
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Nearly Optimal Simple Explicit MPC
Controllers with Stability and Feasibility

Guarantees

Holaza, J.; Takacs, B.; Kvasnica, M.; Di Cairano, S.

TR2014-087 July 2014

Abstract

We consider the problem of synthesizing simple explicit model predictive control feedback laws
that provide closed-loop stability and recursive satisfaction of state and input constraints. The
approach is based on replacing a complex optimal feedback law by a simpler controller whose
parameters are tuned, off-line, to minimize the reduction of the performance. The tuning consists
of two steps. In the first step, we devise a simpler polyhedral partition by solving a parametric
optimization problem. In the second step, we then optimize parameters of local affine feed-
backs by minimizing the integrated squared error between the original controller and its simpler
counterpart. We show that such a problem can be formulated as a convex optimization problem.
Moreover, we illustrate that conditions of closed-loop stability and recursive satisfaction of con-
straints can be included as a set of linear constraints. Efficiency of the method is demonstrated
on two examples.
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SUMMARY

We consider the problem of synthesizing simple explicit model predictive control feedback laws that pro-
vide closed-loop stability and recursive satisfaction of state and input constraints. The approach is based on
replacing a complex optimal feedback law by a simpler controller whose parameters are tuned, off-line, to
minimize the reduction of the performance. The tuning consists of two steps. In the first step, we devise a
simpler polyhedral partition by solving a parametric optimization problem. In the second step, we then opti-
mize parameters of local affine feedbacks by minimizing the integrated squared error between the original
controller and its simpler counterpart. We show that such a problem can be formulated as a convex opti-
mization problem. Moreover, we illustrate that conditions of closed-loop stability and recursive satisfaction
of constraints can be included as a set of linear constraints. Efficiency of the method is demonstrated on two
examples. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Model predictive control (MPC) has become a very popular control strategy especially in process
control [1, 2]. MPC is endorsed mainly because of its natural capability of designing feedback
controllers for large MIMO systems while considering all of the system’s physical constraints and
performance specifications, which are implicitly embedded in the optimization problem. Solution
of such an optimization problem yields a sequence of predicted optimal control inputs, from which
only the first one is applied to the system. Hence, to achieve feedback, the optimization is repeated at
each sampling instant, which in turn requires adequate hardware resources. To mitigate the required
computational effort, explicit MPC [3] was introduced. In this approach, the repetitive optimization
is abolished and replaced by a mere function evaluation, which makes MPC feasible for applications
with limited computational resources such as in automotive [4, 5] and aerospace [6] industries.
The feedback function is constructed off-line for all admissible initial conditions by parametric
programming [7–9]. As shown by numerous authors (see, e.g., [10–14]), for a rich class of MPC
problems, the pre-computed solution takes a form of a piecewise affine (PWA) function that maps
state measurements onto optimal control inputs. Such a function, however, is often very complex
and its complexity can easily exceed limits of the selected implementation hardware.

Therefore, it is important to keep complexity of explicit MPC solutions under control and to
reduce it to meet required limits. This task is commonly referred to as complexity reduction. Numer-
ous procedures have been proposed to achieve such a goal. Two principal directions are followed in
the literature. One option is to replace the complex optimal explicit MPC feedback law by another
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2 J. HOLAZA ET AL.

controller, which retains optimality. This can be achieved, for example, by merging together the
regions in which local affine expressions are identical [15], by devising a lattice representation of
the PWA function [16], or by employing clipping filters [17]. Another possibility is to find a sim-
pler explicit MPC feedback while allowing for a certain reduction of performance with respect to
the complex optimal solution. Examples of these methods include, but are not limited to, relaxation
of conditions of optimality [18], use of move-blocking [19], formulation of minimum-time setups
[20], using multi-resolution techniques [21], approximation of the PWA feedback by a polynomial
[22, 23] or by another PWA function defined over orthogonal [24] or simplical [25] domains, to
name just a few. Compared with the performance lossless approaches, the methods that sacrifice
some amount of performance typically achieve higher reduction of complexity.

In this paper, we propose a novel method of reducing complexity of explicit MPC solutions, which
belong to the class of methods which trade lower complexity for certain reduction of performance.
In the presented method, however, the reduction of performance is mitigated as much as possible,
hence achieving nearly-optimal performance with low complexity. The presented paper extends our
previous results in [26] and [27] by providing detailed technical analysis of the presented results
and, more importantly, by introducing synthesis of nearly-optimal explicit MPC controllers that
achieve closed-loop stability. The method is based on the assumption that a complex explicit MPC
feedback law !.x/ is given, encoded as a PWA function of the state measurements x. Our objective
is to replace !.!/ by a simpler PWA function Q!.!/ such that (i) Q!.x/ generates a feasible sequence of
control inputs for all admissible values of x; (ii) Q!.x/ renders the closed-loop system asymptotically
stable; and (iii) the integrated square error between !.!/ and Q!.!/ (i.e., the suboptimality of Q!.!/ with
respect to !.!/) is minimized. By doing so, we obtain a simpler explicit feedback law Q!.!/, which is
safe (i.e., it provides constraint satisfaction and closed-loop stability) and is nearly optimal.

Designing an appropriate approximate controller, Q!.!/ requires first the construction of the poly-
topic regions over which Q!.!/ is defined and then the synthesis of local affine expressions in each of
the regions. We propose to approach the first task by solving a simpler MPC optimization problem
with a shorter prediction horizon. In this way, we obtain a simple feedback O!.!/ as a PWA function.
However, such a simpler feedback typically exhibits large deterioration of performance compared
with !.!/. To mitigate such a performance loss, we retain the regions of O!.!/ but refine the asso-
ciated local affine feedback laws to obtain the function Q!.!/ such that the error between !.!/ and
Q!.!/ is minimized. Here, instead of minimizing the point-wise error as in [26], we illustrate how
to minimize the integral of the squared error directly, which is a better indicator of suboptimality.
In Section 3, we show that if Q!.!/ is required to posses the recursive feasibility property, then the
problem of finding the appropriate local feedback laws is always feasible. In other words, we can
always refine O!.!/ as to obtain a better-performing explicit controller Q!.!/. We subsequently extend
the procedure and show how to formulate the search for the parameters of Q!.!/ by solving a convex
quadratic program such that asymptotic closed-loop stability is attained in Section 4. The procedure
is summarized in Section 5 and two examples are presented in Section 6. Conclusions are drawn in
Section 7.

