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Abstract

We investigate the infeasibility detection in the alternating direction method of multipliers (ADMM)
when minimizing a convex quadratic objective subject to linear equalities and simple bounds.
The ADMM formulation consists of alternating between an equality constrained quadratic pro-
gram (QP) and a projection onto the bounds. We show that: (i) the sequence of iterates generated
by ADMM diverges, (ii) the divergence is restricted to the component of the multipliers along
the range space of the constraints and (iii) the primal iterates converge to a minimizer of the Eu-
clidean distance between the subspace defined by equality constraints and the convex set defined
by bounds. In addition, we derive the optimal value for the step size parameter in the ADMM
algorithm that maximizes the rate of convergence of the primal iterates and dual iterates along
the null space. In fact, the optimal step size parameter for the infeasible instances is identical
to that for the feasible instances. The theoretical results allow us to specify a practical termina-
tion condition for infeasibility and the performance of such criterion is demonstrated in a model
predictive control application.
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Infeasibility Detection in Alternating Direction Method Multipliers for
Convex Quadratic Programs

Arvind U. Raghunathanand Stefano Di Cairarto

Abstract— We investigate the infeasibility detection in the blocks, an equality constrained QP and a projection onto
alternating direction method of multipliers (ADMM) when  the set defined b. In [8] we established that our ADMM
minimizing a convex quadratic objective subject to linear gual- algorithm converges 2-step Q-linearly to a solution whem th

ities and simple bounds. The ADMM formulation consists of P is feasibl d derived th timal st . t
alternating between an equality constrained quadratic prgram QP is feasible and derive € optumal Step size parameter.

(QP) and a projection onto the bounds. We show that: (i) the In this work, we consider the detection of infeasibility for
sequence of iterates generated by ADMM diverges, (ii) the the QPs in (1) when using the ADMM formulation of [8].
divergence is restricted to the component of the multiplies |n particular, we show that sequence of iterates generated
along the range space of the constraints and (iii) the primal by the algorithm does not have a limit point. However, the

iterates converge to a minimizer of the Euclidean distance : . . .
between the subspace defined by equality constraints and the divergence of the iterates is restricted to the componettteof

convex set defined by bounds. In addition, we derive the optii ~ Multipliers in the range space of the equality constraifite
value for the step size parameter in the ADMM algorithm that  iterates for the equality and projection problem conveme t
maximizes the rate of convergence of the primal iterates and minimizers of the Euclidean distance between the subspace
dual iterates along the null space. In fact, the optimal step  gefined by equality constraintdy = b and the convex set
size parameter for the infeasible instances is identical tehat . . g o .

for the feasible instances. The theoretical results allow s1to Y. The choice O_f optimal SteP S'Z? parame_ter is identical to
specify a practical termination condition for infeasibility and  that for the feasible case derived in [8]. This shows that the
the performance of such criterion is demonstrated in a model proposed ADMM algorithm converges at an optimal rate for
predictive control application. both feasible and infeasible QPs. Furthermore, the arsalysi
allows to define a criterion for identifying infeasible QPs

) ) ) and terminating before the maximum number of iterations is
In this paper, we consider the solution of QPs of the formia5ched.

I. INTRODUCTION

N T The rest of the paper is organized as follows. Section Il
Y Qu+qy provides some background on the linear spaces, projection
stAy—b (1)  operator and the notion of infeasibility of the QP in (1). The

yey ADMM algorithm is described in Section Ill. We provide

a characterization of the limiting behavior of the ADMM
wherey,q € R", Q = 0 is a symmetric, positive semidef- algorithm on infeasible QPs in Section IV. Convergence
inite matrix, A € R™*" with m < n, b € R™ and of the algorithm to the limiting sequence and derivation
Y = [y y"*] where —oo < yi"'" <y < oo of the optimal step size parameter is shown in Section V.
for i = 1,...,n. The assumption ory is imposed for Section VI presents termination conditions and numerical
computational reasons although the results developedsn thesults on infeasibility detection in QPs arising from Mbde
paper apply to general convex sets as well. Predictive Control. Conclusions and future work are dis-

ADMM algorithms were first proposed by Gabay andcyssed in Section VII.

