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Abstract
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halo orbit centered at the second Earth-Moon Lagrangian point. Multiple schemes based
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it is shown that the method based on periodic MPC performs best for position tracking.
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tracking of a halo orbit and dumping of momentum while enforcing tight constraints on
pointing error.
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STATION-KEEPING AND MOMENTUM-MANAGEMENT ON HALO
ORBITS AROUND L2: LINEAR-QUADRATIC FEEDBACK AND

MODEL PREDICTIVE CONTROL APPROACHES

Uroš Kalabić∗, Avishai Weiss†, Ilya Kolmanovsky‡, and Stefano Di Cairano§

The control of station-keeping and momentum-management is considered while
tracking a halo orbit centered at the second Earth-Moon Lagrangian point. Mul-
tiple schemes based on linear-quadratic feedback control and model predictive
control (MPC) are considered and it is shown that the method based on periodic
MPC performs best for position tracking. The scheme is then extended to in-
corporate attitude control requirements and numerical simulations are presented
demonstrating that the scheme is able to achieve simultaneous tracking of a halo
orbit and dumping of momentum while enforcing tight constraints on pointing
error.

INTRODUCTION

The paper considers the control of a spacecraft near the second Lagrangian point L2 in the Earth-
Moon orbital system. The objective is to determine an appropriate method for the stabilization of
a spacecraft to a halo orbit while simultaneously stabilizing the attitude of the spacecraft to stay
inertially fixed.

Halo orbits are unstable limit cycles centered around the collinear Lagrangian points that are un-
forced solutions to the restricted 3-body problem. The halo orbit about L2 is particularly interesting
because L2 is behind the Moon and because it is the point with the lowest gravitational potential
energy needed to escape the Earth-Moon system (see Figure 1); a satellite or space station following
a sufficiently large halo orbit trajectory could facilitate communication between Earth and the far
side of the Moon and also serve as a launchpad for faraway space missions.

The shape of a halo orbit is complex and a spacecraft would have complex dynamics when point-
ing at an object in its vicinity. Because it is difficult and not necessary to point at a nearby object
such as the Earth or Moon, we instead consider the stabilization of the attitude so that the spacecraft
point at a distant star and thereby remain almost inertially fixed.

A halo orbit trajectory coupled with an inertially fixed orientation are unforced solutions to the
idealized and decoupled translational and attitude equations of motion governing the spacecraft.
Using these, we are able to develop control schemes that stabilize these trajectories such that fuel
is consumed only when correcting tracking and attitude errors. In addition to asymptotically stabi-
lizing the error, the schemes under consideration are required to enforce system constraints; these
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constraints can include limits on the available thrust as well as constraints on pointing error. Further-
more, the constraints considered in this paper serve to couple the translational and attitude dynamics
because the constrained thrusters need to simultaneously stabilize the tracking and attitude errors.
In order to satisfy the above, in the following we propose discrete-time trajectory-tracking control
schemes that are based on linear-quadratic (LQ) and model predictive control (MPC) methods.

The schemes are based on the linearized discretization of the tracking error dynamics. These dy-
namics are linear but time-varying and schemes are considered based on averaged, instantaneously
fixed, and periodic dynamics. The schemes are tested in a nonlinear simulation of the Earth-Moon
system and the scheme based on periodic MPC applied to dynamics discretized using one hour time-
steps is shown to perform best while adhering to constraints on available computational power.

The simulations show that MPC can be used to simultaneously guarantee trajectory-tracking
while controlling the attitude and enforcing constraints. Furthermore, a more realistic simulation is
provided for the case where the orbit between the primaries has non-zero eccentricity.

The paper is organized as follows. The rest of the introduction describes the problem formulation.
The next section presents three LQ control schemes and three MPC control schemes. The section
after next presents numerical results and the final section is the conclusion.

Station-Keeping on Halo Orbits about L2

Generally in a system of two bodies orbiting around a common barycenter, the Lagrangian (or
libration) points are the points at which the gravitational and centrifugal forces cancel out in the
orbital frame FO, which is scaled so that the distance between the two bodies remains constant. See
Reference 1 for a more detailed presentation than available here. There are five Lagrangian points,
labeled L1 through L5; the first three points L1 through L3 are called collinear because they lie on
the x-axis. The other two are called triangular. A contour plot of the rotated gravitational potential
energy of the Earth-Moon system is shown in Figure 1 with Lagrangian points labeled.

