSs.

NOMENCLATURE
k discrete time index x dynamic state Subscript p performance output
r reference (setpoint) y output c constrained output pr prediction model
T s sample time e estimator model r reference
u control input eq equilibrium u control input
w auxiliary state m measured output
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APPENDIX

Here we provide the reader with a proof guaranteeing local asymptotic stability of the MPC described in Section 3.
We will make use of the prediction model, Eq. (8), rewritten in the following form,[

ξ(k + 1)
r(k + 1)

]
=

[
Aξ 0
0 Ar

] [
ξ(k)
r(k)

]
+

[
Bξ
0

]
ū(k) (11a)

ȳ(k) =
[
Cξ 0

] [ξ(k)
r(k)

]
+ Dξū(k) (11b)

z̄(k) =
[
Eξ −Er

] [ξ(k)
r(k)

]
, (11c)

where ξ(k) =
[
x(k)′ w(k)′ xu(k)′

]′
, r(k) = xr(k), and z̄(k) = z(k).
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Consider the MPC finite horizon optimal control problem

min
Ū(t)

∥∥∥∥[ ξ(N)
r(N)

]∥∥∥∥2

P
+

N−1∑
k=0

‖z̄(k|t)‖2Qz
+ ‖ū(k|t)‖2R (12a)

s.t. ȳmin ≤ ȳ(k|t) ≤ ȳmax, k = 0, . . . ,Nc (12b)
ūmin ≤ ū(k|t) ≤ ūmax, k = 1, . . . ,Nu (12c)
ū(k|t) = K

[
ξ(k|t)
r(k|t)

]
, k = Nu, . . . ,N − 1 (12d)

where the objective is to design the terminal cost weight P and the terminal gain K such that the tracking error is
locally asymptotically stable. In order to do this we apply with some modifications the results in Di Cairano et al.
(2012). In details from (11a) and (11c), we construct the system

x̄(k + 1) = Āpr x̄(k) + B̄prū(k) (13a)
z̄(k) = Ēpr x̄(k), (13b)

where x̄ =
[
ξ
r
]
, Āpr =

[
Aξ 0
0 Ar

]
, B̄pr =

[
Bξ
0

]
, and Ēpr = [ Eξ −Er ]. Note that (13) is not fully observable and not fully

controllable because the controller cannot, in general, modify the reference, and the optimal cost does not depend on
the absolute reference and output values but only on their difference. Therefore, a standard terminal cost design based
on LQR fails for this system. We apply an observability decomposition via an appropriate change of coordinates T
such that xobs = T x, xobs =

[
x′o x′no

]′
, and

xobs(k + 1) =
[

Ao 0
Ano,o Ano

] [
xo(k)
xno(k)

]
+

[
Bo

Bno

]
u(k) (14a)

z(k) =
[
Eo 0

] [ xo(k)
xno(k)

]
, (14b)

where xno are the coordinates of the state vector with respect to a basis of the unobservable space, and the pair (Ao, Eo)
is observable.

Theorem 1 Let K = [ Ko 0 ] T and P = T ′
[

Po 0
0 0

]
T where

Ko = −(B′oPoBo + R)−1B′oPoAo (15)

and Po is the solution of the Riccati equation

Po = E′oQzEo + A′oPoAo − A′oPoBo(B′oPoBo + Ro)−1B′oPoAo (16)

which is assumed to exist. Then, the MPC controller that solves Eq. (12) ensures that limt ‖z(t)‖ = 0, and the tracking
error z(t) is locally asymptotically stable. Furthermore, if Aξ, Ar do not share unstable eigenvalues such that the
eigenvectors images through Eξ, and Er share a subspace, there exists ξeq ∈ R

dim(Aξ) with ‖ξeq‖ < ∞ such that
limt ‖ξ(t) − ξeq‖ = 0.

Proof 1 (Sketch) The tracking problem, Eq. (12), is equivalent to a rendezvous problem of a controlled system, the
plant, and an uncontrollable system, the reference. In Di Cairano et al. (2012) it was shown that the solution of the LQ
problem for the observable subsystem, Eqs. (15),(16), is optimal for the rendezvous problem which is non-observable.
Thus, K, P are optimal for the observable system LQ problem and asymptotically stabilize the observable component
of the system state, and hence the tracking error, which is related to such observable component by Eq. (14b). When
the MPC cost function, Eq. (12a), and terminal control law, Eq. (12d), are defined by K, P, the MPC behaves as the
LQ-optimal controller, for all x̄ ∈ O∞(Āpr+ B̄prK), which is the maximum output admissible set of (Āpr+ B̄prK), subject
to its constraints,Eqs. (12c),(12b). Thus, the first claim is proved. The second claim is proved by exploiting the results
of Di Cairano et al. (2012). The zero dynamics (i.e., the dynamics when the output, which here is the tracking error, is
constantly zero) is equal to the residual dynamics after rendezvous, which is determined by the common eigenvalues
with associated eigenvectors having common image through the respective output matrices, Eξ, Er. If there are not
such unstable eigenvalues, then the state of the system is bounded. �

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014



2613, Page 11

15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014


	Title Page
	Title Page
	page 2


	Model Predictive Control of Vapor Compression Systems
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11


