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Abstract
This paper proposes a dynamic controller structure and a systematic design procedure for
stabilizing discrete-time hybrid systems. The proposed approach is based on the concept of
control Lyapunov functions (CLFs), which, when available, can be used to design a stabilizing
state-feedback control law. In general, the construction of a CLF for hybrid dynamical
systems involving both continuous and discrete states is extremely complicated, especially
in the presence of non-trivial discrete dynamics. Therefore, we introduce the novel concept
of a hybrid control Lyapunov function, which allows the compositional design of a discrete
and a continuous part of the CLF, and we formally prove that the existence of a hybrid CLF
guarantees the existence of a classical CLF. A constructive procedure is provided to synthesize
a hybrid CLF, by expanding the dynamics of the hybrid system with a specific controller
dynamics. We show that this synthesis procedure leads to a dynamic controller that can be
implemented by a receding horizon control strategy, and that the associated optimization
problem is numerically tractable for a fairly general class of hybrid systems, useful in real
world applications. Compared to classical hybrid receding horizon control algorithms, the
proposed approach typically requires a shorter prediction horizon to guarantee asymptotic
stability of the closed-loop system, which yields a reduction of the computational burden, as
illustrated through two examples.
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Stabilizing Dynamic Controllers for Hybrid
Systems:

A Hybrid Control Lyapunov Function Approach
S. Di Cairano, W.P.M.H. Heemels, M. Lazar, A. Bemporad

Abstract—This paper proposes a dynamic controller structure
and a systematic design procedure for stabilizing discrete-time
hybrid systems. The proposed approach is based on the concept
of control Lyapunov functions (CLFs), which, when available,
can be used to design a stabilizing state-feedback control law.
In general, the construction of a CLF for hybrid dynamical
systems involving both continuous and discrete states is extremely
complicated, especially in the presence of non-trivial discrete
dynamics. Therefore, we introduce the novel concept of a hybrid
control Lyapunov function, which allows the compositional design
of a discrete and a continuous part of the CLF, and we formally
prove that the existence of a hybrid CLF guarantees the existence
of a classical CLF. A constructive procedure is provided to
synthesize a hybrid CLF, by expanding the dynamics of the
hybrid system with a specific controller dynamics. We show that
this synthesis procedure leads to a dynamic controller that can
be implemented by a receding horizon control strategy, and that
the associated optimization problem is numerically tractable for
a fairly general class of hybrid systems, useful in real world
applications. Compared to classical hybrid receding horizon
control algorithms, the proposed approach typically requires a
shorter prediction horizon to guarantee asymptotic stability of the
closed-loop system, which yields a reduction of the computational
burden, as illustrated through two examples.

I. INTRODUCTION

In hybrid systems discrete dynamics, such as finite au-
tomata, Petri nets, or Markov chains, interact with continuous
dynamics, such as differential, difference, or differential alge-
braic equations [3]–[5]. A fundamental problem in controlling
hybrid dynamical systems is the stabilization of a desired
hybrid equilibrium state. In the last ten years, several lines of
research with different levels of generality have been devoted
to this problem. These lines include, amongst others, switching
control (e.g., [6]), optimal control (e.g., [7], [8]), model predic-
tive control (e.g., [9]–[12]), control-to-facet approaches (e.g.,
[13], [14]), and more recently, passivity-based and CLF-based
approaches (e.g., [15], [16]), see also the references therein and
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the surveys [4], [5], [17], [18]. However, the existing general
approaches often lack a constructive nature to synthesize
controllers, while the existing constructive approaches often
apply only to restrictive classes of hybrid systems.

To elaborate on the latter, the majority of the constructive
approaches apply to switched linear systems or piecewise
affine systems, in which the discrete state (the system mode)
is subordinate to the continuous state, in the sense that it is
uniquely determined by the continuous state and (possibly)
inputs. As such, the discrete dynamics are rather trivial. On the
other hand, non-trivial discrete dynamics are essential features
of various applications such as robot operation, processes
control, and embedded control systems, (see, e.g., [19]–[21]),
and as such, there is still a need for constructive methodologies
for synthesizing stabilizing controllers for hybrid systems.

In this paper we propose a novel constructive methodology
to design stabilizing controllers for general hybrid systems
with non-trivial continuous and discrete dynamics. Due to
the generality of the assumptions, the proposed technique
is applicable to, among others, (discrete-time) hybrid au-
tomata [22], and MLD systems [9]. Due to the equivalence
results in [23], [24], the proposed approach is applicable also
to extended piecewise affine systems (i.e., piecewise affine
systems augmented with non-trivial discrete dynamics) [24],
switched linear systems [6], discrete hybrid automata [25],
and many others. The design of stabilizing controllers for
hybrid systems that we propose is inspired by the control
Lyapunov function (CLF) approach [26], [27], where, after
constructing a CLF, the synthesis of a control law that achieves
stability of the controlled system equilibrium follows naturally.
In general, the construction of a CLF is complex even for
continuous systems, and it becomes even more complicated
when considering hybrid systems.

Due to the complexity of obtaining a CLF directly, in this
paper we follow a compositional approach. Instrumental in
this approach is the introduction of the concept of a hybrid

CLF, which allows for the separate design of a discrete and
a continuous part of the CLF. Despite the separate design,
it can be formally proven that the existence of a hybrid CLF
guarantees the existence of a classical CLF in the sense of [26],
[27]. We propose a constructive procedure, based on expanding
the dynamics of the hybrid system with controller dynamics
designed using concepts from predictive control, that leads to
the systematic synthesis of the hybrid CLF. The presence of
controller dynamics constitutes a further novelty, with respect
to the use of classical CLFs [26] that typically are employed in
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conjunction with static state feedback laws, instead of dynamic
controllers.

Finally, we show that the control law designed via the
hybrid CLF can be implemented by solving at every control
cycle a finite horizon optimal control problem in a reced-
ing horizon fashion [28]. While for general hybrid systems
the optimization problem arising in the receding horizon
controller may be computationally challenging, for hybrid
systems with affine transition guards and (piecewise) affine
continuous dynamics for each discrete state, which have
been proved useful in various practical applications [29]–
[32], the optimization problem can be solved effectively by
available numerical tools. Receding horizon control strategies
for hybrid systems were proposed before, e.g., in [9]–[12].
However, previous strategies guarantee only convergence to
an equilibrium for hybrid systems with discrete dynamics [9],
or asymptotic stabilization (including Lyapunov stability) for
piecewise affine systems with trivial discrete dynamics [10]–
[12]. In order to guarantee feasibility of the optimal control
problem, existing techniques require in general long horizons,
due to the presence of terminal constraints. Embedding artifi-
cial candidate Lyapunov functions in optimal control problems
via constraints (see, e.g., [33]–[35]) avoids the need of such
long prediction horizons. However, recursive feasibility of the
optimal control problem is not automatically guaranteed [34],
unless the constraints related to the artificial candidate Lya-
punov function can be proven to truly represent a CLF. For
the approach proposed in this paper, recursive feasibility of
the optimal control problem is guaranteed by an appropriate
construction of the hybrid CLF. Thus, compared to existing
hybrid receding horizon control algorithms [9]–[12], a shorter
prediction horizon is usually required for the proposed design
to guarantee asymptotic stability of the closed-loop system
and recursive feasibility is guaranteed. Clearly the former
is beneficial for the controller implementation as it yields a
reduction of the computational load.

The paper is structured as follows. In Section II we briefly
review the basic notions of stability, control Lyapunov func-
tions, and some notions of graphs. In Section III we introduce
the hybrid system stabilization problem, and the class of
controllers that we synthesize to address it. In Section IV
we show how a controller that stabilizes the hybrid system
is designed by using a hybrid CLF, which is simple to obtain
because of its compositional nature and is proven to guarantee
the existence of a classical CLF. In Section V we propose
a construction for the hybrid CLF, which guarantees the
existence of the controller, and in Section VI we implement the
control law via a receding horizon constrained control strategy.
After presenting a numerical example and an example of
launch control on mild hybrid electric vehicles, in Section VII
we summarize the conclusions.

II. PRELIMINARIES

R, R>0, R≥0, Z, Z>0, Z≥0 denote the set of real, positive
real, non-negative real, integer, positive integer, and non-
negative integer numbers, respectively. For a countable set
S, |S| denotes its cardinality. We use the notation Z(c1,c2],

where c1, c2 ∈ Z, (and similarly with R) to denote the set
{k ∈ Z : c1 < k ≤ c2}. Given a set X , 2X denotes the set
of subsets of X . The Hölder p-norm of a vector x ∈ Rn is

defined as ‖x‖p ! (|[x]1|
p + . . . + |[x]n|

p)
1
p , if p ∈ Z[1,∞)

and ‖x‖∞ ! maxi=1,...,n |[x]i|, where [x]i, i = 1, . . . , n, is
the i-th component of x, and | · | is the absolute value. By ‖ ·‖
we denote an arbitrary p-norm, and x′ denotes the transpose
of x.

For a discrete-time signal {x(k)}k, with sampling period
Ts, we refer to time (instant) k as the time instant when
the kth sampling occurs, i.e., t = kTs. Given a discrete-
time system x(k + 1) = φ(x(k), u(k)), an initial state x(0)
and an input sequence uN =

(

u0, . . . , uN−1

)

, N ∈ Z>0,
xN =

(

x0, . . . , xN

)

is the sequence of states obtained from
x(0) following the application of the input sequence uN . For
simplicity of notation, we denote φj(x(0),uN ) ! xj for
j ∈ Z[0,N ]. For two vectors u ∈ Rnu and v ∈ Rnv , we
sometimes write (u, v) = [u′ v′]′ ∈ Rnu+nv . In addition,
with a little abuse of notation, we sometimes separate the
discrete valued and the real (continuous) valued arguments of a
function f(x, u), i.e., given x = [x′

c x′
d]

′, u = [u′
c u

′
d]

′, where
xc, uc are the continuous (i.e., real-valued) components, and
xd, ud are the discrete (i.e., discrete-valued) components of x
and u, respectively, we write sometimes f(xc, xd, uc, ud) !

f(x, u).