It is well-known1, 2, 3 that the collinear points L1 and L2 are unstable and that there exist unstable
orbits about them to which one can stabilize a spacecraft. These orbits are termed halo orbits.4

We are concerned with the development of control schemes for tracking halo orbits about Earth-
Moon L2 and so we derive the equations of motion of a spacecraft of negligible mass in the frame
FO.

Let the coordinates of such a spacecraft be given by (x, y, z). The units are scaled so that both
the distance between the Earth and the Moon and the angular momentum of the Earth-Moon system
are fixed at 1. Under these assumptions, the equations of motion of the spacecraft are given by,5

x′′ − 2y′ = d(θ)

(
x− (1− ρ)(x+ ρ)

r3
1

− ρ(x− 1 + ρ)

r3
2

)
+ ux, (1a)

y′′ + 2x′ = d(θ)

(
y − (1− ρ)y

r3
1

− ρy

r3
2

)
+ uy, (1b)

z′′ + z = d(θ)

(
z − (1− ρ)z

r3
1

− ρz

r3
2

)
+ uz, (1c)

where d(θ) = 1
1+e cos θ , ρ is the mass ratio of the Earth-Moon system, e is the eccentricity of the

orbit, the true anomaly θ is the independent variable, and a prime ′ denotes differentiation by θ,
i.e. d

dθ . The variables r1 and r2 denote, respectively, the spacecraft’s normalized distances from the
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Figure 1. Plot of energy levels in the orbital frame of the Earth-Moon system where
× indicate Lagrangian points

Earth and Moon and satisfy r2
1 = (x+ρ)2 + y2 + z2 and r2

2 = (x− 1 +ρ)2 + y2 + z2. The variable
ut = (ux, uy, uz) denotes the acceleration provided by the spacecraft thrusters. For convenience,
we introduce a vector ξ = (x, y, z) to denote the position of the spacecraft in the orbital frame.

A halo orbit is a solution to Eq. (1) and its computation for the case where e = 0 is described
in detail in Reference 3. The computation of halo orbits for the case where e > 0 is presented in
Reference 5 and references therein.

Momentum-Management

Denote the inertial reference frame by FI and the spacecraft body-fixed frame by FB . Let J be
the moment of inertia of the spacecraft in FB . Along with thrust, the spacecraft can use its dual-
axis thrusters to create a torque about the principal axes and control the attitude of the spacecraft;
it can also use its three reaction wheels to dump the adverse momentum that this maneuver causes.
Each wheel is placed on a unique principal axis, whose moments of inertia in the directions of the
principal axes are α1, α2, α3 for the 1-, 2-, and 3-axes, respectively.

Let ν be the 3-dimensional vector of rotational velocities of the three wheels so that the i-th com-
ponent of ν corresponds to the i-th wheel. Assuming very fast controller dynamics, the rotational
velocities are controlled by a vector of applied angular accelerations uα, so that the equations of
motion governing ν are given by ν̇ = uα.

Let uτ be the torques generated by the thrusters in FB . Let ω be the rotational velocity of FB
with respect to FI in the frame FB and define,

Jα =

α1

α2

α3

 .
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Therefore the angular momentum of the spacecraft in FB is given by Jω + Jαν.

Let hB be the angular momentum of the spacecraft in FI and let CB ∈ SO(3) be a rotation
matrix representing a rotation from FI to FB . We derive the equations of motion by beginning with
Newton’s second law of rotation,6

ḣB = CT
Buτ ,

d

dt
(CT

B(Jω + Jαν)) = CT
Buτ ,

CT
B(Jω̇ + Jαν̇) + CT

Bω
×(Jω + Jαν) = CT

Buτ ,

Jω̇ + Jαuα + ω×(Jω + Jαν) = uτ . (2)

Finally, because in the sequel we are only interested in the local stabilization of the attitude, we
introduce a 3-2-1 Euler angle parametrization2 of CB and a vector of Euler angles φ = (φ1, φ2, φ3)
so that the equations of motion governing the attitude dynamics are,

φ̇ = S−1ω, (3a)

Jω̇ = −ω×(Jω + Jαν)− Jαuα + uτ , (3b)

ν̇ = uα, (3c)

where,

S−1 ∆
=

 secφ2 cosφ3 − secφ2 sinφ3 0
sinφ3 cosφ3 0

− tanφ2 cosφ3 tanφ2 sinφ3 1

 .
Note that the independent variables in Eqs. (1) and (3) are θ and t, respectively. The two can be
related with the help of Kepler’s equation.2

Spacecraft Configuration

For the spacecraft considered in this paper, the moments of inertia are,

J = diag(27.08, 27.08, 37.50) · 103 kg·m2,

Jα = diag(0.823, 0.823, 0.823) kg·m2.