2. PRELIMINARIES AND PROBLEM DEFINITION

2.1. Notation and definitions

We denote by R, Rn and Rn!m the real numbers, n-dimensional real vectors and n"m dimensional
real matrices, respectively. N denotes the set of non-negative integers, and Nj

i , i 6 j , the set of
consecutive integers, that is, Nj

i D ¹i; : : : ; j º. For a vector-valued function f W Rn ! Rm, dom.f /
denotes its domain. For an arbitrary set S, int.S/ denotes its interior.

Definition 2.1 (Polytope)
A polytope P $ Rn is a convex, closed, and bounded set defined as the intersection of a finite
number c of closed affine half-spaces aT

i x 6 bi , ai 2 Rn, bi 2 R, 8i 2 Nc
1 . Each polytope can be

compactly represented as

P D ¹x 2 Rn j Ax 6 bº ; (1)
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with A 2 Rc!n, b 2 Rc .

Definition 2.2 (Vertex representation of a polytope)
Every polytope P $ Rn in (1) can be equivalently written as

P D
°
x j x D

X
i
"ivi ; 0 6 "i 6 1;

X
i
"i D 1

±
; (2)

where vi 2 Rn, 8i 2 NM
1 are the vertices of the polytope.

Definition 2.3 (Polytopic partition)
The

Q1

collection of polytopes ¹RiºM
iD1 is called a partition of polytope Q if

1. Q D S
i Ri .

2. int.Ri / \ int.Rj / D ;, 8i ¤ j .

We call each polytope of the collection a region of the partition.

Definition 2.4 (Polytopic PWA function)
A vector-valued function f W # ! Rm is called PWA over polytopes if

1. # $ Rn is a polytope.
2. There exist polytopes Ri , i 2 NM

1 such that ¹RiºM
iD1 is a partition of #.

3. For each i 2 NM
1 , we have f .x/ D Fix C gi , with Fi 2 Rm!n, gi 2 Rm.

Definition 2.5 (Maximum control invariant set)
Let xkC1 D Axk C Buk be a linear system that is subject to constraints x 2 X , u 2 U , X % Rn,
U % Rm. Then the set

C1 D ¹x0 2 X j 8k 2 N W 9uk 2 U s.t. Axk C Buk 2 X º (3)

is called the maximum control invariant set.

Remark 2.6
Under mild assumptions, the set C1 in (3) is a polytope, which can be computed, for instance by
the MPT Q2Toolbox [28]. The interested reader is referred to [29] and [30] for literature on computing
(maximum) control invariant sets.

2.2. Explicit model predictive control

We consider the control of linear discrete-time systems in the state-space form

x.t C 1/ D Ax.t/ C Bu.t/; (4)

with t denoting multiplies of the sampling period, x 2 Rn, u 2 Rm, .A; B/ controllable, and the
origin being the equilibrium of (4). The system in (4) is subject to state and input constraints

x.t/ 2 X ; u.t/ 2 U ; 8t 2 N; (5)

where X $ Rn, U $ Rm are polytopes that contain the origin in their respective interiors. We are
interested in obtaining a feedback law ! W Rn ! Rm such that u.t/ D !.x.t// drives all states of
(4) to the origin while providing recursive satisfaction of state and input constraints, that is, 8t 2 N
x.t/ 2 X , u.t/ 2 U .

As shown for instance in [3], the feedback law !.x/ can be obtained by computing the explicit
representation of the optimizer to the following optimization problem:
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! D arg min
N "1X
kD0

!
xT

kC1QxxkC1 C uT
k Quuk

"
(6a)

s.t. xkC1 D Axk C Buk; 8k 2 NN "1
0 ; (6b)

uk 2 U ; 8k 2 NN "1
0 ; (6c)

x1 2 C1; (6d)

where xk , uk denote, respectively, predictions of the states and inputs at the time step t C k, ini-
tialized from x0 D x.t/. Moreover, N 2 N is the prediction horizon and Qx & 0, Qu ' 0
are the weighting matrices of appropriate dimensions. In the receding horizon implementation
of MPC, we are only interested in the first element of the optimal sequence of inputs U #

N Dh
u#

0
T ; : : : ; u#

N "1
T

iT
. Hence, the receding horizon feedback law is given by

!.x/ WD ŒIm!m 0m!m ! ! ! 0m!m$U #
N : (7)

Remark 2.7
Note that constraint (6d) implies that if C1 is a control invariant set satisfying (3), xk 2 X can be
satisfied 8k 2 NN

0 .

By solving (6) using parametric programming (see [9, 31]), one obtains the explicit representation
of the so-called explicit MPC feedback law !.!/ in (7) as a function of the initial condition x0 D
x.t/,

!.x0/ WD

8̂
<
:̂

F1x0 C g1 if x0 2 R1;
:::

FM x0 C gM if x0 2 RM ;

(8)

with Fi 2 Rm!n and gi 2 Rm.

Theorem 2.8 ([32])
The function ! W Rn ! Rm in (8) is a polytopic PWA function (cf. Definition 2.4) where Ri $ Rn

are the polytopes 8i 2 NM
1 and M denotes the total number of polytopes. Moreover, the domain of

!.!/ is # D S
i Ri where # is a polytope such that

# D ¹x0 j 9u0; : : : ; uN "1 s.t. .6c/ ( .6d/ holdsº (9)

is the set of all initial conditions for which problem (6) is feasible. Furthermore, ¹Riº is the partition
of #, compare with Definition 2.3.