A. Stability notions

Consider the discrete-time nonlinear system described by
the difference inclusion

xc(k + 1) ∈ Φc(xc(k)), k ∈ Z≥0, (1)

where xc(k) ∈ Rn is the state at time k. The mapping
Φc : Rn → 2R

n

is an arbitrary nonlinear, possibly dis-
continuous, set-valued function. A state xe

c ∈ Rn satisfying
Φc(xe

c) = {xe
c} is called an equilibrium of (1). After intro-

ducing some terminology, we state a regional version of the
global asymptotic stability property presented in [36, Chapter
4].

A function ϕ : R≥0 → R≥0 belongs to class K if it is
continuous, strictly increasing and ϕ(0) = 0. It belongs to
class K∞ if ϕ ∈ K and ϕ(s)→∞ when s→∞. A function
β : R≥0 × R≥0 → R≥0 belongs to class KL if for each
k ∈ R≥0, β(·, k) ∈ K, for each s ∈ R≥0, β(s, ·) is decreasing,
and limk→∞ β(s, k) = 0.

Definition 1: Consider system (1) and Xc ⊆ Rn with
xe
c ∈ Xc and Φc(xe

c) = {xe
c}. We call the equilibrium xe

c

asymptotically stable (AS) in Xc for (1) if there exists a KL-
function β such that, for any xc(0) ∈ Xc, all the trajectories
generated by (1) satisfy

‖xc(k)− xe
c‖ ≤ β(‖xc(0)− xe

c‖, k), ∀k ∈ Z>0. (2)

!

For systems with discrete dynamics, the discrete state do-
main is taken as the finite set of symbols E ! {ε1, . . . , εnd

}.
Consider the discrete dynamical system

xd(k + 1) ∈ Φd(xd(k)), k ∈ Z≥0, (3)
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where xd(k) ∈ E is the state and Φd : E → 2E is an arbitrary
set-valued function.

Definition 2 ( [22]): Given a finite set E the discrete dis-

tance is the function dd : E × E → R≥0 given for xd, yd ∈ E
by

dd(xd, yd) !

{

0 if xd = yd
1 if xd *= yd .

(4)

!

By using (4) we formulate an analogous version of Definition 1
for (3), for xe

d ∈ E satisfying φd(xe
d) = {xe

d}, i.e., xe
d is an

equilibrium of (3).
Definition 3: Consider the discrete system (3) and let xe

d ∈
E be such that φd(xe

d) = {xe
d}. The equilibrium xe

d is called
asymptotically stable in E for (3) if there exists a KL-function
β such that for any xd(0) ∈ E , all the trajectories generated
by (3) satisfy dd(xd(k), xe) ≤ β(dd(xd(0), xe), k), for all k ∈
Z≥0. !

Since the set E is finite, Definition 3 is equivalent to the
existence of k0 ∈ Z≥0 such that for any xd(0) ∈ E ,
xd(k) = xe

d for all k ≥ k0.
Consider now the discrete-time hybrid system given by

x(k+1) =

[

xc(k + 1)
xd(k + 1)

]

∈

[

Φc(x(k))
Φd(x(k))

]

= Φ(x(k)), (5)

where x(k) = [xc(k)′ xd(k)′]′ ∈ X ⊆ Xc × E is the hybrid
state at time k ∈ Z≥0 with xc(k) ∈ Xc ⊆ Rn the continuous
part, xd(k) ∈ E the discrete part, E defined as above, and X

the set of admissible hybrid states.
Let xe = [xe

c
′ xe

d
′]′ ∈ X, and Φ(xe) = {xe}, i.e., xe ∈ X

is an equilibrium for (5). Based on Definitions 1 and 3, we
define asymptotic stability for discrete-time hybrid systems
that exhibit both discrete and continuous dynamics as in (5).
For hybrid states x = [ xc

xd
] ∈ X and χ = [ χc

χd
] ∈ X , we define

the distance in the hybrid state space dh : X × X → R≥0, as
in [22], by

dh(x,χ) ! ‖xc − χc‖+ dd(xd,χd). (6)

Definition 4: Consider hybrid system (5) and let xe ∈ X

satisfy Φ(xe) = {xe}. The equilibrium xe is called asymp-

totically stable in X for (5) if there exists a KL-function β
such that for any x(0) ∈ X all the trajectories generated by (5)
satisfy

dh(x(k), x
e) ≤ β(dh(x(0), x

e), k), ∀k ∈ Z>0. (7)

!

Definition 4 is consistent with [22], and it coincides with
Definition 1 and Definition 3 in the case of purely continuous
and purely discrete systems, respectively.

B. Lyapunov functions and control Lyapunov functions

Definition 5: A set P ⊆ Xc × E is positively invariant (PI)
for system (5) if for all x ∈ P , Φ(x) ⊆ P . !

Theorem 1: Let X be a PI set for (5) with xe ∈ X. Let
α1,α2 ∈ K∞, ρ ∈ R[0,1), and let V : Rn → R≥0 be a
function such that

α1(dh(x, x
e)) ≤ V(x) ≤ α2(dh(x, x

e)) (8a)

V(x+) ≤ ρV(x) (8b)

for all x ∈ X, and all x+ ∈ Φ(x). Then, xe is AS for (5) in
X. !

The proof of Theorem 1 is similar in nature to the proofs
in [35, Ch.6] by replacing the (continuous) difference equation
with the hybrid difference inclusion (5), and it is omitted here
for brevity. The proof can also be obtained by following [37],
which discusses robust stability of discrete-time difference
inclusions. A function V that satisfies the hypothesis of Theo-
rem 1 is called a Lyapunov function (LF) for hybrid system (5).

Consider now the discrete-time hybrid system with control
inputs described by the difference equation

x(k + 1) =

[

xc(k + 1)
xd(k + 1)

]

=

[

φc(x(k), u(k))
φd(x(k), u(k))

]

= φ(x(k), u(k)), (9)

where x(k) ∈ X ⊆ Xc × E , Xc ⊆ Rn, u(k) ∈ U ⊆ Uc × Eu
are the state and input at k ∈ Z≥0, and Eu ! {εu1 , . . . , εumd

}
is a finite set of input symbols. In (9) φ : X × U → X is an
arbitrary nonlinear function, possibly discontinuous. Assume
that for xe = [xe

c
′ xe

d
′]′ ∈ X there exists ue = [ue

c
′ ue

d
′]′ ∈ U,

such that φ(xe, ue) = xe.
Definition 6: A function Vh : X → R≥0 that satisfies (8a)

for some α1,α2 ∈ K∞ and for which there exists ρ ∈ R[0,1)

such that for all x ∈ X, there exists u ∈ U such that φ(x, u) ∈
X and

Vh(φ(x, u)) ≤ ρVh(x), (10)

is called a control Lyapunov function (CLF) for xe ∈ X for (9).
!

Given the CLF Vh, define the control law

u(k) ∈ R(x(k)), k ∈ Z≥0, (11)

where, for all x ∈ X, R : X→ 2U satisfies

∅ *= R(x) ⊆ Γ(x) := {u ∈ U : φ(x, u) ∈ X, and (10) hold}.
(12)

This results in the closed-loop system

x(k + 1) ∈ φ(x(k), R(x(k))) ! {φ(x(k), u) : u ∈ R(x(k))}.
(13)

Theorem 2: Consider (9) and xe = [xe
c
′ xe

d
′]′ ∈ X, where

there exists ue ∈ U such that φc(xe, ue) = xe. Suppose
that there exists a CLF for xe in X for (9). Then, xe is
asymptotically stable in X for (13). !

Theorem 2 is a consequence of Theorem 1 as X is PI
for (13) by (12). Theorem 2 is instrumental to the main
developments in this paper, since it shows that once a CLF
is found, controller (11) that satisfies (12) for all x ∈ X can
be constructed. If (9) consists only of continuous dynamics we
obtain a classical CLF as in [27], which is the discrete-time
form of the CLF for continuous-time dynamics in [26].

C. Graph notions

A directed graph G = (V,E) is described by the set of
nodes V = {v1, . . . , vs} and the set of edges E ⊆ V × V ,
where eij = (vi, vj) ∈ E is the edge from node vi ∈ V to
node vj ∈ V .

Next we introduce the notion of graph distance.
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g12(xc, u) > 0

g21(xc, u) > 0

g12(xc, u) ≤ 0 g21(xc, u) ≤ 0

ε1 ε2

φc(xc,ε1,u)=
f1(xc,uc)

φc(xc,ε2,u)=
f2(xc,uc)

Figure 1. Graphical representation of a simple hybrid system with its
associated to graph.

Definition 7: Given a graph G = (V,E), a graph path
from vr ∈ V to vt ∈ V , is a sequence of vertices τ =
(ν(0), . . . , ν(")), * ∈ Z≥0, where ν(j) ∈ V for j ∈ Z[0,"],

(ν(j), ν(j+1)) ∈ E for j ∈ Z[0,"−1], and ν(0) = vr, ν(") = vt.
The length of the path is L(τ) ! *, i.e., the number of edges
traversed from vr to vs. !

For vr, vt ∈ V , let Tr,t denote the set of all graph paths from
vr to vt.

Definition 8: For the directed graph G = (V,E), the graph

distance between vr, vt ∈ V is the length of the shortest graph
path between them, i.e., for vr *= vt, if Tr,t *= ∅, d(vr , vt) =
minτ∈Tr,t

L(τ), and if Tr,t = ∅, d(vr, vt) !∞. For vr = vt,
d(vr , vt) ! 0. !

The graph distance, which represents the minimum number of
edges to travel between two nodes is a proper distance function
on undirected graphs, but it lacks the symmetry property on di-
rected graphs, since in general d(vr , vt) *= d(vt, vr). However,
this does not impact our use of the graph distance. For a given
graph G(V,E), for all vr, vt ∈ V the graph distance d(vr, vt)
can be computed using, for instance, Dijkstra’s algorithm.