The mass of the spacecraft is m = 4000kg and it is propelled by six dual-axis thruster forces where
the thrusters are placed according to Table 1. From the table, we can see that firing thrusters F1 and
F4 with equal force in the positive direction creates a force in the direction of the x-axis and firing
them with equal force in opposite directions creates a torque about the y-axis.

Constraints

We consider two types of constraints on the system. The first is a constraint on the available
thrust, i.e. the limits on the dual-axis thrust forces Fi. Let F be the thrust force vector given by
F = (F1, F2, F3, F4, F5, F6). For all i, Fi is constrained to vary between −0.02 N and 0.02 N, i.e.,

‖F‖∞ ≤ 0.02 N. (4)
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Thruster Direction of thrust Position (m)

F1 (1, 0, 0) (0, 0, 5)
F2 (0, 1, 0) (7.5, 0, 0)
F3 (0, 0, 1) (0, 7.5, 0)
F4 (1, 0, 0) (0, 0,−5)
F5 (0, 1, 0) (−7.5, 0, 0)
F6 (0, 0, 1) (0,−7.5, 0)

Table 1. Thruster placements

Because the constraints are on the thrusters but the control algorithm calculates forces and torques,
we need to relate one to the other. Let Cθ be the rotation matrix fromFI toFO. This matrix depends
solely on the true anomaly and is given by,

Cθ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
The equation relating the force exerted by the thrusters to the forces and torques exerted by them

on the spacecraft is given by, [
CBC

T
θut

uτ

]
=

[
L1 L1

L2 −L2

]
F, (5)

where,

L1 =

1 0 0
0 1 0
0 0 1

 , L2 =

 0 0 5
7.5 0 0
0 7.5 0

 .
We now assume that CB ≈ I and note that such an approximation can be enforced through

constraints on attitude error. This approximation and Eq. (5) imply that,

F ≈
[
CθL1 CθL1

L2 −L2

]−1 [
ut
uτ

]
, (6)

and therefore the constraint on the control inputs is given by,∥∥∥∥∥
[
CθL1 CθL1

L2 −L2

]−1 [
ut
uτ

]∥∥∥∥∥
∞

≤ 0.02. (7)

As alluded to above, we are required to keep CB close to identity and we can do this by enforcing
tight constraints on the attitude error. In the following, we impose a tight constraint on the Euler
angles given by,

‖φ‖∞ ≤ 0.03. (8)
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CONTROL SCHEMES FOR STATION-KEEPING AND MOMENTUM-MANAGEMENT

Common methods of trajectory tracking based on LQ techniques7, 8 do not take into account
state and control constraints that subject the controller and plant to limitations. On the other hand,
controllers based on MPC are designed to take constraints into account while stabilizing to a desired
set-point9 or tracking a desired reference.10 In this section, we introduce three MPC methods for
tracking a prescribed halo orbit trajectory while satisfying the imposed constraints. Since MPC is
related to LQ, we also introduce three related LQR schemes for use in the unconstrained case.

Let r(θ) be a vector of coordinates in FO that represents a halo orbit solution to Eq. (1) of period
T , i.e. r(θ) = r(θ + nT ) for any n. Since MPC is applied to discrete-time systems, we choose N
points on r(θ) spaced apart by θh = T

N . Let these points be denoted by rk so that rk = r(kθh),
k = 0, 1, 2, . . . , N − 1.

Let pk be the 15-dimensional state consisting of discrete samples of (ξ, ξ′,φ,ω,ν) at time-
instant k. Define the tracking error,

xk = pk −
[
rk
0

]
,

where 0 represents a 9-dimensional vector of zeros which is our desired set-point for the variablesφ,
ω, and ν. Define uk to be the 9-dimensional discrete-time control input consisting of (ut,uτ ,uα)
held constant between samples.