2.3. Problem statement

The main issue of explicit MPC is that the complexity of the feedback law !.!/ in (8), expressed by
the number of polytopes M , grows exponentially with the prediction horizon N . The more polytopes
constitute !.!/, the more memory is required to store the function in the control hardware and the
longer it takes to obtain the value of the optimizer for a particular value of the state measurements.
Therefore, we want to replace !.!/ by a similar, yet less complex, PWA feedback law Q!.!/ while
preserving recursive satisfaction of constraints in (5). The price we are willing to pay for obtaining
a simpler representation is suboptimality of Q!.!/ with respect to the optimal representation !.!/.
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Problem 2.9
Given an explicit representation of the MPC feedback function ! W Rn ! Rm as in (8), we want to
synthesize a PWA function Q! W Rn ! Rm with

Q!.x/ D QFix C Qgi if x 2 QRi ; 8i 2 N
QM

1 ; (10)

that is, to find the integer QM < M , polytopes QRi $ Rn, i 2 N QM
1 , and gains QFi 2 Rm!n, Qgi 2 Rm

such that

R1: For each x 2 dom.!/, the simpler feedback Q!.!/ provides recursive satisfaction of state and
input constraints in (5), that is, 8t 2 N, we have that Q!.x.t// 2 U and Ax.t/CB Q!.x.t// 2 X .

R2: Feedback Q!.!/ renders the origin an asymptotically stable equilibrium of the closed-loop
system x.t C 1/ D Ax.t/ C B Q!.x.t//.

R3: Q!.!/ is chosen such that the squared error between the PWA functions !.!/ and Q!.!/, when
integrated over the domain of !.!/, #, is minimized.

min
Z

!
k!.x/ ( Q!.x/k2

2 dx: (11)

In (11), dx is the Lebesgue measure of #, see [33]. The task of Problem 2.9 is illustrated
graphically in Figure 1.

Remark 2.10
Replacing the integrated squared error criterion in (11) by point-wise squared errors of the form

min
X

i

k!.wi / ( Q!.wi /k2
2 (12)

for a finite set of points wi that can be counterproductive. Take the case of Figure 1, consider only
region QR1, and let w1, w2 be its vertices. Then the point-wise error is small (because it is evaluated
only in the vertices), whereas the integrated error between !.!/ and Q!.!/ is significantly larger. This
issue can be mitigated, to some extent, by devising many evaluation points wi . But one still only
obtains an approximation of the integrated error criterion. Therefore, in this paper, we show how to
minimize (11) directly, without resorting to point-wise approximations of the error objective.

3. SIMPLE CONTROLLERS WITH GUARANTEES OF RECURSIVE FEASIBILITY

In this section, we propose a two-step procedure for synthesis of a simple feedback Q!.!/ that fulfills
requirements R1 and R3 of Problem 2.9. The closed-loop stability criterion R2 will be addressed in

ol
or

O
nl

in
e,

B
&

W
in

Pr
in

t

Figure 1. The function !.!/, shown in black, is given. The task in Problem 2.9 is to synthesize the function
Q!.!/, shown in red, which is less complex (here it is defined just over three regions instead of seven for !.!/)

and minimizes the integrated square error (11).
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Section 4. In the first step, we construct polytopes QRi , i 2 N QM
1 with QM ) M (recall that M is the

number of polytopes that define the optimal feedback !.!/) such that[
i

QRi D
[
j

Rj ; (13)

that is, that the domain of Q!.!/ is identical to the domain of !.!/. In the second step for each i 2 N QM
1 ,

we choose the gains QFi and offsets Qgi of Q!.!/ in (10) such that the simpler feedback Q!.!/ provides
recursive satisfaction of constraints in (5) and the approximation error in (11) is minimized.

3.1. Selection of the polytopic partition

The objective here is to find polytopic regions QRi , i 2 N QM
1 such that (13) holds with QM < M .

First, recall that from Theorem 2.8, [jRj D # by (9). Hence, we require [i QRi D #. We propose
to obtain polytopes QRi by solving (6) again but with a lower value of the prediction horizon, say
with ON < N , where N is the prediction horizon for which the original (complex) controller ! was
obtained. Then, by Theorem 2.8, we obtain the feedback law O!.!/ as a PWA function of x

O!.x/ D OFix C Ogi if x 2 QRi ; 8i 2 N
QM

1 ; (14)

which is defined over QM polytopes QRi .

Lemma 3.1
Let !.!/ as in (8) be obtained by solving (6) according to Theorem 2.8 for some prediction horizon
N . Let O!.!/ be the explicit MPC feedback function in (14), obtained by solving (6) for some ON < N .
Then (13) holds.

Proof
The feasible set # in (9) is the projection of constraints in (6) onto the x-space, see, for example,
[34, 35]. Because (6d) are the only state constraints of the problem, # is independent of the choice
of the prediction horizon. Therefore, #N D # ON . Finally, because [jRj D #N D # ON D [i QRi

by Theorem 2.8, the result follows. !

Thus, we can obtain polytopic regions QRi of the simpler function (10) by solving (6) explicitly
for a shorter value of the prediction horizon. To achieve the least complex representation of Q!.!/, it
is recommended to choose low values of ON . The smallest number of polytopes, that is, QM , will be
achieved for ON D 1.

Remark 3.2
The advantage of the procedure presented here is that the domain of !.!/ is partitioned into

® QRi

¯
in

such a way that the approximation problem is always feasible, that is, there always exists parameters
QFi , Qgi in (10) such that Q! guarantees recursive satisfaction of input and state constraints. This is not

always the case if an arbitrary partition is selected.