III. PROBLEM DEFINITION

Consider hybrid system (9), where, for k ∈ Z≥0, x(k) ∈
X ⊆ Xc × E , Xc ⊆ Rn and E = {ε1, . . . , εnd

}, and u(k) ∈
U ⊆ Uc × Eu with Uc ⊆ Rm and Eu = {εu1 , . . . , εumd

}.
The sets X and U define the admissible sets of states and in-
puts, respectively, which possibly describe system constraints.
Model (9) is fairly general, as it can, for instance, represent
a hybrid automaton [22] (in discrete time) with control inputs
and deterministic executions, see, e.g., Figure 1. While state
and input constraints defined by X and U are independent from
each other, this condition is introduced here only to simplify
the notation, and it can be easily relaxed to allow for mixed
state-input system constraints. Given ε ∈ E , Xh(ε) ! {x ∈ X :
xd = ε} is the set of hybrid states in X where the discrete state
is ε, and obviously X =

⋃

ε∈E Xh(ε), and Xh(ε) = Xc(ε)×{ε},

where Xc(ε) ! {xc ∈ Rn : [ xc
ε ] ∈ X} is the set of continuous

states compatible with ε ∈ E , sometimes referred to as the

domain of ε. Furthermore, given εi, εj ∈ E , define Xt(εi, εj) =
{xc ∈ Xc(εi) : ∃u ∈ U, φ([x′

c ε
′
i]
′, u) ∈ Xh(εj)}.

Obviously, a directed graph G(V,E) can be associated to (9)
in the following way. Define V ! {v1, . . . , vnd

} so that vi ∈ V
is associated to εi ∈ E , for all i ∈ Z[1,nd]. To define the set
of edges, take eij = (vi, vj) ∈ E, for i, j ∈ Z[1,nd], if and
only if Xt(εi, εj) *= ∅. A graphical representation of a simple
hybrid system with its associated graph is shown in Figure 1.
By associating G(V,E) to (9) we enable the use of the graph
distance for the discrete component of the hybrid system state.
In fact, for the discrete distance (4) all the states appear equally
far from a desired target state xe

d, except xe
d itself. Instead, the

graph distance measures how far xd is from xe
d in terms of

the number of discrete transitions needed to reach xe
d.

We consider the stabilization of a desired equilibrium
xe = [xe

c
′ xe

d
′]′ ∈ X, for which there exists ue ∈ U such

that φ(xe, ue) = xe. The general problem that this paper
addresses is to provide a constructive design procedure to
obtain a controller such that xe is asymptotically stable for the
closed-loop system in an appropriate sense. In Section II-B we
have described how such a control law can be obtained from
a CLF. However, the direct derivation of a CLF for (9) is far
from trivial.

In order to obtain a constructive procedure to design a
stabilizing controller for (9), we consider dynamic controllers
of the type

z(k + 1) = ψ(x(k), z(k), u(k), v(k)), (14a)
[

u(k)
v(k)

]

∈ R(x(k), z(k)), (14b)

where z ∈ Z ⊆ Rnz is the controller state with dynamics
defined by (14a), v ∈ V is an additional (endogenous) control
input, and (14b) defines the set-valued command as a function
of x and z. Hence, the problem addressed in this paper is
formulated as follows.

Problem: Stabilizing Feedback Control Design. Given a
desired equilibrium xe ∈ X for (9) with ue ∈ U satisfying
φ(xe, ue) = xe, synthesize (14) such that there exist a non-
trivial set Ξ ⊆ X × Z , and ze ∈ Z , such that (xe, ze) is
an asymptotically stable equilibrium in Ξ for the closed-loop
system (9), (14). !

At a conceptual level, the approach that we take in this paper
is to first appropriately select the controller dynamics (14a)
such that the interconnection of (9) and (14a) allows for a CLF
Vh : Ξ→ R≥0, and then choose the feedback R such that (12)
is satisfied for (9), (14). The choice of z and the construction
of the dynamics (14a) are the main contributions of the
paper, next to crafting the CLF in a systematic manner. The
proposed approach is different from the classical CLF-based
stabilization, which typically results in static state feedback
laws, while (14) is a dynamic controller. In addition, the CLF
is built in a compositional manner based on a so-called “hybrid
CLF”. In what follows, we first formally introduce the concept
of hybrid CLF, after which we prove that if a hybrid CLF
exists, then it induces a classical CLF for the hybrid system.
Next, we describe a procedure based on predictive control
concepts to construct the controller dynamics and the hybrid
CLF. In addition, we show that the stabilizing controller can be
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synthesized as a receding horizon controller. Before moving
to the next section, it is valuable to remark that the hybrid
CLF concept that we introduce is very general, and it may
allow to develop many other design procedures and control
laws besides the ones proposed here.

IV. HYBRID CONTROL LYAPUNOV FUNCTIONS

Given a desired equilibrium xe ∈ X, we construct (14) using
a so-called hybrid CLF. The hybrid CLF is shown to induce a
CLF Vh consistent with Definition 6 for the interconnection of
(9) and (14a), and it can be used for constructing R in (14b).

A. Definition of a hybrid CLF

In this section we define the concept of a hybrid CLF.
Definition 9: A hybrid CLF for system (9), (14a) for

(xe, ze) ∈ Ξ ⊆ X × Z is a triple (Vc,Vd,Vz), where
Vc : Xc → R≥0, Vd : E → R≥0 and Vz : Z → R≥0 satisfy
the bounds

αc
1(‖xc − xe

c‖) ≤ Vc(xc) ≤ α
c
2(‖xc − xe

c‖), ∀xc ∈ Xc, (15a)

αd
1(dd(xd, x

e
d)) ≤ Vd(xd) ≤ α

d
2(dd(xd, x

e
d)), ∀xd ∈ E , (15b)

αz
1(‖z − ze‖) ≤ Vz(z) ≤ α

z
2(‖z − ze‖), ∀z ∈ Z (15c)

for some αc
1,α

c
2,α

d
1,α

d
2,α

z
1,α

z
2 ∈ K∞. Moreover, for each

(x, z) ∈ Ξ there must exist (u, v) ∈ U× V such that

(φ(x, u),ψ(x, z, u, v)) ∈ Ξ (16)

and






Vc(φc(x, u)) ≤ ρcVc(xc) +Mc

Vz(ψ(x, z, u, v)) ≤ Vz(z)− 1
Vd(φd(x, u)) ≤ Vd(xd)

if xd *= xe
d (17a)







Vc(φc(x, u)) ≤ ρcVc(xc)
Vz(ψ(x, z, u, v)) ≤ ρzVz(z)
Vd(φd(x, u)) ≤ Vd(xd)

if xd = xe
d ,(17b)

for some constants ρc, ρz ∈ [0, 1), Mc ∈ R≥0.
Roughly speaking, (17) imposes Vc to be a local CLF for

the continuous dynamics of (9) once the discrete state is equal
to the desired discrete state (as in (17b)), Vz to be a CLF
for the controller dynamics (14a), and Vd to be a CLF for
the discrete dynamics of (9), although only non-increase is
required. Next we show that the three components Vc, Vd,
Vz of the hybrid CLF can be combined to obtain a classical
CLF Vh for (9) and (14a) in the sense of Definition 6, thereby
justifying the name “hybrid CLF”. As constructing a classical
CLF may be difficult, the hybrid CLF provides an appealing
alternative, as it obtains a CLF in a compositional manner by
appropriately choosing Vc, Vd, and Vz , thereby providing a
constructive procedure for the design of stabilizing controllers.

B. From a hybrid CLF to a CLF

In order to prove that a hybrid CLF induces a classical CLF,
we need the following technical lemma.

Lemma 1: Let a hybrid CLF (Vc,Vd,Vz) for (xe, ze) ∈
Ξ ⊂ X× Z be given for system (9), (14a), and assume Z is
a bounded set. Consider the function VD : E × Z → R≥0,
VD(xd, z) = Vd(xd)+Vz(z) for (xd, z) ∈ E×Z . Then, there

exist 0 < λ1 < 1, and 0 < λ2 < 1 such that for all (x, z) ∈ Ξ
with xd *= xe

d there exists (u, v) ∈ U× V such that

VD(φd(x, u),ψ(x, z, u, v)) ≤ λ1VD(xd, z)− λ2.

Proof: It follows from (17a) that for xd *= xe
d, there exists

(u, v) ∈ U× V such that

VD(φd(x, u),ψ(x, z, u, v)) ≤

Vz(z)− 1 + Vd(xd) = VD(xd, z)− 1. (18)

Define VD,max = max{2, sup(xd,z)∈E×Z VD(xd, z)}, which
is finite due to boundedness of Z and finiteness of E . Take λ1
and λ2 such that

0 < 1−
1

VD,max
< λ1 < 1,

0 < λ2 ≤ 1− (1− λ1)VD,max ≤ λ1 < 1.

Then from (18), for xd *= xe
d there exists (u, v) such that

VD(φd(x, u),ψ(x, z, u, v)) ≤

VD(xd, z)− 1 =

λ1VD(xd, z) + (1− λ1)VD(xd, z)− (1− λ2)− λ2 ≤

λ1VD(xd, z) + (1− λ1)VD,max − (1− λ2)− λ2.

Since (1 − λ1)VD,max − (1 − λ2) ≤ 0,
VD(φd(x, u),ψ(x, z, u, v)) ≤ λ1VD(xd, z) − λ2 as claimed.

In Lemma 1 (and subsequent developments) Z is assumed to
be bounded. This is in general not restrictive, as we will see
later in the constructive design procedure, since the domain Z
of the controller dynamics state and the controller dynamics
ψ are design parameters.

Theorem 3: Let a hybrid CLF (Vc,Vd,Vz) for (xe, ze) ∈
Ξ ⊆ X × Z be given, and assume Z is bounded. Then, for a
sufficiently large α > 0, Vh : Ξ→ R≥0, given by

Vh(x, z) = αVD(xd, z) + Vc(xc), (19)

where (x, z) ∈ Ξ and VD as in Lemma 1, is a CLF for (9),
(14) for (xe, ze) in Ξ.