For each rk, there exists a corresponding (Ak,Bk) pair, a local linear mapping from a neigh-
borhood of (rk, 0) and uk = 0 to a neighborhood of (rk+1, 0) that can be obtained by numerical
discretization. See the appendix for details.

The methods presented in this paper use the pair (Ak,Bk) in order to predict the future trajectory
and minimize a penalty function with xk and uk as parameters, thereby ensuring tracking of the
halo orbit and stabilization of the attitude variables. Note that by periodicity, (Ak+nN ,Bk+nN ) =
(Ak,Bk) for any integer n.

In what follows, we present three LQ and three MPC schemes for the control of spacecraft station-
keeping and momentum-management.

Averaged-in-time LQR (ALQR)

Let (A,B) = 1
N

∑N−1
i=0 (Ak,Bk) be the averaged dynamics-input matrix pair. We choose sym-

metric positive-definite cost matrices Q ∈ R15×15 and R ∈ R9×9 and solve the following optimiza-
tion problem,

min
{uk+i|k}

1

2

∞∑
i=0

xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k,

sub. to xk+i+1|k = Axk+i|k + Buk+i|k.

(9)

The solution to Eq. (9) is a well-known7 feedback law uk+i|k = −Kxk+i|k where,

K = (R + BTPB)−1BTPA, (10)

and P is the symmetric positive-definite solution to the discrete-time algebraic Riccati equation,

P = Q + ATPA−ATPBK. (11)
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The averaged-in-time control law is,
uk = −Kxk. (12)

Fixed-in-time LQR (FLQR)

The parametrization of the halo orbit consists of N states equally spaced apart in true anomaly.
We develop a schedule of gains calculated by discretizing Eq. (1) at each time-step and assuming
the dynamics-input matrices stay constant for future time. The procedure follows.

We choose symmetric positive-definite cost matrices Qk ∈ R15×15 and Rk ∈ R9×9, k =
0, 1, . . . , N − 1, where Qk+nN = Qk and Rk+nN = Rk for all n. At each time-step k, we
solve the optimization problem,

min
{uk+i|k}

1

2

∞∑
i=0

xT
k+i|kQkxk+i|k + uT

k+i|kRkuk+i|k,

sub. to xk+i+1|k = Akxk+i|k + Bkuk+i|k,

(13)

The solution is given by uk+i|k = −Kkxk+i|k, where,

Kk = (Rk + BT
kPkBk)

−1BT
kPkAk, (14)

and Pk is the symmetric positive-definite solution to the discrete-time algebraic Riccati equation,

Pk = Qk + AT
kPkAk −AT

kPkBkKk. (15)

The fixed-in-time control law is,
uk = −Kkxk. (16)

Periodic LQR (PLQR)

Previously, the cost function was minimized assuming that the error dynamics closely adhere to
dynamic equations that are time-invariant. However, the dynamics are time-varying and thus we
propose a control scheme that utilizes a time-varying model of the error dynamics.

Choose weighting matrices Qk and Rk as above. Solve the optimization problem,

min
{uk+i|k}

1

2

∞∑
i=0

xT
k+i|kQk+ixk+i|k + uT

k+i|kRk+iuk+i|k,

sub. to xk+i+1|k = Ak+ixk+i|k + Bk+iuk+i|k.

(17)

The solution to Eq. (23) has the form uk+i|k = −Kk+ixk+i|k where for all integers i,

Ki = (Ri + BT
iPi+1Bi)

−1BT
iPi+1Ai, (18)

Pi = Qi + AT
iPi+1Ai −AT

iPi+1BiKi. (19)

Note that due to periodicity, Pi+nN = Pi and hence Ki+nN = Ki for all n. To quickly obtain
an accurate solution to Eq. (19), we note that Eq. (19) is stable backwards-in-time and use Hewer’s
method,7 choosing a symmetric positive-definite initial P0 and iterating Eq. (19) backwards until
we obtain a sequence of N matrices Pi that has converged. The periodic LQR control law is,

uk = −Kkxk. (20)

The method presented above is the only one to possess guaranteed convergence properties for the
linearized time-periodic model. Apart from the degenerate case where (Ak,Bk) are constant, it is
not guaranteed that xk will converge to 0 when using ALQR or FLQR.11
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Averaged-in-time MPC (AMPC)

Model predictive control (MPC) is a feedback control scheme based on minimizing a quadratic
cost subject to pointwise-in-time constraints using a prediction finitely many time-steps into the
future.9, 12 At the end of the prediction horizon, MPC imposes a terminal constraint along with a
terminal cost to ensure stability. In the following, the constraints are imposed through a set-inclusion
constraint. The constraint set is denoted C ⊂ R15 × R9 and is assumed to be compact and contain
0 in its interior. The terminal constraint set XT ⊂ R15 satisfies the invariance condition that if
xk ∈ XT , then xk+1 ∈ XT under the application of the control uk = −Kkxk. For a detailed
explanation of the properties and purpose of the terminal set, see Reference 12. The length of the
prediction horizon is chosen as Nc, which may not be equal to N .