Mercier [1]. For a recent survey article refer to Boyd etdl [2  Notation: We denote byR, R, the set of reals and set
A number of recent papers that have studied convergencedifnon-negative reals, respectively. All vectors are assiim
ADMM include [3]-[8]. All of the above cited papers con- to be column vectors. For a vectore R”, =7 denotes its
sider the convergence of the algorithm under the assumptiganspose and for two vectorsy, (z,y) = [zT y7]”. For a
that the problem is feasible. Ecsktein and Bertsekas [9Vshamatrix A € R"*", p(A) denotes the spectral radius,(A)
that for infeasible convex problems at least one of the grim@enotes the eigenvalues angin(A), Amax(A) denote the
and dual sequences generated by ADMM diverges. Asidfinimum and maximum eigenvalues. For a symmetric matrix
from [9], there has been little attention to the behavior of4, 4 - 0 (A = 0) denotes positive (semi)definiteness. We
the ADMM algorithm when the problem is infeasible. denote byI, € R"*" the identity matrix. The notation

In this paper we investigate the behavior of ADMM) | z ¢ Y denotes the inequality” (z' —z) > 0, V2’ € Y,
algorithm on infeasible instances of convex QPs with equalvhich is also called theariational inequality. We use|| - ||
ities and bounds. The ADMM formulation is based on outo denote the2-norm for vectors and matrices. A sequence
previous work [8] where we split the QP (1) into two {;*} ¢ R™ converging toz* is said to converge at a Q-

X . _linear rate if|| 2%t — 2*|| < r[|z* — 2*|| where0 < r < 1.

A.U. Raghunathan and S. Di Cairano are with Mitsubishi K _
Electic = Research  Laboratories, ~ Cambridge, ~MA 02139V denote by{z"} — z the convergence of the sequence
raghunat han, di cai rano@rer| . com to z.



Il. BACKGROUND I1l. ADMM A LGORITHM
We make the following assumptions on the QP in (1). Consider the following reformulation of the QP in (1),

Assumption 1: The set) is non-emptyy # 0. 1 r
Assumption 2: The matrix A € R™*"™ has full row rank f;lluf} 2Y Qut+aqay

equal tom. ' _ (8)
Assumption 3; The hessian is positive definite on the null stAy=bwey

space of the equality constraints, i.&Z/ QZ > 0 where y=w.

Z € R™*("»=m) is a basis for the null space of. Proceeding as in [8], define the augmented lagrangian as,

1 B
A Range and Null Spaces Lﬂwwﬁrziny+¥@+§ﬂy—w—Mf(%

We will denote by R € R™*™ an orthonormal basis ) _
for the range space ofA” and by Z ¢ R"x(»—m) ap where 8 > 0 is the penalty parameter ang\ is the

orthonormal basis for the null space df Then, multiplier for y = w. We oropose to solve (8) by an ADMM
R'R = I, 7Ty — o (23) algorithm with steps: k
R'Z 0 (2b) y** = argmin Ls(y,w" A") st Ay =b
- Y
RRY +zz" = I,. (2¢) - M('wk Ak ) + Nb (10a)
ML = - k+1 k

where the first follows from the the orthonormality of basis % = argmin Loty w, A ) stwey
matrices, the second from orthogonality of the bases, amd th = Py(y*tt —AF) (10b)
final one follows from the columns aR, Z spanningR". . KA 109

B. Projection on to a Convex Set

—1
o T T AF.—
Given a convex sy C R™ we will denote byPy, : R" — whereM := Z (IZ (Q/? + I")Z) Z N = (I." o
Y the projection operator which is defined as the solution M Q/B)R(AR)~*, and ¢ = q/B. Observe that if the

the following strictly convex program, step-size parametef is fixed, M, Nb for the iterations
1 in (10) can be computed just once, possibly (long) before
Py (y) := arg min §Hy—w|\2 (3) the iterations in (10) being executed. Substituting (10a)

in (10b), (10c) and simplifying,

The optimality conditions of (3) can be simplified as,
p ty ) p W = Pyy(oh)

P —y—A=0 (11)
y(;ﬁ Py (y) € 3’} — (Py(y) —y) LPy(y) € Y. A= (Py — 1) (v")
v 4) where(Py — 1,))(v*) is shorthand foPy (v*) — v*) and,
C. Infeasible QP v* = Mw* + (M — I,)\" — Mg+ Nb. (12)
Under Assumptions 1 and 2 QP (1) is infeasible iff The update step (11) is of the form in (4) withreplaced
by »* and hence,
twldy =03y =0 © " Pz k+1 13
. 1 .
Further, there exisy® such thatAy® = b, w° € Y, v €Y (13)
1 ) IV. LIMIT SEQUENCE OFADMM
(y°, w%) = arg v §Hy —w| 6) Suppose QP (1) is infeasible, then there does not exist any
stAy=b, wey fix points for (10). If that were not the case, then from (10c)