Remark 3.3
By solving (6) for ON < N , we obtain the explicit representation of a simple controller O!.!/ as a PWA
function in (14). Such a function already provides recursive satisfaction of constraints in (5) due to
(6d) and therefore solves R1 in Problem 2.9. However, there is no guarantee that O!.!/ minimizes
the approximation error (11). Hence, (14) is expected to exhibit significant suboptimality when
compared with the (complex) optimal feedback !.!/. In the following section, we aim at refining
local affine feedback laws of O!.!/ such that the amount of suboptimality is significantly reduced.

3.2. Function fitting

In the previous section, we have shown how to compute the polytopic partition Q
1 by

solving (6) using parametric programming for ON < N . Next, we aim at finding parameters QFi , g
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First, recall that, from Theorem 2.8, the polytopes QRi form the partition of the domain of O!.!/,
that is, their respective interiors do not overlap. Therefore, we can split the search for QFi , Qgi for
i 2 N QM

1 in Problem 2.9 into a series of QM problems of the following form:

min
QFi ; Qgi

Z
QRi

k!.x/ ( Q!.x/k2
2 dx; (15a)

s.t. QFix C Qgi 2 U ; 8x 2 QRi ; (15b)

Ax C B
! QFix C Qgi

"
2 C1; 8x 2 QRi : (15c)

Here, recall that Q!.x/ D QFix C Qgi is the affine representation of the approximate control law valid
in a particular region QRi via (10). The constraint (15b) ensures satisfaction of input constraints,
whereas (15c) provides recursive satisfaction of state constraints because C1 is assumed to satisfy
Definition 2.5.

However, there are three technical issues, which complicate the search for QFi , Qgi from (15).

1. Even when x is restricted to a particular polytope QRi , !.!/ over QRi is still a PWA function.
2. The integration in (15a) has to be performed over polytopes in dimension n > 1.
3. The constraints in (15b) and (15c) have to hold for all points x 2 QRi , that is, for an infinite

number of points.

The first issue can be tackled as follows. Consider a fixed index i , that is, take QRi and recall that
the (complex) optimal feedback !.!/ is defined over M polytopes Rj . For each j 2 NM

1 , compute
first the intersection between QRi and Rj , that is,

Qi;j D QRi \ Rj ; 8j 2 NM
1 : (16)

Because QRi and Rj are assumed to be polytopes, each Qi;j is a polytope as well. In each intersection
Qi;j , the expressions for both !.!/ and Q!.!/ are affine, which follows from (8) and (10), respectively.
Hence, we can equivalently represent the approximation objective (15a) as

min
QFi ; Qgi

X
j 2Ji

Z
Qi;j

##.Fj x ( gj / (
! QFix C Qgi

"##2

2
dx; (17)

where Fj and gj are the gains and offsets of the optimal feedback in region Rj . The outer sum-
mation only needs to consider indices of polytopes of !.!/ for which the intersection in (16) is
non-empty, that is, Ji D

®
j 2 NM

1 j QRi \ Rj ¤ ;
¯

for a fixed i .
To evaluate the integral in (17), recall that for each i–j combination, Fj and gj are known

matrices/vectors, but QFi and Qgi are optimization variables. Furthermore, Qi;j are polytopes in Rn

with n > 1. To obtain an analytic expression for the integral, we use the result of [36], extended by
[33]

Lemma 3.4 ([33])
Let f be a homogeneous polynomial of degree d in n variables, and let s1; : : : ; snC1 be the vertices
of an n-dimensional simplex %. Then

Z
"

f .y/dy D ˇ
X

16i16$$$6id 6nC1

X
#2¹˙1ºd

0
@

0
@

dY
j D1

&j

1
A ! f

$Xd

kD1
&ksik

%1
A ; (18)

where

ˇ D vol.%/

2d d Š
!dCn

(19)

and vol.%/ is the volume of the simplex.
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However, Lemma 3.4 is not directly applicable to evaluate the integral in (17) because the poly-
topes Qi;j are not simplices in general. To proceed, we therefore first have to tessellate each polytope
Qi;j into simplices %i;j;1; : : : ; %i;j;K with int.%i;j;k1

/ \ int.%i;j;k2
/ D ; for all k1 ¤ k2 and

[k%i;j;k D Qi;j . Then we can rewrite (17) as a sum of the integrals evaluated over each simplex

min
QFi ; Qgi

X
j 2Ji

Ki;jX
kD1

Z
"i;j;k

##.Fj x ( gj / (
! QFix C Qgi

"##2

2
dx; (20)

where Ki;j is the number of simplices tessellating Qi;j . Furthermore, note that Lemma 3.4 only
applies to homogeneous polynomials. The integral error in (20), however, is not homogeneous. To
see this, expand f .x/ WD

##.Fj x C gj / (
! QFix C Qgi

"##2

2
to f .x/ WD xT Qx C rT x C q with

Q D F T
j Fj ( 2Fj

QFi C QF T
i

QFi ; (21a)

r D 2
!
F T

j Qgi C QF T
i Qgi ( QF T

i gj ( F T
j Qgi

"
; (21b)

q D gT
j gj ( 2gT

j Qgi C QgT
i Qgi : (21c)

Then we can see that f .x/ is a quadratic function in the optimization variables QFi and Qgi , but is not
homogeneous, because not all of its monomials have the same degree (in particular, we have mono-
mials of degrees 2, 1, and 0 in f ). However, because an integral is closed under linear combinations,
we have that

Z
"

f .x/ D
Z

"

fquad.x/ C
Z

"

flin.x/ C
Z

"

fconst; (22)

with fquad.x/ WD xT Qx, flin WD rT x and fconst WD q and the integrand dx is omitted for brevity.
Because each of these newly defined functions is a homogeneous polynomial of degrees 2, 1, and 0,
respectively, the integral

R
" f .x/dx can now be evaluated by applying (18) of Lemma 3.4 to each

integral in the right-hand side of (22). We hence obtain an analytic expression for the integral error
as a quadratic function of the unknowns QFi and Qgi .

Remark 3.5
The integral of a constant q over a compact set % is equal to a scaled volume of %, that is,

R
" q D

qvol.%/.