Proof: In this proof, for shortness we denote (x, z) by
ξ and (xe, ze) by ξe. We first prove that bounds as in (8a)
hold for Vh, for any α > 0. Without loss of generality we can
consider dh given by1 dh(ξ, ξe) = dd(xd, xe

d) + ‖xc − xe
c‖+

‖z − ze‖. To prove (8a) for Vh, observe that (15) implies

Vh(x, z) ≥ αα
d
1(dd(xd, x

e
d))+αα

z
1(‖z−z

e‖)+αc
1(‖xc−x

e
c‖).

It is not hard to see that this yields

Vh(x, z) ≥ min

(

ααd
1

(

1

3
dh(ξ, ξ

e)

)

,ααz
1

(

1

3
dh(ξ, ξ

e)

)

,

αc
1

(

1

3
dh(ξ, ξ

e)

))

= αh
1 (dh(ξ, ξ

e)),

where αh
1 is given by αh

1 (s) =
min(ααd

1(
1
3s),αα

z
1(

1
3s),α

c
1(

1
3s)) for s ≥ 0. Since it is

1Strictly speaking, dh(ξ, ξe) = dd(xd, x
e
d) + ‖(xc − xe

c, z − ze)‖, but
due to equivalence of norms in finite dimensional spaces, without loss of
generality we can use dh(ξ, ξe) = dd(xd, x

e
d) + ‖xc − xe

c‖+ ‖z− ze‖ for
convenience.
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the pointwise minimum of three K∞ functions, αh
1 ∈ K∞,

thereby proving the first inequality in (8a).
Similarly, due to (15),

Vh(x, z) ≤

ααd
1(dd(xd, x

e
d)) + ααz

1(‖z − ze‖) + αc
1(‖xc − xe

c‖) ≤

ααd
1(dh(ξ, ξ

e)) + ααz
1(dh(ξ, ξ

e)) + αc
1(dh(ξ, ξ

e)) =

αh
2 (dh(ξ, ξ

e)) (20)

with αh
2 (s) = ααd

1(s) + ααz
1(s) + αc

1(s)), s ≥ 0. Since it is
the pointwise sum of three K∞ functions, αh

2 ∈ K∞. Thus,
the second inequality in (8a) is proven as well.

Due to (16), for each ξ ∈ Ξ there exists (u, v) ∈ U × V

such that (φ(x, u),ψ(x, z, u, v)) ∈ Ξ, and (u, v) also satisfies
(17). A decrease condition as in (10) can be proven for Vh,
if α is chosen such that α ≥ Mc

λ2
with λ2 as in Lemma 1. To

show this, take ξ ∈ Ξ with xd *= xe
d, then for (u, v) satisfying

(16)-(17a),

Vh(φ(x, u),ψ(x, z, u, v)) =

αVD(φd(x, u),ψ(x, z, u, v)) + Vc(φc(x, u)) ≤

α(λ1VD(xd, z)− λ2) + ρcVc(xc) +Mc ≤

max(λ1, ρc)(αVD(xd, z) + Vc(xc)) +Mc − αλ2 ≤

max(λ1, ρc)Vh(xd, z).

For ξ ∈ Ξ with xd = xe
d, VD(xd, z) = Vz(z), and due to (17b),

VD(φd(x, u),ψ(x, z, u, v)) = Vz(ψ(x, z, u, v)) for (u, v) ∈
U × V satisfying (16), (17b). Hence, for the chosen (u, v) ∈
U× V

Vh(φ(x, u),ψ(x, z, u, v)) =

Vc(φ(x, u)) + αVz(ψ(x, z, u, v)) ≤

ρcVc(xc) + ρzVD(xd, z) ≤ max(ρc, ρz)Vh(x, z),

which concludes the proof.
From Theorem 3, the next corollary follows immediately.
Corollary 1: Let a hybrid CLF (Vc,Vd,Vz) for (xe, ze) ∈

Ξ ⊆ X × Z be given, and assume Z is bounded. Consider
a CLF Vh for (9) and (14) for (xe, ze) ∈ Ξ obtained as in
Theorem 3 for a sufficiently large α > 0. Then, there exists
0 ≤ ρh < 1 such that if (u, v) ∈ U×V satisfies (16), (17) for
(x, z) ∈ Ξ, then (u, v) ∈ U× V satisfies

Vh(φ(x, u),ψ(x, z, u, v)) ≤ ρhVh(x, z)) , (21a)

(φ(x, u),ψ(x, z, u, v)) ∈ Ξ . (21b)

!

Corollary 1 is instrumental for designing R : Ξ→ U×V in
(14b), since it guarantees that for (x, z) ∈ Ξ, if (u, v) ∈ U×V

is chosen such that the hybrid CLF conditions (16), (17) are
satisfied, the classical CLF conditions (21) are satisfied for Vh.

C. Stabilizing dynamic controller

Due to Theorem 2 and Theorem 3, if R : Ξ → U × V is
chosen according to (12) for Vh, (xe, ze) ∈ Ξ is asymptotically
stable for (9), (14). For (x, z) ∈ Ξ, Corollary 1 shows that if
R is chosen as

R(x, z) := {(u, v) ∈ U× V | (16)− (17)}, (22)

then (12) is satisfied, and hence (xe, ze) ∈ Ξ is asymptotically
stable for (9), (14).

Thus, we obtain the following corollary.

Corollary 2: Let a hybrid CLF (Vc,Vd,Vz) for (xe, ze) ∈
Ξ ⊆ X× Z be given for system (9), (14a), and assume Z is
bounded. If R : Ξ→ U×V is chosen as in (22), then (xe, ze)
is asymptotically stable in Ξ for the closed-loop (9), (14). !

Next, we propose a specific design for the hybrid CLF (17)
based on concepts from predictive control.

V. CONSTRUCTION OF CONTROLLER DYNAMICS AND

HYBRID CLF

While several different hybrid CLFs can be designed, we
provide a systematic method to design (14) that stabilizes
(xe, ze) in Ξ, based on a specific choice of the controller
dynamics (14a) and of the hybrid CLF components. Then,
R : Ξ → U × V as in (14b) follows immediately by
Corollary 2. According to this procedure, the elements that
we have to select for specifying (14) through (14) are z, ze,
Z , ψ, Ξ, Vc, Vd, Vz .

A. Construction of the controller dynamics

To specify the controller dynamics (14a), and in particular z,
Z , v, V, and ψ we exploit ideas from predictive control. Con-
sider a desired equilibrium xe ∈ X with equilibrium input ue ∈
U, i.e., φ(xe, ue) = xe. Let uN (k) = (u0(k), . . . , uN−1(k)) ∈
UN be a predicted input sequence at time k ∈ Z≥0 for N ∈
Z>0 steps in the future. Then, in (14) define u(k) ! u0(k) ∈ U

and v(k) ! (u1(k), . . . , uN−1(k)) ∈ UN−1 ! V. Hence,
(u(k), v(k) = uN (k), the predicted sequence of future inputs.
Also, define the controller dynamics as

ψ(x, z, u, v) !
N
∑

j=1

d(φjd(x,uN ), xe
d), (23)

that is, the sum of the graph distances of the (predicted) dis-
crete state to the equilibrium along the trajectories generated
by the predicted input sequence. Hence, at time k ∈ Z≥0, the
update of the controller state is

z(k + 1) = ψ(x(k), u(k), v(k)) = ψ(x(k),uN (k)). (24)

Equation (23) defines the next controller state z(k+1) as the
cumulated graph distance from step k+1 to k+N along the
predicted trajectory starting from x(k) for u(k + i) = ui(k),
i ∈ Z[0,N−1]. Note that, as common in predictive control, the
actual future system trajectory is not necessarily equal to the
predicted one, since at later steps the controller may choose
different control actions (u(j), v(j)), for j ∈ Z>k, than the
ones predicted at time k.

Note that Z ! R[0,cz], cz ∈ R>0, cz < ∞, as required
in Theorem 3. While conditions for the selection of cz will
be discussed in details in what follows, note that by (23),
z(k) ≤ N maxxd∈E d(xd, xe

d), for all k ∈ Z>0, and hence
cz = N maxxd∈E d(xd, xe

d) is already a choice satisfying the
assumption on cz in Lemma 1.

For the subsequent discussion it is important to notice that
by (24), for z(k), k ∈ Z>0, the first element of the summation
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in (23) is d(xd(k), xe
d). Hence, if z(k) = 0 for k ∈ Z>0,

then xd(k) = xe
d. Thus, we take ze = 0, which satisfies for

(ue, ve) = uN = (ue, . . . , ue) that ψ(xe, ze, ue, ve) = 0 =
ze. Hence, (xe, ze) is the desired equilibrium for (9), (23),
(24), as we already have that φ(xe, ue) = xe.

B. Construction of the hybrid CLF

The component Vd of the hybrid CLF (17) related to the
discrete state of the hybrid system is defined by the discrete
distance (4), i.e.,

Vd(xd) = dd(xd, x
e
d). (25)

Thus, (17) requires that

dd(φd(x, u), x
e
d) ≤ dd(xd, x

e
d). (26)

To guarantee the feasibility of (26), we adopt the following
assumption.

Assumption 1: For any x ∈ Xh(xe
d) there exists u ∈ U such

that φ(x, u) ∈ Xh(xe
d).

Assumption 1 requires that for any hybrid state where the
discrete state is at the desired equilibrium, there exists an input
that maintains it there.

The component Vz of the hybrid CLF is defined as

Vz(z) = ‖z‖ = z, (27)

where the second equality holds due to z being the sum of
graph distances, and hence z ≥ 0. For (24), (17) imposes that

ψ(x, z,uN ) ≤ z − 1 if xd *= xe
d (28a)

ψ(x, z,uN ) ≤ ρzz if xd = xe
d , (28b)

for all (x, z) ∈ Ξ and some constant 0 ≤ ρz < 1. Con-
straint (28) is called the cumulative graph distance contraction

constraint, and it is a relaxation of

d(φd(x, u), x
e
d) ≤ ρdd(xd, x

e
d), 0 ≤ ρd < 1, (29)

that requires the discrete state to come closer to the equilibrium
at every time step. Enforcing (29) is difficult and often
impossible, since in most practical systems the discrete state
cannot change at every step. In contrast, (28) requires that the
sum of the graph distance along a prediction future horizon
of length N to decrease when uN is applied, which is a
relaxed requirement. Note that if the discrete state of (9) can
be controlled to approach the equilibrium at every step to
enforce (29), it is possible to implement (29) by (28) with
N = 1. Hence, (29) is equivalent to (28) for N = 1, while for
N > 1 (28) is a relaxation of (29). In order to guarantee (28)
we state the following assumption.