The AMPC control is obtained by solving the following constrained optimization problem,

min
{uk+i|k}

1

2
xT
k+Nc|kPxk+Nc|k +

1

2

Nc−1∑
i=0

xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k,

sub. to xk+i+1|k = Axk+i|k + Buk+i|k,

(xk+i|k,uk+i|k) ∈ C,
xk+Nc|k ∈ XT ,

(21)

where the terminal cost is obtained using the penalty matrix P computed in Eq. (15). The control is
set to the first element of the sequence resulting from the optimization,

uk = u∗k|k. (22)

The values above have already been introduced in the section describing the ALQR scheme. If
the inequality constraints are not active, the control coincides with the output of the ALQR.

Fixed-in-time MPC (FMPC)

The following MPC scheme uses instantaneously fixed dynamics for prediction as opposed to the
averaged dynamics used in the previous section. The control is obtained by solving the following
constrained optimization problem,

min
{uk+i|k}

1

2
xT
k+Nc|kPkxk+Nc|k +

1

2

Nc−1∑
i=0

xT
k+i|kQkxk+i|k + uT

k+i|kRkuk+i|k,

sub. to xk+i+1|k = Akxk+i|k + Bkuk+i|k,

(xk+i|k,uk+i|k) ∈ C,
xk+Nc|k ∈ XT ,

(23)

and the control is set to the first element of the sequence resulting from the optimization,

uk = u∗k|k. (24)

If the inequality constraints are not active, the control coincides with the output of the FLQR.
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Periodic MPC (PMPC)

We consider here the MPC scheme for time-periodic systems.13 In it, a quadratic cost function
is minimized subject to constraints and time-varying dynamics. PMPC is based on a solution to the
following constrained optimization problem,

min
{uk+i|k}

1

2
xT
k+Nc|kPk+Ncxk+Nc|k +

1

2

Nc−1∑
i=0

xT
k+i|kQk+ixk+i|k + uT

k+i|kRk+iuk+i|k,

sub. to xk+i+1|k = Ak+ixk+i|k + Bk+iuk+i|k,

(xk+i|k,uk+i|k) ∈ C,
xk+Nc|k ∈ XT ,

(25)

where Pk is the solution to the periodic difference Riccati equation (19). The control is set to the
first element of the sequence solving Eq. (25).

uk = u∗k|k. (26)

If the inequality constraints are not active, the control coincides with the output of the PLQR.

As with PLQR, PMPC is the only MPC scheme to possess guaranteed theoretical properties for
the linearized time-periodic model as explained in Reference 13. Namely, if we start close enough so
that a solution to Eq. (25) exists, then we are guaranteed constraint enforcement and convergence to
the desired set-point, i.e. xk tends to the origin and the constraints are not violated. Furthermore, by
properly designing the terminal constraint, stability guarantees in determined domain of attractions
are also obtained.

NUMERICAL RESULTS

Simulation Parameters

In our simulations, we consider the halo orbit about the Earth-Moon Lagrangian point L2. Ig-
noring the gravitational effects of any other celestial bodies, we begin by assuming the Earth-Moon
orbit is circular, i.e. e = 0, and the distance between the two bodies is 384,362 km.

We compute three different orbits for comparing our tracking schemes using numerical methods
described in detail in Reference 3. The three orbits are (i) the smallest possible orbit – equilibrium
at L2, (ii) a small orbit, whose diameter is chosen such that the spacecraft barely establishes a line
of sight with the Earth, and (iii) a large orbit, whose diameter is chosen to be much larger. All orbits
are restricted to the x-y plane. This is chosen because z ≡ 0 is a solution to the 3-body equations
of motion and motion in the z-axis is not required to compute a halo orbit. The orbits are plotted in
Figure 2.