) ) ) . there should existy, w such thaty = w, Ay = b and
where y° # w®. It is easily seen from the optimality ., ¢ 5, which violates the assumption of QP (1) being
conditions of (6) that infeasible. We will show that (10) generates a sequence in

w® —y° € rangéA”), X\° = w° — y°, 7 which only the sequence of multipliers\*} diverge. In

AL wt ey @) _part|cular,{>\}’C diverges along a dlrt_acuon in rang®). The

_ o _ iterates{ (y*, w*)} converge to a poinfy°® +y<, w° +y?)
whereA° is a multiplier for thew € Y. Itis easy to show that minimizing the Euclidean distance between the hyperplane
Ay = ab+(1-a)Aw®, forany0 < a < lisahyperplane ang convex set, wherg@ e rangéZ), possibly equal to
separating the linear subspace defined by equalities and mels such thatw® + y@ € Y. Notably, the limit point for
set). Further, from the optimality conditions it is clear that y*, w")} is independent of. First we characterizg®@.
(¥°+ Zyz, w° + Zyz, A") is a KKT point of (6) provided | emma 1: Suppose Assumptions 1-3 hold and the QP (1)
Yz € R*™™ # 0 is such thatw® + Zy, € Y. In other s infeasible. Then, there exisig? € rangéZ), A? € R”,
words, the point(y°,w°) is only unique along the range \iih y?, Z"A® unique, such that
space ofA”. Observe thaty® + Zy,, w° + Zy,) are Tho .. Q . T\Q
minimizers of Euclidean distance between the hyperplane, Z QW +y~)+Z qg-Z A =0

(14)
Ay = b and the convex sefy. A9 L (w®+y?)e.



Furthermore(AQ +79A°) V~ > 0is also a solution to (14).  To show (18), consider the following decomposition,
Proof: Sincey® e rangéZ), lety® = Zy< for some wh — I

y2 e R*~™. Substituting this in (14) and simplifying, it is kiyk =i ¢+, —— =o5¢+vs  (19)

easy to show that (14) are the optimality conditions for, lw* — gl A7)

where¢ = (w — g)/||w — g|, and¢"vF =0, fori =1, 2.

: 1 T T T o
min SWD(Z2"QZ)yF + (Z"a+ Z"Qy°)" v Further, from (16),(17) we have thdtr} — 1, {vF} — 0

vg 2 R (15 for i = 1,2. Substituting (19) in (18),
stw®+Zyz ). (}\k)T(,wk s
The strict convexity of the QP (15) follows from Assump- Tk — bl (h ¢+ )T (a5¢ +vh)
tion 3 and this guarantees uniquenesa;/&, if one exists. ”k IU”w T_yk Hk ek Tk
Weak Slater’s condition [10] holds for the QP (15) since the = ajas + ¢ (v + asvs) + (V) s
constraints in) are affine andy$ = 0 is a feasible point. > afak — o |Vh|| — ob ||k — I8 s

The satisfaction of convexity and weak Slater’s conditign b
QP (15) implies that strong duality holds for (15) and th
claim on existence ojjg, A9 holds. The uniqueness @®

where the second equality follows from expanding terms and
G‘usingHCH = 1, while the last inequality is obtained from the
Cauchy-Schwarz inequality. The result in (18) follows from
follows from uniqueness og‘,g and full column rank ofZ. 4o Iim>i/t of the sequgnce gjk Uk (18) -
The uniqueness oz A? follows from the first equation Using Lemmas 1 and 2 we can state the limiting behavior
of (14) and uniqueness gf. of the ADMM iterations (10) when the QP (1) is infeasible.