Assumption 2: Let xe ∈ X. For any discrete state xd ∈
E \ {xe

d} there exists n ∈ Z≥0 such that for any x ∈ Xh(xd),
there exists x̄d ∈ E , where d(x̄d, xe

d) < d(xd, xe
d), and an input

sequence u" ∈ U", such that: (i) * ≤ n; (ii) φq(x,u") ∈ X,
φqd(x,u") = xd, q ∈ Z[1,"−1]; (iii) φ

"
d(x,u") = x̄d. !

Definition 10: Given xd ∈ E , the minimum graph distance

horizon n(xd) ∈ Z≥0 for xd ∈ E is the minimum value for
which Assumption 2 holds for xd, where n(xe

d) ! 0. !

ε3

ε2

ε1ε4

d(ε2, ε1) = 1

d(ε3, ε1) = 2 d(ε4, ε1) = 3 d(ε1, ε1) = 0

k (φjd(xd(k),u3))3j=1 ψ(k)
0 (ε3, ε3, ε2) 5
1 (ε3, ε2, ε2) 4
2 (ε2, ε2, ε1) 2
3 (ε2, ε1, ε1) 1
4 (ε1, ε1, ε1) 0

Figure 2. Example of contraction of the cumulative graph distance.

Assumption 2 requires the existence of a horizon n such
that from xd, by an appropriate choice of the input sequence,
a transition can be taken that brings the discrete state closer to
xe
d without leaving xd before. As such, n(xd) is the minimum

horizon needed for the discrete state to get closer to xe
d. The

value n(xd) can be computed by offline reachability analysis
(see, e.g., [10], [38], [39]), as briefly discussed later in this
section. The following example shows the behavior of (28a).

Example 1 (Cumulative Graph Distance Contraction):

Consider the graph shown in Figure 2, where xe
d = ε1. The

graph distances from each node to xe
d computed as described

in Section II-C are reported in the graph close to each node.
Let us assume that using the associated continuous state
dynamics the following values were computed: n(ε3) = 3
(from ε3 to ε2), n(ε2) = 2 (from ε2 to ε1) and n(ε4) = 1
(from ε4 to ε3). Hence, we select N = 3. Given xd(0) = ε3,
a feasible sequence of predicted discrete state trajectories,
according to the number of steps required by the underlying
continuous dynamics to produce a transition of the discrete
state, and the corresponding cumulative distances are given
in the table in Figure 2. For comparison, the conditions
in [9] for predictive control of hybrid systems, even with the
relaxation in [40, Sec. 3.1], require N ≥ 5 steps, which is the
number of steps required to reach xe

d = ε3. !

Remark 1: If Assumption 2 does not hold, one can still
apply the proposed techniques, but the state domain has to be
restricted to X̃ =

⋃

xd∈Ev
Xh(xd), where Ev ⊂ E is the set of

the discrete states that satisfy Assumption 2. A larger subset
of the state space is preserved by partitioning the domains of
the discrete states in order to retain at least the parts where
Assumption 2 is satisfied. !

The final component in the hybrid CLF (Vc,Vd,Vz) is

Vc : Xc → R≥0, (30)

which, by (17), should satisfy that for x with (x, z) ∈ Ξ there
exists u ∈ U such that

Vc(φc(x, u)) ≤ ρcVc(xc) +Mc if xd *= xe
d (31a)

Vc(φc(x, u)) ≤ ρcVc(xc) if xd = xe
d , (31b)

where ρc ∈ R[0,1), and Mc ∈ R>0. In fact, (31b) implies that
Vc is an ordinary CLF of the continuous dynamics locally
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around the equilibrium xe, and only for continuous dynamics
associated to xe

d. Finding CLFs for continuous dynamics
is a well-studied problem [26], [27], and it is significantly
simpler than the search for a (global) CLF for the hybrid
system. Techniques for calculating local CLFs are discussed,
for instance, in [34], [35], [41]. We adopt the following
assumption regarding Vc.

Assumption 3: There exists Vc as in (30), for which
supx∈X Vc(xc) < ∞, and ρc ∈ R[0,1) such that (15a) is
satisfied for some αc

1,α
c
2 ∈ K∞, and for all x ∈ Xh(xe

d) there
exists u ∈ U such that φ(x, u) ∈ Xh(xe

d) and V(φc(x, u)) ≤
ρcVc(xc).

Two observations are in order. First of all, note that Assump-
tion 3 implies Assumption 1. Second, note that to guarantee
(31b) we can set Mc = supx∈X Vc(xc).

Under Assumptions 2 and 3, (Vc,Vd,Vz) can be proven to
be a hybrid CLF for (9), (23), (24).

Theorem 4: Consider (9), (23), (24), suppose Assump-
tions 2 and 3 hold and let N ≥ max

xd∈E
n(xd). Define

Ξ = {(x, z) ∈ X× R[0,cz] : ∃(u, v) ∈ U× V, (17) holds}.
(32)

Then (Vc,Vd,Vz), defined by (30), (25), (27), respectively, is
a hybrid CLF for (9), (23), (24) for (xe, ze) in Ξ.

In order to prove Theorem 4 we need the following technical
lemmas to prove controlled invariance of Ξ.

Lemma 2: Consider (9), (23), (24), and suppose Assump-
tions 1 and 2 hold. Given any x ∈ X and any ς ∈ Z>0, there
exists uς ∈ Uς , such that φi(x,uς) ∈ X, for i ∈ Z[1,ς], and

d(φi+1
d (x,uς), xe

d) ≤ d(φid(x,uς), xe
d), for i ∈ Z[0,ς−1].

Lemma 3: Consider (9), (23), (24), suppose Assumptions 1
and 2 hold, and let N ≥ max

xd∈E
n(xd). Let (Vc,Vd,Vz) in (17)

be defined by (30), (25) and (27), respectively. If (17) is
satisfied for (x, z) ∈ X × R[0,cz] for some (u, v) ∈ U × V,
there exists (ũ, ṽ) ∈ U × V such that (17) is satisfied for
(φ(x, u),ψ(x, u, v)) ∈ X× R[0,cz].

The proofs of Lemma 2 and 3 are reported in Appendix A.
Using Lemma 3 we can now prove Theorem 4.

Proof (Theorem 4): Given (Vc,Vd,Vz) defined by (30), (25)
and (27), respectively, the existence of class K∞ bounds on Vc

is guaranteed by Assumption 3, while for Vd, Vz , it follows by
construction since Vz(z) = z = ‖z‖ and Vd(xd) = dd(xd, xe

d).
We only need to prove that for each (x, z) ∈ Ξ there exists
(u, v) ∈ U×V such that (φ(x, u),ψ(x, z, u, v)) ∈ Ξ and (17)
is satisfied. Lemma 3 ensures that if there exists (u, v) ∈
U × V, such that (17) is feasible for (x, z) ∈ X × R[0,cz],
then there exists (ũ, ṽ) ∈ U×V such that (17) is feasible for
(φ(x, u),ψ(x, u, v)) ∈ X × R[0,cz]. Hence, by choosing Ξ as
in (32), for any (x, z) ∈ Ξ there always exists (u, v) ∈ U×V

such that (17) holds and (φ(x, u),ψ(x, z, u, v)) ∈ Ξ. !

Corollary 3: Consider (9), (23), (24), let cz ≥
N maxxd∈E d(xd, xe

d), cz < ∞, let Assumptions 1, 2
hold and (Vc,Vd,Vz) be defined respectively by (30), (25),
(27). For any x ∈ X there exists z̄ ∈ R[0,cz] such that (17) is
feasible for any (x, z), z ∈ R[z̄,cz]. If (17) is feasible for
(x(0), z(0)) = (x, z), there exists a finite k̄ ∈ Z≥0 such that
z(k) = 0, and xd(k) = xe

d, for all k ≥ k̄.

The proof of Corollary 3 is reported in Appendix A.
Corollary 3 guarantees that by initializing the controller state
appropriately, convergence to the equilibrium is achieved for
any initial state, and that the discrete state converges in finite
time to the discrete equilibrium state.

The mapping R in (22) can now be designed according to
Corollary 2 providing the complete dynamical controller (14)
that stabilizes (xe, ze) in Ξ.

Before describing a specific implementation of (22) based
on receding horizon control, we discuss the imposed assump-
tions, their verification, and possible relaxations.

C. Verification of the Assumptions and Relaxations

The proposed technique for synthesizing hybrid CLFs is
applicable to general hybrid systems, as described by (9). The
restrictions in applicability are mainly due to the satisfaction
of Assumptions 1 and 2, besides the existence of a local CLF
which is indeed required to achieve stabilization.

Assumptions 1 and 2 are introduced to guarantee feasibility
of the trajectories generated according to (17), which is needed
to prove invariance of Ξ in (16). Such assumptions are always
satisfied for hybrid systems that are “completely discrete-
transition controllable”. With reference to the graph associated
to the hybrid system, this means that for every discrete state,
starting from any continuous state in the associated domain
and without changes in the discrete state, any outgoing (dis-
crete state) transition may be taken in finite time, and also that
the discrete state may be maintained unchanged indefinitely.

However, we would like to emphasize that complete
discrete-transition controllability is a much stronger require-
ment than needed for Assumptions 1 and 2 to hold. These
assumptions can be verified for a specific hybrid system as
described next.