Remark 3.6
To see that the integral in (17) is a quadratic function of decision variables QFi and Qgi , note that in
the integration rule (18), ˇ is a constant, &i are ˙1, hence, (18) is a scaled sum of values of f .!/,
evaluated at vertices of the simplex. Because f .!/ is a quadratic function as in (21), the conclusion
follows.

Finally, when optimizing for QFi and Qgi , we need to ensure that the constraints in (15) hold for all
points x 2 QRi . By our assumptions, the sets U and C1 are polytopes and hence can be represented
by U D ¹u j Huu 6 huº and C1 D ¹x j Hcx 6 hcº. By using u D QFix C Qgi , constraints (15b) and
(15c) can be compactly written as

8x 2 QRi W f .x/ 6 0; (23)

with

f .x/ WD
"

Hu QFi

Hc
!
A C B QFi

"
#

x C
&
Hu Qgi ( hu

Hc Qgi ( hc

'
: (24)

Then we can state our next result.
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Lemma 3.7
Let Vi D ¹vi;1; : : : ; vi;nv;i

º, and vi;j 2 Rn be the vertices of polytope QRi (see Definition 2.2). Then
(23) is satisfied 8x 2 QRi if and only if f .vi;j / 6 0 holds for all vertices.

Proof
To simplify the exposition, we replace QRi by P to avoid double indexing, and we let the vertices of
P be v1; : : : ; vnv . As seen from (24), f .!/ is a linear function of x. Necessity is obvious because
vj 2 P trivially holds for all vertices, compare with Definition 2.2. To show sufficiency, represent
each point of P as a convex combination of its vertices vj , that is, ´ D P

j "j vj . Then f .´/ 6 0

8´ 2 P is equivalent to f .
P

j "j vj / 6 0, 8" 2 ƒ, where ƒ D
°
" j P

j "j D 1; "j > 0
±

is the

unit simplex. Because f .!/ is assumed linear, we have f
(P

j "j vj

)
D P

j "j f .vj /. Therefore,P
j "j f .vj / 6 0 holds for an arbitrary " 2 ƒ because f .vj / 6 0 is assumed to hold and because

each "j is non-negative. Therefore, f .vj / 6 0 ) f .´/ 6 0 8´ 2 P . !

By combining Lemma 3.7 with the integration result in (22), we can formulate the search for QFi ,
Qgi from (15) as

min
QFi ; Qgi

X
j 2Ji

Ki;jX
kD1

Z
"i;j;k

##.Fj x ( gj / (
! QFix C Qgi

"##2

2
dx; (25a)

s.t. QFivi;` C Qgi 2 U ; 8vi;` 2 vert
! QRi

"
; (25b)

Avi;` C B
! QFivi;` C Qgi

"
2 C1; 8vi;` 2 vert

! QRi

"
; (25c)

where vert. QRi / enumerates all vertices of the corresponding polytope. Because each polytope QRi

has only finitely many vertices [37], problem (25) has a finite number of constraints. Moreover,
the objective in (25a) is a quadratic function in the unknowns QFi , Qgi and its analytic form can be
obtained via (18). Finally, because the sets U and C1 are assumed to be polytopic, all constraints in
(25) are linear. Thus, problem (25) is a quadratic optimization problem for each i 2 N QM

1 , where QM
is the number of polytopes that constitute the domain of Q!.!/ in (10).

As our next result, we show that if polytopes QRi are chosen as suggested by Lemma 3.1, then
(25) is always feasible for each i 2 N QM

1 .

Corollary 3.8
Let QRi , i 2 N QM

1 be obtained by Lemma 3.1 for ON < N . Then the optimization problem (25)
is always feasible, that is, for each i 2 N QM

1 , there exists matrices QFi and vectors Qgi such that
the simplified feedback Q!.x/ from (10) provides recursive satisfaction of constraints in (5) for an
arbitrary x 2 #.

Proof
It follows directly from the fact that the polytopes QRi in (25) are the same as in (14); therefore, the
choice QFi D OFi and Qgi D Ogi obviously satisfies all constraints in (25). !

Remark 3.9
The improved feedback Q!.!/ in (10), whose parameters QFi , Qgi are obtained from (25), is not nec-
essarily continuous. If desired, continuity can be enforced by adding the constraints QFiwk C Qgi D
QFj wk C Qgj to constraints in (25), where wk are all vertices of the n ( 1 dimensional intersection
QRi \ QRj , 8i; j 2 N QM

1 . Note that, because the simple feedback O! is continuous, the choice QFi D OFi ,
Qgi D Ogi is a feasible continuous solution in (25). Hence, the conclusions of Lemma 3.7 hold even if
continuity of (10) is enforced. Needless to say, sacrificing continuity allows for a greater reduction
of the approximation error in (25a).
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Remark 3.10
Optimization problem (25) naturally covers the multi-input scenario where QFi 2 Rm!n, Qgi 2 Rm

with m > 1.

4. CLOSED-LOOP STABILITY

Although the procedure in Section 3 yields a feedback Q!.!/ simpler than !.!/ that guarantees recur-
sive satisfaction of state and input constraints in (5) and minimizes the loss of optimality measured
by (11), it does not, however, provide a priori guarantees of closed-loop stability. In this section,
we therefore show how to adjust the search for parameters of Q!.!/ in (10) such that the closed-
loop system

x.t C 1/ D Ax.t/ C B Q!.x.t// (26)

is asymptotically stable with respect to the origin as an equilibrium point.
To achieve such a property, we will assume that for system (4), we have knowledge of a con-

vex piecewise linear (PWL) Lyapunov function V W Rn ! R with dom.V / * C1. Such a
PWL Lyapunov function can be straightforwardly obtained by considering the Minkowski function
(also called the Gauge function) of C1 in (3). Let the minimal half-space representation of C1 be
normalized to

C1 D ¹x 2 Rn j W x 6 1º; (27)

where 1 is a column vector of the ones in the appropriate dimension. Then V.!/ is given [29] as

V.x/ WD max
k2Nd

1

wT
k x; (28)

where wT
j denotes the j -th row of W 2 Rd!n in (27). It follows from [29, 38] that V.!/ of (28) is

a Lyapunov function for system (4), with domain C1. Importantly, note that K of affine functions
defining (28) is equal to d , the number of facets of C1.