To prove the remaining claim, consider the choice of Thaorem 1: Suppose Assumptions 1-3 hold. Then, the
(AQ + «A°%) as a solution to (14). Satisfaction of the ﬁrStfoIIowing are true. '
equation in (14) follows from\° € rangéR) by (7) and ) . ) R R <k
ZTR = 0 by (2b). As for the variational inequality in (14), () !f QP (1) is infeasible theni (y +y%w +y?,_)\ )}

is a sequence satisfying (10) fér > &’ sufficiently
AQ + ) (w' — (w° +yQ)) large with,y®@, A as defined in (14) and,

— \T ¢,/ o Q oNT (0 .00 R
(A ) ('l.U ('UJ + y )) +7(A ) ('l.U w ) Ak — l(AQ + (k _ 71)Ao)771 S I{JI. (20)
>0 >0 B
— X)) Ty >0vVw' €y (ii) If the ADMM algorithm (10) generate$(y*, w*, A*)}
i satisfying (17) then, the QP (1) is infeasible. Further,

7 =9°+y?, w=w+w? and \* satisifes (20).
Proof: Consider the claim in (i). For proving that (10a)
s, we need to show that,

where the first term is non-negative by variational inedyali

in (14), the second term is non-negative by variatione“old
inequality in (7) and the last term vanishes sinkg <
rangéR) andy® € rangéZ), proving the claim. | vy - M +y?+ A —§ - Nb=0. (21)
The next lemma establishes some properties of the ADMM _ T .
iterate sequence. Multliplyéng the left hand side of (21) bjR" , usingR" M =

Lemma 2 Let {(y*,w*,A\*)} be generated by the ¥ ¥~ =0 and simplifying,
ADMM algorithm (10). Then the following statements are RTy° — (AR)"'b = (AR)‘l(ARRT °—b)=0 (22)

equivalent. ) o
where the last equality follows from (7). Multiplying

wh} = w, {ZTA} 5 Xz, {RT(AFT —AF)} = Ar the left hand side of (21) byz”, from z"M =
{ N . Y.
(16) Mz" where M = (Z'QZ/B + 1,_,)"', Z'Nb =

{w*} > w,{y*} > gy #w (17) —(MZ"Q/B)RR" (y° + y?) we obtain,
for someAgr # 0. Further, if (16) (or (17)) hold then, ZT(y° +y?) - MZT (w® +y? + AF_ q)
(AF)T (w* — y*) as MZ"(Q/B)RR" (y° +y®)

k
[IA"][[w* —y*|

=M ((27QZ/B+ In-m)Z" (y" +y°)
Proof: Suppose (16) holds. From (10a)

—Z" (w* + 2+ 2"~ @) + (Q/HRR"(y° +y?)))

{y'} > 9= M(w+ Zxz — q) + Nb. A
M (27(Q/8)(w° +y?) + 2" (y° +y)

from (2c¢) andM R = 0. From (16), it must hold by (10c) B

that {Z" (w* — y*)} — 0, {R"(w* — y*)} = 0. Thus, ~Z"T(w® +y? + A9 — 51))

y7w. . ’ T o Q T  ZTy\Q\ _
Suppose (17) holds. From (10a) and using (17) we have (M /8) (Z" Q(y° +y~)+Z q—Z A~ ) =0

that{ Z” A*} must converge. Sincg, # w and{Z7 A"} — (23)

Az, then by (10c) this implies thgtR” (A**1—AF)} - Ar  where the first equality follows simply by removitlg as the
for someAgr € R™. common multiplicative factor, the second equality follows



from (2c), the third equality from (7), (20) and the finaland the second condition follows from (13). The conditions
equality from (14). Combining (22) and (23) shows thatn (29) are the conditions in (14) and hence, Lemma 1 applies
the said sequence satisfies (21). To prove that (10b) holts yield that ZZ” (y — y°) = ZZ" (@ — w°) = y@,

consider for anyw’ € Y, ZTAF = ZTAQ | Thus,y = y° + y®, w = w° + y?,
T A* satisfies (20) and the claim holds. ]
o Q o Q Wk 1 o Q . .
w'H+yT -y -y +A (w —w -y ) Observe that in (20) the range space comp%r)&tlsknot
. . . A ~ 1 -
. .\, . o unigue. The ADMM iterations only specify that  —A" =
= (w —y A ) (w —w® —y?) A°, and hence that (20) holds for some constant
T
= — % (AQ + (k+ 1))\0) (w' —w°® — yQ) V. CONVERGENCE OF THEALGORITHM
1 T First, we recall some results on the projection operator.
=3 ()\Q +(k—m + 1))\") (w —w®—y?) >0 Lemma 3 (Lemma 3 [8]): For anyv, v’ € R™:

(24) () (Py(v)=Py ()" ((In—Py)(v) = (I, ~Py)(v)) >0
where the second equality follows from (7) and (20), and(ii) ||(Py(v), (I, —Py)(v))— (Py ('), (I, —Py)(@"))| <
the inequality follows from Lemma 1 by noting that = |[v — ']

(k=7 +1) > 0. Thus,w® + w@ — Py (y° + y@ - Akg (i) [[(2Py — I,)(v) — (2Py — L,)(0")] < o — /|
holds and the sequence in the claim satisfies (10b). Finally, The following result on spectral radius 81 is also useful.
the definition of A* in (20) implies that (10c) holds, and ~Lemma 4 (Lemma 4 [8]): Suppose Assumptions 2 and 3

thus (i) is proved. hold. Then,p(Z"MZ) < 1 andp(M) < 1.

Consider the claim in part (ii). From (18) we have that for Next, we introduce some properties satisfied by the iter-
any ¢ > 0 there existst. such that for allk > k., ates (11). The proofs, which are not shown for the sake of
T N . brevity, can be obtained using Lemmas 3 and 4.

(AT (w" —y") > (1—e) A (25) Lemma 5: Suppose Assumptions 1-3 hold. Then, the se-
|wh —y*|2 ~ [|[wh — y*||” quence{(w*, A¥)} produced by (11) is such that:
From which we have that, (i) [[oFtt — ok < |[(wh T AFTL) — (wh, AR

i LML) — (wk AR)| < [Jof —oF
Ak:ak wk_ k + k’ 26a (”) H(’LU ) 5 =
T o B (e e et TR Tt el
b= 2T Y g 2L ep) (@ LA

[wh — || [wh — y*|| (iv) [[voF+! — oF| < |k — v* 1.

ek < V1-(01- E)QH)\kH- (26¢) Lemma 6: Suppose Assumptions 1- 3 hold and define,

Then for allw’ € Y we have that, ub = (2Py — I,,)(v") — (2Py — I,,))(v"*7").  (30)
(w” — y*)T (w' — w") Then, inequality in Lemma 5(iv) holds strictly B7 w* £ 0.
_ 1 We omit the proof for brevity and refer the reader to

()T (' — w*) —— ()T (' — )

T ok ok 27) Theorem3 in [8] where a similar inequality is proved.
>0 The following result characterizes the limit behavior of
1-(1-e¢2, , 3 , . iterates for infeasible QP (1) in terms of the sequepek}.
= 1—e [w” = y*[[fw’ —w”| Lemma 7: Suppose Assumptions 1- 3 hold. Then,
where the inequality follows from (13), the Cauchy-Schwarz Ptk =oF — 0kl £ 0 (31)

inequality and the substitution of (26b) and (26c). Hence, ) I
holds iff ' = y° +y?, w' = w° +yQ and\' satisfies (20)

k0 k\T (0! _ apk
lim (wk yk) (wl “’k)zovwey Vizk-1 N . .
k—oo [Jwh — yF|l[|w’ — wk|| (28) Proof: Theif part follows trivially for the given choice
(w—79)T(w' —w) S0V of (w*, A\¥). Consider theonly if part. We cannot have
= o —g||w —w| w ey ZTuk + 0 since that will violate (31) by Lemma 6. Hence,
ZTu* =0 = RR"u* = u*. Using (12),(30)

and(w—y) L w e Y. SinceAy = b, w € Y we have that

(y,w) satisfies (7) and hence, the QP (1) is infeasible. From oF ok — 1 (_uk ok — ,kal)
uniqueness of the range space component in FB)y = 2
RTy°, R"w = RTw° and alsoZ”w = Z"gy. From the = (I, — Py)(v") = (I, — Py)(»" ) (32)
update steps in the ADMM (10) we have that, — oF _ k1 £0
z" (Q (yo +27Z" (g - yo)) +q-— BA’“) =0, where the last equality from (31). Combining this with
(29)  Lemma 5(i) and 5(ii), yields thaPy(v*) = wh*! = @

k o T~ o
ATLw®+ 277 (w-w) €Y, v k. Furthermore convergence af* and Z”u* = 0 yields
for all k sufficiently large, where first equation follows by re-that ZTA* = X V k. The update steps for (10a) yield that
placingy?, A9 by ZZ" (g—vy°), BAF, respectively, in (23), y* = g V k. Further, from (32) we have that" # A*~!