A value n(xd) ∈ Z>0 for which Assumption 2 is sat-
isfied for xd ∈ E can be computed by backward reach-
ability analysis [10], [38], [39]. Given (9) and X ⊆ X,
the backward reachable set is Preφ,U(X ) = {x ∈ X :
∃u ∈ U, φ(x, u) ∈ X}. Consider xd ∈ E , and the set
Ep(xd) = {ε ∈ E : d(ε, xe

d) < d(xd, xe
d)}, and recall that,

as introduced in the beginning Section III, Xt(xd, ε) is the
set of continuous states in the domain of xd from which
a transition to ε can be made. For any ε ∈ Ep(xd) define

S(1)
xd (ε) = S̄(1)

xd (ε) = {x ∈ Xh(xd) : xc ∈ Xt(xd, ε)}, and for

k ∈ Z>0 compute S(k+1)
xd (ε) = (Preφ,U(S

(k)
xd (ε)) ∩ Xh(xd)),

S̄(k+1)
xd (ε) =

⋃k+1
"=1 S(")

xd (ε). Given xe
d ∈ E , Assumption 2 holds

if and only if for any xd ∈ E\{xe
d} there exists n(xd) ∈ Z>0

such that
⋃

ε∈Ep(xd)
S̄(n(xd))
xd (ε) ⊇ Xh(xd).

Similarly, Assumption 1 is satisfied if and only if
Preφ,U(Xh(xe

d)) ⊇ Xh(xe
d).

All the reachable set calculations are simplified by the fact
that the discrete state has to remain constant, and hence mul-
tiple separate reachability computations involving only φc and
Xt(xd, ε) (for constant xd) are performed. The reachable sets
can be computed exactly or by conservative approximations,
depending on φc and Xt(xd, ε).

When compared to the assumption in [9] for predictive
control of hybrid systems, that is N -steps controllability to
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the equilibrium for every x ∈ X, and that only guarantees
convergence, Assumption 2 is usually easier to verify due
to its local nature, as opposed to the global nature of the
assumption in [9].However, there are some cases where it
is possible to find N ∈ Z>0 such that the assumption
in [9] holds, while Assumption 2 cannot be satisfied for any
n(xd) ∈ Z>0. On the other hand, in most of the cases, if
Assumption 2 can be satisfied, maxxd

n(xd) is considerably
smaller than the prediction horizon N ∈ Z>0 needed in [9].
In fact, Assumption 1 requires controllability to a discrete
state closer to the equilibrium, rather than controllability to the
equilibrium. The potentially restricting nature of Assumption 2
compared to [9] is that the discrete state has to remain constant
until a discrete state closer to the target is reached.

However, Assumption 2 can be further relaxed as follows.
Assumption 4: Let xe ∈ X. For any discrete state xd ∈

E \ {xe
d} there exists n ∈ Z≥0 such that for any x ∈ Xh(xd),

there exists x̄d ∈ E , where d(x̄d, xe
d) < d(xd, xe

d), and an input
sequence u" ∈ U", such that: (i) * ≤ n; (ii) φq(x,u") ∈ X,
d(φqd(x,u"), xe

d) = d(xd, xe
d), q ∈ Z[1,"−1]; (iii) φ

"
d(x,u") =

x̄d. !

In Assumption 4 it is only requested that the discrete state
distance does not increase before decreasing at the end of the
control sequence, i.e., the discrete state can change as long
as the graph distance does not increase. Using Assumption 4
instead of Assumption 2 causes only minor changes in the
proofs of Lemma 2 and 3, and the main claims still hold. Note
though that, verifying Assumption 4 by backward reachability
analysis is more involved, since the discrete state is not neces-
sarily constant, and hence the entire hybrid system dynamics
(given by φc and φd) are involved in the computations.

A further relaxation of Assumption 2 can be obtained by
simply requiring existence of an N -steps trajectory from any
x ∈ X, such that the cumulative graph distance along the
trajectory is less than Nd(xd, xe

d), and requiring Assumption 1
to hold for every xd ∈ E rather than only for xe

d. This
relaxation makes the assumptions closer to the ones adopted
in [9], but, as for [9], the procedure for verifying it becomes
more involved. Finally, as already mentioned in Remark 1,
further relaxation is possible by splitting a discrete state (and
its corresponding domain) into multiple discrete states.

VI. IMPLEMENTATION OF THE STABILIZING DYNAMIC

CONTROLLER

The hybrid CLF satisfying (17) and synthesized as described
in Section V results in a controller (14) with R as in (22) that
generates a predicted input sequence along a future horizon.
Hence, it is natural to implement R by receding horizon
control. While for general hybrid systems the computation of
the receding horizon control may be complex, for the classes
of hybrid systems in [9], [23]–[25] where for each discrete
state the continuous state dynamics are (piecewise) affine,
the receding horizon control enforcing (17) can be computed
efficiently by available numerical algorithms.

A. Implementation by receding horizon control

Corollary 3 guarantees that for any x ∈ X there exists a
finite value z̄ ∈ R≥0 such that (x, z̄) ∈ Ξ. Hence for any arbi-

trary x ∈ X, with an appropriate initialization of the controller
state z, (x, z) ∈ Ξ. Thus, for any initial state, Corollary 2
guarantees convergence to the desired equilibrium based on
any control law that satisfies (17), i.e., for any (u, v) ∈ R(x, z)
with R as in (22). The actual input (u, v) ∈ R(x, z) can
be chosen by optimizing a performance criterion over the set
of admissible inputs. In this way a receding horizon control
strategy based on the repetitive solution of an optimization
problem is obtained. A common definition of the performance
criterion in optimization-based receding horizon control, such
as model predictive control is

J(x,uN ) ! F (φN (x,uN )) +
N−1
∑

h=0

L(φh(x,uN ), uh), (33)

where F : X→ R≥0 and L : X×U→ R≥0 denote suitable ter-
minal and stage costs, respectively. Cost (33) typically trades
off the regulation performance, in terms of distance from the
equilibrium, and the actuation effort. The fixed parameters
ρc and Mc in (17) can also be substituted by optimization
variables, which may result in an improved convergence rate
for the continuous state. Let ρc be the constant in (31),
choose ρ̄c ∈ R[ρc,1), and let ρ ∈ R[0,ρ̄c] and M ∈ R>0

be two additional variables that play the role of ρc and Mc,
respectively. Instead of (31), for x ∈ X enforce

Vc(φ
1
c(x,uN )) ≤ ρVc(xc) +Mdd(xd, x

e
d), (34)

and consider the modified cost function

J(x,uN ,M, ρ) ! wρρ+ wMM + F (φN (x,uN )) +
N−1
∑

h=0

L(φh(x,uN ), uh), (35)

in which the term wρρ, where wρ ∈ R>0, optimizes the decay
of the local CLF, while wMM , where wM ∈ R>0, penalizes
the relaxation of (34) when dd(xd, xe

d) > 0. Whenever M = 0,
the continuous state evolves satisfying (8b), independently of
the current value of xd. However, for stability this is required
only when xd = xe

d.

Constraint (28) can be implemented by a single constraint
as

Vz(ψ(x(k),uN (k))) ≤

(1− dd(xd(k), x
e
d))ρzVz(z(k))− dd(xd(k), x

e
d).

Algorithm 1: (Hybrid CLF Receding Horizon Control)
Initialization. Set k = 0, measure x(0) ∈ X and set z(0) ≥ z̄,
where for z̄ ∈ R≥0, (x(0), z̄) ∈ Ξ.
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Step 1. Solve the optimization problem

min
uN (k),M(k),ρ(k)

J(x(k),uN (k),M(k), ρ(k)) (36a)

s.t. : xh+1 = φ(xh, uh(k)), (36b)

z1 = ψ(x0,uN (k)) (36c)

Vc(φ
1
c(x0,uN (k))) ≤ ρ(k)Vc(x0c(k))

+M(k)dd(x0d, x
e
d) (36d)

Vz(ψ(x0,uN (k))) ≤ (1− dd(x0d(k), x
e
d))ρzVz(z0)

−dd(x0d, x
e
d) (36e)

Vd(φ
1
d(x0,uN (k))) ≤ Vd(x0d) (36f)

uN (k) ∈ U
N , xh ∈ X, h ∈ Z[1,N ] (36g)

0 ≤M(k) < Mc, 0 ≤ ρ(k) ≤ ρ̄c (36h)

x0 = x(k), z0 = z(k). (36i)

Step 2. Let ūN (k) = (ū0(k), . . . , ūN−1(k)) be a feasible
solution of (36), possibly, but not necessarily, an optimal one.
Set u(k) = ū0(k), and z(k + 1) = ψ(x(k), ūN (k)).
Step 3 Measure x(k + 1), set k ← k + 1, and go to Step 1.

Algorithm 1 enforces the hybrid CLF via constraints and
minimizes the performance criterion (35). Due to the choice
of the horizon N , and Assumption 2, any z(0) ∈ R≥0 such
that z(0) ≥ Nd(xd(0), xe

d) guarantees z(0) ≥ z̄. Finally, by
choosing z(0) = maxxd∈E d(xd, xe

d), (x, z(0)) ∈ Ξ, for all
x ∈ X.

Theorem 5: Given a hybrid system where dynamics (9) and
the sets X, U can be formulated by piecewise affine update
equations and linear inequalities on real and integer variables,
respectively, and F , L are linear or convex quadratic functions
of their arguments, for ψ, Vz , Vd specified as in Section V,
and Vc(x) = ‖P (xc − xe

c)‖∞, where P ∈ Rp×nc has full
column rank, (36) can be formulated as a mixed integer linear
or quadratic program (MILP/MIQP). !