Then it is well known (see, e.g., [38]) that Q!.!/ will render the closed-loop system (26)
asymptotically stable if

V .Ax C B Q!.x// 6 (V.x/ (29)

holds for all x 2 C1 and for some ( 2 Œ0; 1/. By adding (29) to the constraints of (15), we can
formulate the search for parameters QFi , Qgi of a stabilizing feedback Q!.!/ in (10) as

min
QFi ; Qgi

Z
QRi

k!.x/ ( Q!.x/k2
2 dx (30a)

s.t. QFix C Qgi 2 U ; 8x 2 QRi ; (30b)

V
!
Ax C B

! QFix C Qgi

""
6 (V.x/; 8x 2 QRi ; (30c)

which needs to be solved for all regions QRi of Q!.!/.

Remark 4.1
Because any ( level set with ( 2 Œ0; 1/ of a Lyapunov function is an invariant set, constraint (30c)
entails the invariance constraint Ax

V.!/ as in (28) implicitly guarantees that u D QFix C Qgi D 0 for x D 0.
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Lemma 4.2
With U D ¹u j Huu 6 huº and C1 D ¹u j W x 6 1º as in (27), problem (30) is equivalent to

min
QFi ; Qgi

X
j 2Ji

Ki;jX
kD1

Z
"i;j;k

##.Fj x ( gj / (
! QFix C Qgi

"##2

2
dx; (31a)

s.t. Hu
! QFivi;` C Qgi

"
6 hu; 8vi;` 2 vert

! QRi

"
; (31b)

wT
k

!
Avi;` C B

! QFivi;` C Qgi

""
6 (mi ; 8k 2 Nd

1 ; 8vi;` 2 vert
! QRi

"
; (31c)

with

mi D max
`2N

nv;i
1

max
k2Nd

1

wT
k vi;` (32)

and vi;1; : : : ; vi;nv;i
being the vertices of polytope QRi .

Proof
First, note that (31b) is identical to (25b) and that (25c) is entailed in (31c), compare with
Remark 4.1. Therefore, it suffices to show that (31c) is equivalent to (30c). With V.!/ as in (28), the
constraint (30c) yields

max
k2Nd

1

wT
k

!
Ax C B

! QFix C Qgi

""
6 ( max

k2Nd
1

wT
k x; 8x 2 QRi : (33)

Because QRi is assumed to be a polytope and because the arguments of the maximum in the
right-hand side of (33) are linear functions of x, the maximum is attained at one of the vertices®
vi;1; : : : ; vi;nv;i

¯
of QRi and is denoted by mi as in (32). Then, we can equivalently write (33) as

max
k2Nd

1

wT
k

!
Ax C B

! QFix C Qgi

""
6 (mi ; 8x 2 QRi : (34)

Next, denote f .x/ WD maxk2Nd
1

wT
k

!
Ax C B

! QFix C Qgi

""
and recall that the maximum of affine

functions is a convex function [39, Section 3.2.3]. With f .!/ convex, it is trivial to show that f .x/ 6
mi for all x 2 QRi if and only if f .vi;`/ 6 mi for all vertices vi;1; : : : ; vi;nv;i

of polytope QRi . Hence,
(34) is equivalent to

max
k2Nd

1

wT
k

!
Avi;` C B

! QFivi;` C Qgi

""
6 (mi ; 8vi;` 2 vert

! QRi

"
: (35)

Finally, because maxk wT
k ´ 6 mi holds if and only if wT

k ´ 6 mi is satisfied for all k, we obtain

wT
k

!
Avi;` C B

! QFivi;` C Qgi

""
6 (mi ; 8k 2 Nd

1 ; 8vi;` 2 vert
! QRi

"
; (36)

which is precisely the same as in (31c). !

Remark 4.3
Note that mi in (32) can be computed analytically once the vertices of QRi are known.

For each region QRi , (31) is a quadratic program for the objective function (31a), (cf. Remark 3.6)
and all constraints in (31) are linear functions of QFi and Qgi . Hence, the search for parameters QFi , Qgi

of a stabilizing simpler feedback Q!.!/ of (10) can be formulated as a series of QM quadratic programs,
as captured by the following theorem.
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Theorem 4.4
Suppose that the quadratic programs in (31) are feasible for all regions QRi , i D 1; : : : ; QM and for a
selected ( 2 Œ0; 1/. Then the refined simpler feedback Q!.!/ of (10) provides recursive satisfaction of
state and input constraints in (5), attains asymptotic stability of the closed-loop system in (26), and
minimizes the integrated squared error in (11).

Proof
The first two constraints in (31) are the same as in (25) and enforce recursive feasibility according
to Corollary 3.8. Similarly, minimization of the integrated squared error is the same as in (31a).
Finally, feasibility of (31) implies that there exist parameters QFi , Qgi of Q!.!/, which enforces a given
decay of the Lyapunov function by (29) and by Lemma 4.2. !

Remark 4.5
Unlike Corollary 3.8, which provides necessary and sufficient conditions, feasibility of QPsQ5 (31) is
merely sufficient for the existence of Q!.!/ that renders the closed-loop system asymptotically stable.
If the QPs are infeasible, one can enlarge the value of ( , provided that it fulfills ( 2 Œ0; 1/ or

alternatively employs a new partition
® QRi

¯ QM

i
obtained for a different value of ON in Lemma 3.1.