which implies thaty # w. Thus, the sequence of iteratesfeasible QP all the iterates converge and nothing specific ca
satisfy conditions in Theorem 1(ii) and the claim follonm. be said about this ratio. However, as shown in Theorem 1
Theorem 2: Suppose Assumptions 1-3 hold,> 0 and the multiplier iterates change by a constant vector in the
QP (1) is infeasible. Then, (jv*} converges Q-linearly to case of an infeasible QP. Hence, we expect the ratio in (34b)
a sequence satisfying (31) and (fijw”, \¥)} >, converges to be small in the infeasibile case while (34a) is large.
2-step Q-linearly to a sequence defined in Theorem 1(i). The condition (34c) checks for the satisfaction of (18) to a
Proof: Infeasibility of QP (1) ensures thaj°, w°, tolerance ok,. The first condition in (34d) checks that each
y?, X°, AQ are well-defined. From Lemma 6 we havecomponent of\* andw”—y* have the same sign. In a sense,
that {||v* — v*~1||} decreases monotonically until (31)this is a stricter requirement of the angle condition (34c).
holds. Hence, the claim ofv*} is proved. The result In our numerical experiments we have observed that the
on {(w*,A*)} follows from Lemma 3(ii), the result on satisfaction of this condition can be quite slow to converge
monotonic decrease df|jv* — v*~!||} and Lemma 3(i).m when the iterates are far from a solution. In such instances,
From Lemma 6 it is clear that rate of convergence isve have also observed that, the quantity’|| has actually
influenced by the components af* along the null space diverged to a large value. To remedy this we also monitor
of the constraints. We can affect the contraction resultinthe ratio of | Av* — Av*~1|| (which converges td), refer
from the null space component by choosijigto minimize Lemma 7) to||v*|| (|[v*|| — o). This ratio is expected

T . . .
w + % where the eigenvalues a2 M Z7 to converge to0 on infeasible instances. We recommend

satisty \(ZM2Z7) = \(Z27(Q/B + I1,)Z)~') = B/(B+ following parameter settinge, = 10~ % ¢, = 107%¢, =
NZTQZ)). Thus, the optimal choice for the step size isl0~ ¢, = 10~*. While these values have worked well on a

given by, large number of problems, these constants might have to be
3 1 1 modifed depending on scaling of the problem.
g = argminmax< —— e —‘ + —) .
>0 i \|B+XN(Z2°QZ) 2| 2 B. Numerical Example

Theorem 3 Suppose Assumptions 1-3 hold. Then, the |, ihis section we present some numerical results on the
optimal step-size for the class of convex QPs in (1) t9nfeasibility detection for the ADMM algorithm (10) apptie
converge to the limiting sequence in Theorem 1(i) is to the quadratic programs arising in constrained linearehod
predictive control (MPC) [11]. MPC operates by repeatedly

* . T T
The ch B _f\//\";.'”(zl ?Z)/\_max(z QZ)t. d(33) ¢ solving at any sampling time € Zg, the finite horizon
e choice of optimal step size parameter and proof g1 control problem

identical to that for the feasible case derived in [8], so the

proof is omitted here. Thus, the choice of the step size fer th N-1
proposed ADMM algorithm results in optimal convergence  min lenelpy + D (lzeldy + e, ) (35a)
rate for both feasible and infeasible QPs. ! i=0

s.t. xi+1|t = Asxi\t + Bsui‘t (35b)

V1. NUMERICAL RESULTS INMPC APPLICATIONS
2zije = Cszipp + Dsuy) (35¢)

Tmin < Tijp < Tmax, ¢ =1...N (35d)
Umin < Uiy < Umax, 1 =1...N (35€)
Zmin < Zijt < Zmax, 1 =1...N (35f)
xo;p = x(t) (359)