Proof: Represent the elements of E by the unitary vectors
of Rnd , End

= {0j}
nd

j=1, where nd = |E|. Thus, εj is

represented by the jth unitary vector of Rnd , 0j , the vector
entirely composed of 0, except for the jth coordinate, which is
1. As a result, the discrete state of the hybrid system is encoded
by Boolean vectors in a one-hot encoding, i.e., xd ∈ Rnd ,
[xd]i ∈ {0, 1} and

∑

i[xd]i = 1. Repeat the operation for the
discrete input so that ud ∈ Emd

, where md = |Eu|.
Construct ∆xd

=
∑nd

j=00j −0e, where 0e ∈ End
is the

unitary vector representing xe
d, and, for any xd ∈ End

, define

Vd(xd) = dd(xd, x
e
d) = ∆′

xd
xd, (37)

where by construction ∆′
xd
xd = 1 iff xd *= xe

d, and ∆′
xd
xd =

0 iff xd = xe
d. Also, for a given xe

d, for all xd ∈ E , we have

d(xd, x
e
d) = D′

xe
d
xd, (38)

where Dxe
d
∈ Z

nd

≥0 is a vector with ith component equal to the
graph distance from xd = εi to xe

d, i.e., [Dxe
d
]i = d(0i, xe

d).
Using (37), (36f) is enforced by

∆′
xd
φd(x0, u0) ≤ ∆′

xd
x0d. (39)

By (38), for given uN (k) ∈ UN and x(k) ∈ X, (36c) is
formulated as

z1 =
N
∑

h=1

D′
xe
d
φhd(x0,uN (k)). (40)

Thus, constraint (36e) is enforced by

N
∑

h=1

D′
xe
d
φhd(x0,uN (k)) ≤ (1−∆′

xd
x0d)ρzz0−∆

′
xd
x0d. (41)

Constraint (36d) is formulated as

‖P (φc(x0c, u0(k))− xe
c)‖∞ ≤

ρ(k)‖P (x0c − xe
c)‖∞ +M∆′

xd
x0d. (42)

Since (35) is linear in M and ρ, and by assumption F , L
are linear or convex quadratic functions, (36a) is convex and
linear or quadratic. By (42), considering that x(k), z(k), and
hence Vc(x(k)), are fixed at each k ∈ Z≥0, inequality (36d)
is linear in M , ρ. Due to the assumptions, the results in [9],
and (40), (36b) and (36c) can be formulated by mixed-integer
linear inequalities in uN (k). The left-hand side of (42) admits
a formulation which is linear in uN (k), see for instance [35].
Due to (39) and (41), (36e) and (36f) are mixed-integer
linear in uN (k). Constraints (36g) are mixed-integer linear in
uN (k) by assumption, and (36h) is linear in ρ(k) and M(k).
Thus, (36) can be formulated as a mixed integer linear or
quadratic program.

Under the assumptions of Theorem 5, the receding horizon
control problem (36) can be formulated as a MILP/MIQP with
a convex real relaxation, for which a global optimizer can
be found in finite time [42]. The assumptions of Theorem 5
are satisfied by several classes of hybrid systems that have
been proved useful in real applications [30]–[32], including
the MLD systems [9], [25], and all the equivalent classes of
hybrid systems [23], [24]. The classes of functions L, F that
satisfy the assumptions of Theorem 5 include, the weighted 1
and∞ norms and squared 2-norms of state and input vectors.

Algorithm 1 has also advantageous numerical properties
which may also be exploited for future efficient implemen-
tations in more general classes of hybrid systems.

In hybrid receding horizon control, the complexity of the
optimization problem depends combinatorially on the number
of (discrete) variables, whose number increases linearly with
the horizon length. In [9], the horizon N has to be long enough
to guarantee controllability to the equilibrium state within
N steps, while in [35] it must be long enough to guarantee
controllability within N steps to a terminal set containing the
equilibrium. In the proposed hybrid CLF-based approach, the
horizon N must only guarantee controllability to a discrete
state that is closer to the target than the current one. Usually,
when Assumption 2 is satisfied, the horizon N of the approach
proposed here is significantly shorter than the horizon needed
by [9], [12]. The type of the optimization problem remains the
same as in [9], [12], since only additional mixed-integer linear
inequalities are involved. Thus, in general, the CLF-based
approach presented in this paper requires a shorter horizon
and hence the solution of a simpler optimization problem, as
far as the stabilization of the equilibrium is the main concern.
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Figure 3. Graph and transition conditions associated to the discrete dynamics
of the hybrid system in the numerical example.

Also, any feasible solution of (36) enforces the hybrid CLF
conditions (17), according to Corollary 2. Thus, it is not
necessary to attain the (global) optimum of (36) for closed-
loop stability, but only to obtain a feasible solution. Hence,
in Algorithm 1, the calculation of (36) can terminate as soon
as a feasible solution is found. This is also potentially useful
for future implementation in hybrid systems with nonlinear
continuous state dynamics. In such cases (36) results in a
mixed integer nonlinear programming (MINLP) problem, for
which finding the global optimum is challenging. In fact, the
continuous relaxations of MINLP are nonlinear programming
(NLP) problems, for which it is known that the corresponding
algorithms find only, in general, local optima or feasible
solutions. However, for our approach a feasible solution still
guarantees asymptotic stability, thereby resulting in reduced
requirements for the solution of the NLP relaxations, and, as
a consequence, the overall MINLP solution may be simplified.
Still, the efficient solution of (36) for nonlinear dynamics poses
interesting challenges that will be subject of future develop-
ments. Next we present examples of the application of the
proposed techniques to systems that satisfy the assumptions
of Theorem 5.

B. Numerical example

We consider a system with one continuous state, xc ∈
[−5, 30], four discrete states xd ∈ {ε1, ε2, ε3, ε4}, one continu-
ous input uc ∈ [−2.5, 2.5] and one discrete input ud ∈ {0, 1}.
Hence, U = [−2.5, 2.5] × {0, 1}, and X ⊆ [−5, 30] ×
{ε1, ε2, ε3, ε4}, where in particular Xc(ε1) = [−5, 11.1]. The
graph and the transition conditions for the discrete dynamics
of the hybrid system in the example are shown in Figure 3. The
continuous dynamics are x(k+1) = Aix(k)+Biu(k), if xd =
εi, where (A1, B1) = (1.07, 0.4), (A2, B2) = (0.85, 1.25),
(A3, B3) = (0.7, 1.05), (A4, B4) = (1.02, 1).

The desired equilibrium is xe
c = 0, xe

d = ε1 for steady
state input ue

c = 0, ue
d = 1. The controller cost is L(x, u) =

‖Qx(x−xe)‖∞+‖Qu(u−ue)‖∞, Qx = [ 1 0
0 1 ], Qu = [ 0.1 0

0 0.1 ],

0 5 10 15−5
0
5
10
15
20
25
30
35

0 5 10 15
k

k

x
c

x
d

ε1

ε3

ε2

ε4

(a) State evolution for xc(0) = 28 (solid), and xc(0) =
21 (dash).
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(b) Input evolution for xc(0) = 28 (solid), and
xc(0) = 21 (dash).
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(c) State evolution from different initial conditions.

Figure 4. Simulation results for the numerical example.

the horizon is N = 4, which satisfies Assumption 2, and
Vc(xc) = ‖xc‖∞, ρ̄c = 0.98 define the local CLF for
the continuous state. The hybrid system was formulated as
a discrete hybrid automaton [25], and problem (36) was
formulated as a mixed-integer linear program.

Figure 4 shows the simulation results. The dash lines show
the simulation results for the case x(0) = [21 ε1]′, where (8b)
is satisfied at every step. The simulation results for the case
when x(0) = [28 ε1]′ are shown by solid lines, where Vc is
not monotonically decreasing along the whole trajectory. This
is according to (31), where the decrease of Vc is required only
in the set Xc(ε1).

It is worth to point out that for the same setup, the
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optimization problem formulated as in [9] is infeasible unless
a longer horizon (at least N = 9) is used.

C. Mild HEV launch control example

We consider a problem in controlling a Hybrid Electric
Vehicle (HEV) powertrain [43]. The most common config-
uration of HEV powertrain in today’s passenger vehicles is
the powersplit configuration, also called parallel-series, where
the traction sources are the engine and an electric motor.
Through a planetary gear, the powerflow can circulate in
all directions between these, e.g., directly from the motor
and/or the engine to the wheels, or from the engine to the
battery, or from the engine to the motor and back to the
wheels, and any combinations of these. As a consequence,
the powertrain operates in different modes, including: electric
motor (EM) mode, where only the electric motor drives the
wheels; internal combustion engine (IC) mode, similar to a
standard vehicle; positive split (PS), where the engine and the
motor both provide power to the wheels; and negative split
(NS), where the engine powers the wheel while the motor
drains power to recharge the battery. Due to the need of
enforcing several complex operating conditions, the switching
logic between these modes is often implemented via finite
state machines with transitions triggered by the vehicle and
powertrain dynamics. Hence, the HEV powertrain is controlled
by a hybrid control system.

While designing the entire HEV control strategy is out of
the scope of this paper, we present the application of the
control algorithm developed here to a specific prototypical
problem related to launch control on a mild-HEV, where the
term “mild” indicates that a small battery is used. In this
operation the vehicle is accelerated from very low speed,
where it is running in EM mode, to high speed, here 31m/s
(approximately 70mph), where it is running in IC mode. The
initial battery state of charge (SoC) is in an interval around the
setpoint, and the final battery state of charge has to be at the
setpoint, to accommodate future launches. The vehicle can be
accelerated by negative split, thus with a low acceleration but
recharging the battery, or by positive split first, thus with high
acceleration and discharging the battery, and then by negative
split. In IC mode, the battery is slowly charged/discharged
to the setpoint, while traction is provided mainly by the
combustion engine.

Let i ∈ {IC,EM,PS,NS} be the mode index. For
i ∈ {EM,PS,NS}, the equations describing the system
dynamics are

vv(k + 1) = vv(k) +
Ts

m
(γiu(k)− βvv(k)− Fr) (43a)

soc(k + 1) = soc(k)− Tsσiu(k) (43b)

where vv ∈ [0, 40]m/s is the vehicle velocity, soc ∈
[−20, 20]% is the state of charge of the battery in percentage,
with 0 being the charge setpoint, u ∈ [0, 1] is the (normalized)
amount of the available tractive force in the current mode that
is fed to the wheels, m[kg] is the vehicle mass, β and Fr

are parameters that represent an affine resistance force model
(rolling resistance, bearing friction, and linearized airdrag),

. . .

. . .

. . .

. . .

. . .