5. COMPLETE PROCEDURE

Here, we summarize the procedure developed in Sections 3 and 4. In order to devise a simpler
explicit feedback law Q!.!/ in (10) that solves Problem 2.9, that is, that approximates a given complex
solution !.!/, provides recursive satisfaction of input and state constraints, and maintains closed-
loop stability, we propose to proceed as follows:

1. Select ON < N and obtain QRi by solving (6). Denote by QM the number of regions QRi .
2. If closed-loop stability is to be enforced, select ( 2 Œ0; 1/.
3. For each i 2 N QM

1 do.
4. Compute Qi;j from (16) for each j 2 NM

1 .
5. Triangulate each intersection Qi;j into simplices %i;j;1; : : : ; %i;j;K and enumerate their

respective vertices.
6. Obtain the analytic expression of the integrals in (25a), (if only recursive feasibility is desired)

or in (31a), (for synthesis of a closed-loop stabilizing feedback) by (18).
7. Enumerate vertices of QRi and obtain QFi , Qgi by solving (25) or (31) as a quadratic optimization

problem.

We remark that Steps 5–7 need to be performed for each combination of indices i and j for which
Qi;j in (16) is a non-empty set. Obtaining the polytopes QRi in Step 1 by solving (6) explicitly can be
performed, for example, by the MPT Toolbox [28] or by the Hybrid Toolbox [40]. Computation of
intersections, tessellation (via Delaunay triangulation), and enumeration of vertices in Steps 4 and 5
can also be done by MPT. Finally, the optimization problem (25) can be formulated by YALMIP [41]
and solved using off-the-shelf software, for example, by GUROBI [42] or quadprog of MATLAB.

6. EXAMPLES

In this section, we demonstrate the effectiveness of the presented explicit MPC complexity reduction
method on two examples with different number of states.

6.1. Two-dimensional example

Consider the second-order, discrete-time, linear time-invariant system

x.t C 1/ D
&

0:9539 (0:3440
(0:4833 (0:5325

'
x.t/ C

&
(0:4817
(0:5918

'
u.t/; (37)
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Figure 2. Regions of the complex controller !.!/ and of the approximate feedback Q!.!/.

which is subject to state constraints (10 6 xi .t/ 6 10, i 2 N2
1 and input bounds (0:5 6 u.t/ 6

0:5. We remark that the system is open-loop unstable with eigenvalues "1 D 1:0584 and "2 D
(0:6370. The complex explicit MPC controller !.!/ in (8) was obtained by solving (6) for Qx D
I2!2, Qu D 2, and N D 20. Its explicit representation was defined over M D 127 polytopic
regions Ri $ R2, shown in Figure 2(a). All computations were carried out on a 2.7-GHz CPU using F2
MATLAB and the MPT Toolbox.

To derive a simple representation of the MPC feedback as in (10), we have proceeded as out-
lined in Section 5. First, we have solved (6) with shorter prediction horizons ON 2 ¹1; 2; 3; 4º. This
provided us with simple feedbacks O!.!/ as in (14) with lower performances. The domains of these
feedbacks were defined, respectively, by QM D ¹3; 5; 11; 17º regions QRi . These regions were then
employed in (31) to optimize the parameters QFi , Qgi of the improved simple feedbacks Q!.!/ in (10)
while guaranteeing closed-loop stability. The fitting problems (31) were formulated by YALMIP
and solved by quadprog.

Remark 6.1
In practice, to get the least complex approximate controller Q!.!/, one would only consider the
case with the smallest number of regions. We only consider various values of QM to assess the
suboptimality of Q!.!/ with respect to !.!/ as a function of the number of regions, QM .

Next, we have assessed the degradation of performance induced by employing simpler feedbacks
O!.!/ and Q!.!/ instead of the optimal controller !.!/. To do so, for each suboptimal controller, we
have performed closed-loop simulations for 10 000 equidistantly spaced initial conditions from
the domain of !.!/. In each simulation, we have evaluated the performance criterion Jsim DPNsim

iD1 xT
i Qxxi C uT

i Quui for Nsim D 100. For each investigated controller, we have subsequently
computed mean values of this criterion over all investigated starting points. This ‘average’ perfor-
mance indicators are denoted in the sequel as Jopt for the optimal feedback !.!/, Jsimple for the
simple, but suboptimal controller O!.!/, and Jimproved for Q!.!/, whose parameters were optimized in
(31). Then we can express the average suboptimality of Q!.!/ by Jsimple=Jopt and the suboptimality of
Q!.!/ by Jimproved=Jopt, both converted to percentage. The higher the value, the larger the suboptimality
of the corresponding controller is with respect to the optimal feedback !.!/.

Concrete numbers are reported in Table I. As can be observed, lowering the prediction horizon T1
significantly reduces complexity. However, suboptimality is inverse-proportional to complexity. For
instance, solving (6) with N D 1 gives O!.!/ that performs by 60% worse compared with the optimal
feedback !.!/ obtained for N D 20. Improving parameters of the feedback function via (31) resulted
in an improved controller Q!.!/ whose average suboptimality is only 25%. The amount of subop-
timality can be further reduced by considering more complex partition of the feedback function.
In all cases reported in Table I, the simpler feedback !
closed-loop stability because the corresponding fitting problems (31) were feasib ( < 1.
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Table I. Complexity and suboptimality comparison for the example in Section 6.1. The
(complex) optimal controller consisted of 127 regions.

Suboptimality w.r.t. !.!/ in (8)

Prediction horizon No. of regions O!.!/ from Lemma 3.1 (%) Q!.!/ from (31) (%)

1 3 60:8 25:1
2 5 32:9 18:0
3 11 11:4 8:3
4 17 6:9 1:7

C
olorO

nline,B
&

W
in

Print

Figure 3. Inverted pendulum on a cart.