max(||y” — y* 1|, Bllw” — w1 < (34b) where |[all3, = a"Qa, Us = [ugp,...,un_1)], and
max(B|[wk — wh-1|, [AF — A1)y = o Py, Qum = 0, Ry > 0. The input applied to the plant is
selected from the the optimal solution of (3%)(¢), as
AT (wk — o u(t) = ug,.
W >1-€q (34c) The op|timal control problem (35) can be formulated as a
family (for varying z(t)) of quadratic programs (1) where
|AvE — Avk-1] yT = [zTuT2T], the equality constraints are defined by the
————— <& (34d) system state and output equations (35b), (35c), th@ysist
il a box defined by (35d), (35e), (35f), and the cost function
where,0 < ¢,, €., 64,6, < 1, o represents the component-is obtained from (35a). Assumption 1 is satisfied for admis-
wise multiplication operation and\v* = v* — v*~1. The sible control systems, Assumption 2 is always satisfied and
left hand side (34a) is the error criterion used for termarat Assumption 3 is satisfied iRy, > 0. The initialization (35g)
in feasible QPs [7], [8]. Condition (34a) requires that theamounts to changing part of the equality constraint vector,
optimality conditions are not satisfied to a toleranceegf i.e.,b” = [z(t)T b7]7, at the different sampling instants. All
while (34b) requires that the changeynw iterates be much the following numerical tests are executed in Matlab, and we
smaller than the change in the, X iterates. In the case of a have verified the solution provided by the algorithm in (10)

A. Practial Termination Condition

Based on Theorem 1, we propose the satisfaction of the
following conditions for detecting infeasibility:

max(B]lw® — w |, A" = AFY)) > e, (34a)

Ao (w* —y*) >0or
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|Aw*| and ||Ay*|| being small andcos® = 1, which is
correctly detecting infeasibility. At terminatiofAX|| > 0,
i.e., w # y, which detects infeasibility.

VIl. CONCLUSION

We have presented infeasibilty detection in alternating
direction method of multipliers for a class of convex QPs.
In particular we have established that the divergence of
iterates is restricted to the multipliers along the rangecep
of the equality constraints. Furthermore, we have derived
the optimal step size parameter that maximizes the rate
of convergence for the bounded components of the iterate
sequence. In particular, the choice of the optimal step size
parameter in the infeasible case is shown to be identical to
that of the feasible case derived in [8]. Thus, the proposed
step size parameter is guaranteed to work well for both
feasible and infeasible instanced of QPs. We have confirmed
the approach by numerical results in example applications t

200 400 600 i 800 1000 1200 1400

Fig. 1. Example: infeasible QP of MPC of a spacecraft with ifilex
appendage subject to constraints: evolution of the normhef ADMM

iterates variables/variable differences. [1]
by multiple algorithms, includingyuadpr og [12] and the
active set QP solver in thEAG [13] package. 2]

The example is an MPC controller for &-axis re-
orientation maneuver for a spacecraft with a flexible ap-
pendage, such as a lightweight solar panel. The system ig
modeled as at'” order system, see, e.g., [14], which is
augmented with two additional states, one for the referencrf
angle to be tracked, and one for the incremental represen-
tation of the input. The constraints include upper and lower
bound on the torque for controlling the angular rotation of[5]
the spacecraft bugu| < 0.1, and bounds on the maximal
deflection of the flexible appendagky| < 0.47, where
x[m] is the lateral displacement of the tip of the flexible [€]
appendage, from the position it holds while at rest.

The MPC controller is designed with sampling period
T, =0.25s,N =8, R\ = 4, QM = Py, QM = Cg\,{QyC]u, (7]
whereC); is a matrix such thaCy;z = (¢ — ), ¢ is the
angle of the spacecraft bus, is the reference for such angle,

z is the full state of the model), = 1. It may take in the [8]
order of103 — 10* iterations for solving the feasible QPs in
this example, depending on the initial conditions.

We set as initial condition:(0) = [0 —0.45 0.5 0 ], which ~ [9]
correspond to a situation where the appendage is signifjcant
bent in one direction, with a relatively larger velocity tanl
the opposite direction. While the MPC problem is feasiblé10]
for t = 0, ¢t = 1, and for these steps algorithm (10) 1]
correctly compute the solution, due to the initial conditio
and the limited actuation range at = 2 the problem
becomes infeasible. In Figure 1 we show the evolutiof?]
of Awk| = [w* — w |, |Ag*] = [ly* — " pg

[ANF]| = [[AF — A=Y = |lyF~! — wF~1||, and cos 6F,
where cos6* = QN (wh—y") during the iterations of
= ey 9 [14]

) I . )
algorithm (10) att = ﬁTvThe algorithm terminates due to

the QPs arising from constrained linear MPC.
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