EM

IC

PS

NS

(10 ≤ vv ≤ 20)

∧(−8 ≤ soc ≤ 8)

(vv ≥ 6) ∧ (soc > −4) ∧ (ud)

(vv ≥ 8) ∧ (¬ud)

(vv > 22) ∨ (soc ≤ −4)

(0.5 ≤ soc ≤ 4) ∧ (vv ≥ 10)

Figure 5. Automaton describing the HEV launch control logics.

and σi[%/s], γi[N], for i ∈ {EM,PS,NS}, are mode-
dependent parameters. For i = IC, the dynamics are

vv(k + 1) = vv(k) +
Ts

m
(γiu+ 3soc(k)− βvv(k)− Fr) (44a)

soc(k + 1) = ηsoc(k) (44b)

where η and 3[N/%] are known parameters. Due to the
different modes we have γEM < γNS < γIC < γPS . In
PS mode a larger tractive force is available and the battery
is discharged (σPS > 0), while in NS mode the battery is
recharged (σNS < 0), but a smaller tractive force is available.
The graph and the conditions on the transitions associated
to the discrete dynamics are reported2 in Figure 5. Besides
conditions on the continuous states, a discrete input controls
the transition from EM and PS and from PS to NS. Note
that for this example, Assumption 4 provides an effective
relaxation of Assumption 2, since discrete states PS and EM
have equal graph distance from the desired equilibrium (IC).
Hence, by Assumption 4, the horizon N can be selected
considering also trajectories that switch between EM and PS,
before reaching NS. The overall system can be represented as
a Discrete Hybrid Automaton [25], which is a subclass of (9).

Starting from EM mode and vv ∈ [1, 8]m/s, soc ∈ [−8, 8]%
we want to stabilize the system on xe

c = [31 0]′ and xe
d = IC.

Basing on reachability analysis, we have implemented control
Algorithm 1 with horizon N = 5, and stage cost

L(x, u) = ‖Qx(x− xe)‖∞ + ‖Qu(u− ue)‖∞,

where ue is the equilibrium input corresponding to xe
c while

in IC mode.
Simulations for different initial conditions are reported in

Figure 6. Even though the PS mode graph distance is not
smaller than the one of EM mode, the controller may go
through it to take advantage of the high acceleration, as long
as the cumulative graph distance along the horizon decreases.
Thus, depending on the initial velocity and state of charge, the
controller may decide to take or not to take advantage of the PS
mode, and in all the cases it stabilizes the desired equilibrium.
For comparison, a classical hybrid receding horizon control

2The “looping transitions” guards are the complement of the outgoing
transitions, and are not shown for simplicity.
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(a) State evolution for xc(0) = [6 8]′ (black), and
xc(0) = [1 − 6]′ (blue).
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(b) Input evolution for xc(0) = [6 8]′ (black), and
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(c) State evolution from different initial conditions.

Figure 6. Simulation results for the mild HEV launch control system.

based on terminal equality constraints, needs a horizon of at
least N = 15 to yield a feasible optimization problem for all
the initial conditions3 for numerical robustness.

VII. CONCLUSIONS

We have proposed a constructive method to design dynamic
controllers that asymptotically stabilize the equilibrium of

3In standard hybrid MPC [9], we have relaxed the terminal constraint on
soc into the (small) terminal set soc ∈ [−0.25, 0.25]%.

hybrid systems exhibiting both continuous and discrete dynam-
ics. The key idea is to introduce a hybrid control Lyapunov
function, which is simple to construct due to its compositional
nature and guarantees the existence of a classical control
Lyapunov function, thereby enabling a systematic design of
stabilizing controllers. In fact, we have described a specific
design procedure for constructing the hybrid CLF and the
stabilizing dynamic controller based on predictive control con-
cepts. We have demonstrated that the proposed control law can
be implemented by receding horizon control. The optimization
problem associated to such receding horizon control for vari-
ous cases of interest is formulated as a MILP/MIQP, and has
advantageous numerical properties such as a shorter prediction
horizon than current approaches, and stability guaranteed by
any feasible solution of the optimization problem. Inspired
by such properties, future works will be devoted to finding
efficient numerical algorithms for solving the underlying opti-
mization problems that arise in applying the approach to more
general classes of hybrid systems.

APPENDIX A
TECHNICAL PROOFS

Proof of Lemma 2

Consider the case x ∈ Xh(xe
d). By Assumption 1 there

exists u ∈ U such that φ(x, u) ∈ X, and φd(x, u) = xe
d, hence

d(φd(x, u), xe
d) = d(xd, xe

d). Consider the case x /∈ Xh(xe
d).

By Definition 8 and Assumption 2 there exists an input
sequence u" ∈ U" such that φi(x,u") ∈ X, for i ∈ Z[0,"],
φid(x,u") = xd, for i ∈ Z[0,"−1], and d(φ"d(x,u"), xe

d) <
d(xd, xe

d). By iterating either of the cases above, input se-
quences of arbitrary length ς ∈ Z>0 can be constructed, thus
proving the lemma.

Proof of Lemma 3

We prove that if (17) is feasible for (x, z) ∈ X × R[0,cz]

by (u, v) = uN = (u0, . . . , uN−1) ∈ UN , there exists
(ũ, ṽ) = ũN = (ũ0, . . . , ũN−1) ∈ UN such that (17) is feasi-
ble for (x̃, z̃) ! (φ(x, u),ψ(x, u, v)). Note that conditions (17)
translate into (26), (28), (31) for the particular choice of Vc,
Vd, Vz proposed in Section V.

We consider the two cases, x̃d = xe
d and x̃d *= xe

d. First, let
x̃d = xe

d. Assumption 3 guarantees that there exists ũN ∈ UN

such that for all i ∈ Z[1,N ], φ
i(x̃, ũN ) ∈ X, φid(x̃, ũN) =

xe
d, and (26), (31) hold. In addition, for such choice of ũN ,
ψ(x̃, ũ, ṽ) = 0 is feasible, which means that (28) is feasible
for any ρz ≥ 0. Hence, (17) is satisfied by such choice.

Now, let x̃d *= xe
d. Then, (26) certainly holds since

dd(xd, xe
d) ≤ 1 for all x ∈ X, and (31) holds by the choice of

Mc = supx∈X Vc(xc). Thus, we only need to prove that (28a)
holds.

Let J ⊆ Z[2,N ], where j ∈ J if d(φjd(x,uN ), xe
d) <

d(φ1d(x,uN ), xe
d), and consider the two sub-cases, J *= ∅ and

J = ∅. Let J *= ∅, and ̄ = minj∈J j. Then, by Assumption 2
there exists ūN−̄ = (ū0, . . . , ūN−̄−1) ∈ UN−̄ such that
for ũN = (u1, . . . , ū, ūN−̄) ∈ UN , φi(x̃, ũN ) ∈ X, for all
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i ∈ Z[0,N ], and

d(φid(x̃, ũN ), xe
d) = d(φi+1

d (x,uN ), xe
d), i ∈ Z[0,̄−1],

d(φid(x̃, ũN ), xe
d) ≤ d(φ̄d(x, ũN ), xe

d), i ∈ Z[̄,N ].

Hence,

Vz(ψ(x̃, ũ, ṽ))− Vz(z) ≤

d(φ̄d(x̃, ũN ), xe
d)− d(φ1d(x,uN ), xe

d) ≤ −1.

Let J = ∅, i.e., for all j ∈ Z[2,N ], φjd(x,uN ) ≥
φ1d(x,uN ), so that z̃ ≥ Nd(φ1d(x,uN ), xe

d). By the choice
of N and Assumption 2, there exists an input sequence
û̄ = (û0, . . . , û̄−1) ∈ Ū, ̄ ≤ N , such that φj(x̃, û̄) ∈ X,
for all j ∈ Z[0,̄], and

d(φid(x̃, û̄), x
e
d) = d(x̃, xe

d), ∀i ∈ Z[1,̄−1] (45a)

d(φ̄d(x̃, û̄), x
e
d) < d(x̃, xe

d). (45b)

Then, let x̄ = φ̄(x̃, û̄). By Lemma 2 there exists ŭN−̄ =
(ŭ0, . . . , ŭN−̄−1) ∈ UN−̄ such that φj(x̄, ŭN−̄) ∈ X, for
all j ∈ Z[0,N−̄], and

d(φjd(x̄, ŭN−̄), x
e
d) ≤ d(x̄, x

e
d), ∀j ∈ Z[1,N−̄]. (46)

By choosing ũN = (û̄, ŭN−̄) we have that

ψ(x̃, ũ, ṽ) ≤ (̄− 1)d(φ1d(x,uN ), xe
d)+

d(φ̄d(x̃, ũN ), xe
d) +

N
∑

N−̄

d(φjd(x̃, ũN), xe
d)

and because of (45), (46),

Vz(ψ(x̃, ũ, ṽ))− Vz(z) ≤

(N−̄+1)
(

d(φ̄d(x̃, ũ̄), x
e
d)−d(φ

1
d(x,u1), x

e
d)
)

≤ −(N−̄+1)

which satisfies (28a) since ̄ ≤ N .
!

Proof of Corollary 3

Given any x ∈ X, by choosing z̄ = Nd(xd, xe
d) ≤ cz <∞,

(17) is feasible for any (x, z), where z ≥ z̄, since (26), (31) are
feasible by Assumption 3, and (28) is feasible by the choice of
z and Theorem 4. Hence, for any x ∈ X, if z ≥ z̄, (x, z) ∈ Ξ.

Next, we prove that there exists k̄ such that from
(x(0), z(0)) = (x, z), xd(k) = xe

d, z(k) = 0, for all k ≥ k̄.
First notice that by (24), for any k ≥ 1, z(k) ∈ Z≥0. Thus,
if z(k) *= 0, ∆z(k) ! z(k + 1) − z(k) ≤ −1 regardless4 of
xd(k).

Let us assume that z(k) > 0 for all k ∈ Z≥0. Then,

z(k + 1) = z(0) +
k
∑

j=0

∆z(j) ≤ z(0)− (k + 1)

Thus, limk→∞ z(k) ≤ limk→∞ z(0)−k−1 = −∞. However,
we have assumed that z(k) > 0 for all k ∈ Z≥0, and we
have reached contradiction. Thus, there must exist k̄ such that
z(k) = 0 for all k ≥ k̄. This also implies that xd(k) = xe

d,
for all k ≥ k̄.

!

4When xd(k) (= xe
d, by (28), z(k+1) < z(k) and since z(k), z(k+1) ∈

Z≥0, z(k + 1) ≤ z(k)− 1.
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