6.2. Inverted pendulum on a cart

Next, we consider an inverted pendulum mounted on a moving cart, shown in Figure 3. LinearizingF3
the nonlinear dynamics around the upright, unstable equilibrium leads to the following linear model:

2
6664

Pp
Rp
P)
R)

3
7775 D

2
6664

0 1 0 0

0 (0:182 2:673 0

0 0 0 1

0 (0:455 31:182 0

3
7775

2
6664

p

Pp
)

P)

3
7775 C

2
6664

0

1:818

0

4:546

3
7775 u; (38)

where p is the position of the cart, Pp is the cart’s velocity, ) is the pendulum’s angle from the upright
position, and P) denotes the angular velocity. The control input u is proportional to the force applied
to the cart. System (38) is then converted to (4) by assuming sampling time 0.1 s.

The optimal (complex) controller !.!/ in (8) was then constructed by solving (6) with prediction
horizon N D 8, penalties Qx D diag.10; 1; 10; 1/, Qu D 0:1, and constraints jpj 6 1, j Ppj 6 1:5,
j)j 6 0:35,

ˇ̌ P)
ˇ̌

6 1, juj 6 1. Using the MPT toolbox, we have obtained !.!/ defined over 943
polytopes of the four-dimensional state space. Subsequently, we have constructed simple feedbacks
O!.!/ according to Lemma 3.1 for prediction horizons ON 2 ¹1; 2; 3º. This provided us with polytopic
partitions

® QRi

¯
defined, respectively, by 35 polytopes for ON D 1, 117 regions for ON D 2, and 273

polytopes in case of ON D 3. For each partition, we have then optimized the gains QFi , Qgi of Q!.!/ in
(10) by solving (25). The total runtime of the approximation procedure was 21 s for ON D 1, 58 s for
ON D 2, and 116 s for ON D 3. In all cases, the effort for enumeration of vertices and triangulation

of polytopes attributed to 40% of the overall runtime, the rest was spent in formulating and solving
the QP problems (25).
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Table II. Complexity and suboptimality comparison for the example in Section 6.2. The (complex)
optimal controller consisted of 943 regions.

O!.!/ from Lemma 3.1 Q!.!/ from (31)

Prediction horizon Number of regions AST (s) Suboptimality (%) AST (s) Suboptimality (%)

1 35 8.3 159:4 5.1 59:4
2 117 4.6 43:8 3.7 15:6
3 273 3.5 9:4 3.4 6:3

C
olorO

nline,B
&

W
in

Print

Figure 4. Simulated closed-loop profiles of pendulum’s states and inputs under the (complex) optimal feed-
back !.!/ in (8), under the simple controller O!.!/ in (14) and under its optimized version Q!.!/ obtained

from (25).
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To assess the degradation of performance induced by employing the simpler controllers instead
of the optimal feedback, we have performed 100 closed-loop simulations for various values of the
initial cart’s position p. Then we have measured the number of simulation steps in which a par-
ticular controller drives all states into the ˙0:01 neighborhood of the origin. In other words, our
performance evaluation criterion measures liveness properties of a particular controller. The average
settling time for the optimal (complex) feedback !.!/ was 32 sampling times (which corresponds to
3.2 s). The aggregated results showing performance of the two simple feedbacks O!.!/ and Q!.!/ are
reported in Table II. The columns of the table represent, respectively, the prediction horizon ON andT2
number of polytopes over which both simple controllers are defined, as well as the performance of
the simple feedback O!.!/ in (14). Here, AST stands for average settling time, and the suboptimal-
ity percentage represents the relative increase of the settling time compared with AST D 3:2 s for
the optimal (complex) feedback. The final two columns show the performance of Q!.!/, whose gains
were optimized by (25). As it can be seen, refining the gains QFi , Qgi via (25) significantly mitigates
the degradation of performance.

To illustrate the differences in the performance of the three controllers, Figure 4 shows the closed-F4
loop profiles of states and inputs under !.!/, O!.!/, and Q!.!/ for the initial conditions p.0/ D 0:525,
Pp.0/ D 0, ).0/ D 0, and P).0/ D 0. Here, we have employed the second case of Table II where O!.!/

and Q!.!/ were both defined over 117 polytopes. Comparing the state profiles in Figure 4(a, c, and e),
we can clearly see the benefit of refining the gains of Q!.!/ via (25). In particular, the performance
of Q!.!/ derived according to Section 3.2 is nearly identical to the performance of the optimal (com-
plex) feedback !.!/. The simple feedback O!.!/, on the other hand, performs significantly worse. We
remind that in all cases shown in Table II, the complexity of Q!.!/ is significantly smaller than the
number of regions of the optimal feedback (which was defined over 943 polytopes).

7. CONCLUSIONS

In this paper, we have introduced a novel method for reducing complexity of explicit MPC con-
trollers. The procedure was based on replacing regions of the complex feedback !.!/ by a simpler
partition

® QRi

¯
, followed by assigning to each region QRi a local affine expression QFix C Qgi of the

simpler feedback Q!.!/ such that the reduction of performance with respect to ! is mitigated. The
simpler partition was obtained by solving a simpler version of (6) with a lower value of the predic-
tion horizon. Even though by doing so, we already obtain a simpler feedback law O!.!/; by using the
procedure of Section 3.2, we can significantly reduce the amount of suboptimality (cf. Remark 3.3).
We have shown that the search for parameters QFi , Qgi in (10) can be formulated as a quadratic opti-
mization problem that entails conditions of recursive feasibility and closed-loop stability. Moreover,
we have shown that if only recursive feasibility is required, such a fitting problem is always feasi-
ble if a control invariant constraint is employed in (6d). By means of two examples, we have shown
that the induced loss of optimality is indeed mitigated. The computationally most challenging part
of the approximation procedure is the enumeration of vertices and triangulation of polytopes, both
of which are challenging in high dimensions. However, in dimensions below 5 (which are typically
considered in explicit MPC), these tasks do not represent a significant obstacle. It is worth noting
that the procedures of this paper can be applied to find optimal approximations of arbitrary PWA
functions, not necessarily just of control laws. As an example, one can aim at approximating the
optimal PWA value function (6a), followed by the reconstruction of the suboptimal control law by
interpolation techniques [43].
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