In all subsequent simulations, Qk ≡ Q and Rk ≡ R are kept constant and,

Q =

[
106I3 0

0 I12

]
, R = 106I9. (27)

9



3.5 4 4.5 5

x 10
5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

5

km

k
m

Moon Small halo orbit

Large halo orbit

Figure 2. Plot of the small and large halo orbits considered in this paper

Determining the Length of the Discretization Time-Step

Our first numerical simulation solely considers station-keeping on the large halo orbit and does
not consider constraints or attitude control; its purpose is to determine the desired true anomaly-
step length. A smaller true anomaly-step length is desired because it better approximates a smooth
control response and may lower the control cost. However, more steps are needed if the prediction
horizon is to be kept constant and therefore smaller steps result in a larger computational burden for
the MPC schemes presented above; it is possible to lower the computational burden by scaling the
prediction horizon with the true anomaly-step, but this results in a myopic prediction and may lead
to a smaller region of attraction.

The initial condition is taken to be a 100 km error in the x-direction with all other parameters
matching the halo orbit at time-instant k = 0, i.e. [x0]1 = 100 km and [x0]i = 0 for all i 6= 1.
Because the orbit of the primaries is circular, the relationship between scaled time-step th and the
step in true anomaly θh stays constant, i.e. th = θh. We compare three different choices of N
corresponding to time-steps of approximately one minute, one hour, and one day. Due to the fact
that this is an unconstrained problem, we consider only the ALQR, FLQR, and PLQR schemes
introduced above, tabulating the total ∆vtot =

∑
k θh(|[uk]1|, |[uk]2|) in Table 2.

The results are consistent for different choices of initial conditions. The PLQR achieves the low-
est ∆vtot and there is no large difference in ∆vtot when choosing between a true anomaly-step
corresponding to 6 minutes and 1 hour, as compared to the case of a true anomaly-step correspond-
ing to a day. Hence we fix the true anomaly-step at 0.534◦ and retain the PLQR and PMPC schemes
for further investigation.
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Run No. i ii iii
N 4294 430 18
th 6.00min 1.00hr 0.95day
θh 0.0534◦ 0.534◦ 13.5◦

ALQR ∆vtot (m/s) (5.20,7.55) (5.31,7.72) (9.20, 9.47)
FLQR ∆vtot (m/s) (8.51,5.60) (9.20,6.20) DNC
PLQR ∆vtot (m/s) (3.77,5.83) (4.01,5.85) (4.70,6.89)

Table 2. Impact of discretization choices on ∆v (DNC: “did not converge”)

Station-Keeping Using PLQR

We next perform station-keeping simulations for the most advanced LQR-based scheme, the
PLQR scheme. The initial condition is changed to [x0]1 = 103km, [x0]6 = 103km/orbit with all
other initial conditions held constant at 0. A large initial condition is chosen in order to illustrate
the capability of the schemes. As previously stated, we consider three different orbits: no orbit
(stabilization to L2), a small orbit, and a large orbit. We plot the responses in the no orbit case in
Figures 4 and 5. Note that in this case, the controller stabilizes the spacecraft to the L2 point and
reduces to ordinary LQR control. The rest of the results are plotted in Figures 6-11.

Combined Station-Keeping and Momentum-Management

In this simulation we consider the full problem with both translational and attitude control. Ap-
plying the PMPC scheme to the system subject to the constraints described previously, we simulate
the closed-loop response from an initial condition of [x0]1 = 40 km, [x0]2 = −40 km and a reac-
tion wheel spin of 100 radians per second about the z-axis, i.e. [x0]15 = 100 rad/s; all other initial
conditions are set to 0. The results are presented in Figures 12-16.

Figure 12 shows the translational force responses Fx = mux and Fy = muy as well as the torque
response in the z-axis. Figure 13 shows ∆v as a function of time. Figure 14 shows the eigenaxis
error about the z-axis along with the constraint of Eq. (8). As we can see, the constraint is enforced
pointwise-in-time but not between points. This is because MPC is a discrete-time control method
that can only enforce constraints for specific points in time. Figures 15 and 16 show the radial
velocity of the spacecraft about the z-axis and the z-axis reaction wheel velocity. Finally, Figure 17
shows the constraint adherence corresponding to the constraint of Eq. (4). Close to the beginning
of the simulation, the thrust constraints are violated by a very small amount and this is due to the
approximation CB ≈ I in Eq. (6). To avoid such a constraint violation in application, the force
vector F could be computed by assuming CB = I.

An interesting observation is that MPC is able to balance the thrust used in delivering the re-
quested translational force and the requested torques. At first, the thruster F5 provides positive
thrust in order to provide torque and stabilize the attitude while enforcing the pointing constraint of
Eq. (8); it then provides a negative thrust at the constraint boundary in order to stabilize the tracking
error.
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Figure 3. Halo orbit in the Earth-Moon system with eccentricity e = 0.055 and period
4π; ◦ and + indicate the locations of the Moon and L2, respectively, at θ = 0 and π
and × indicates the initial condition of the trajectory at θ = 0

Elliptical Orbits

For the final simulation, we set values that are representative of the Earth-Moon scenario. The
eccentricity is set to a non-zero value of e = 0.055 and the semi-latus rectum to 384,362 km.

In the elliptical case, the halo orbit is closed if the period of the trajectory is equal to T = kπ
for some integer k. In our simulation, we choose the value of the period to be T = 4π because this
results in a large orbit. The orbit is plotted in Figure 3. The results are plotted in Figures 18 and
19. Because attitude is set to rest, unlike the results of Figure 17 the thrust trajectory in Figure 19
immediately reaches force limits at the beginning of the simulation.

CONCLUSION

This paper considered the application of Linear Quadratic Regulator and Model Predictive Con-
trol techniques to the problem of tracking the Earth-Moon halo orbit about L2 and simultaneous
attitude control.

Several numerical investigations were reported. Based on the simulations, the periodic MPC was
shown to result in the lowest fuel consumption. The viability of periodic MPC was also shown for
simultaneous station-keeping and momentum-management. The final numerical simulation showed
a spacecraft closed-loop controlled by periodic MPC successfully tracking an elliptical halo orbit
while enforcing constraints.
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APPENDIX: NUMERICAL DISCRETIZATION ALONG SOLUTION TRAJECTORIES

Consider an n-dimensional dynamical system described by,

ẋ(t) = f(t,x(t)).

Let r(t) denote a solution. We wish to compute the discrete-time update for perturbations of r(t),
i.e. given a time th and a perturbed state r̃(t) = r(t) + δr(t), we wish to find a local linear map
A(t) such that r̃(t+ th)− r(t+ th) ≈ A(t)δr(t).

To compute A(t) numerically, let ei be the elementary basis vector where the i-th element of ei
is equal to 1 and let ε > 0 be a small parameter. Propagate r(t) + εei and r(t) − εei from t to
t+ th numerically and refer to the solutions at time t+ th as r̃+

i and r̃−i , respectively. Then, we can
approximate the i-th column of A(t) by the center difference formula,

r̃+
i − r̃−i

2ε
.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

F
o

rc
e

 (
N

)

 

 

F
x

F
y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

orbits

D
e

lt
a

−
v
 (

m
/s

)

Figure 5. Results of PLQR simulation for no orbit: Time history of Fk and ∆vk
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Figure 7. Results of PLQR simulation for small orbit: Time history of Fk and ∆vk
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Figure 9. Results of PLQR simulation for large orbit: Orbit trajectory
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Figure 10. Results of PLQR simulation for large orbit: Time history of Fk and ∆vk
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Figure 11. Results of PLQR simulation for large orbit: Error trajectory on x-y plane
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Figure 12. Results of PMPC simulation for large orbit: Required forces and torques
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Figure 14. Results of PMPC simulation for large orbit: Pointing error on z-axis. The
pointwise-in-time constraints are plotted as dots.
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Figure 15. Results of PMPC simulation for large orbit: Radial velocity on z-axis
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Figure 16. Results of PMPC simulation for large orbit: z-axis reaction wheel velocity
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Figure 17. Results of PMPC simulation for large orbit: Thrust force from the dual-
axis thrusters placed on the x- and y-axes. The constraints are given by the dashed
line.
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Figure 18. Results of PMPC simulation for eccentric orbit:Error trajectory on x-y plane

0 0.1 0.2
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

F
1
,F

4
 (

N
)

orbits

0 0.1 0.2
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

F
2
,F

5
 (

N
)

orbits

Figure 19. Results of PMPC simulation for eccentric orbit: Thrust force from the
dual-axis thrusters placed on the x- and y-axes. The constraints are given by the
dashed line.
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