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ABSTRACT
This paper studies control-theory-enabled charging man-

agement for battery systems in electric vehicles (EVs). Charging
is a crucial factor for the battery performance and life as well
as EV users’ anxiety. Existing methods run with two shortcom-
ings: insufficiency of battery health awareness during charging,
and failure to include the user into the charging loop. To ad-
dress such issues, we propose to perform charging that deals
with both health protection and user-specified charging needs or
objectives. Capitalizing on the linear quadratic control theory,
a set of charging strategies are developed. A simulation-based
study demonstrates their effectiveness and potential. We expect
that charging with health awareness and user involvement will
improve not only the battery longevity but also user satisfaction.

1 Introduction
Holding the promise for reduced fossil fuel use and air pol-

lutant emissions, electrified transportation has been experienc-
ing a surge of interest in recent years. Battery systems are cru-
cial for the performance of electric vehicles (EVs) and the con-
sumer acceptance. To improve the operating performance, safety
and longevity of batteries, a considerable amount of research
and development effort has been made to advanced battery man-
agement, especially state-of-charge (SoC) estimation, state-of-
health (SoH) estimation and thermal monitoring, see [1–7] and
the references therein. Recently, there has been a growing at-
tention to optimal charging strategies to reduce the charging-
induced harm. Improper charging (e.g., charging with a high
voltage or current density) can cause rapid buildup of internal
stress and resistance, crystallization and other negative effects.

∗Address all correspondence to this author.

The consequence is fast capacity fade and shortened life cycle,
and finally, impaired consumer confidence [8–10].

Popular charging ways in industrial practice, especially for
inexpensive lead-acid batteries used for cars and backup power
systems, are to apply a constant voltage or force a constant cur-
rent flow through the battery [2]. Such methods, though easy to
implement, can lead to serious detrimental effects for the battery.
One improvement is the constant-current/constant-voltage charg-
ing [1,2]. As illustrated in Figure 1, it applies a constant current,
and when the voltage increases to a desired level, switches to
the constant voltage mode with the current diminishing accord-
ingly. A main issue with such methods is the lack of an effective
feedback-based regulation mechanism. With an open-loop ar-
chitecture, they simply take energy from power supply and put
it into the battery. As a result, both the charging dynamics and
the battery’s status feedback information are not well exploited
to control the charging process for improvements of efficiency
and health protection. This calls for the deployment of closed-
loop model-based control. Constrained optimal control has thus
been used in [8, 11, 12], in conjunction with electrochemical or
equivalent circuit models, to address fast charging subject to in-
put, state and temperature constraints for health. To mitigate the
computational cost, a rule-based, easier-to-implement method is
proposed in [13,14] to handle charging under constraints using an
on/off strategy. An adaptive control scheme for energy-efficient
fast charging is crafted in [15]. In [16–18], optimal EV charg-
ing pattern is designed with considerations of both the electricty
cost and battery degradation. In spite of such works, the exist-
ing work still remains limited to date, leaving much capacity of
feedback-controlled charging unexplored yet.

In this paper, we propose to perform control-based EV
charging management in a health-aware and user-involved way.
Since the battery system is the heart as well as the most expen-
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FIGURE 1: Constant-current/constant-voltage charging.

sive component of an EV, health protection during charging is
of remarkable importance to prevent performance and longevity
degradation. Incorporated in the form of various constraints, it
has been a major design consideration in the controlled charg-
ing literature mentioned above. Furthermore, we put forward
that user involvement will bring significant improvements to the
charging strategies. The current practice excludes the EV user
from the charging management indeed. However, it will create
two-fold advantages if the user can give the controller commands
or advisement about the charging objectives based on his/her im-
mediate situation. First, the battery health will be protected bet-
ter. The user’s advisement can translate into information use-
ful for the EV charger. For instance, given the user’s prediction
of parking time, a healthier way than simply fast charging can
be adopted, as it may happen for charging while working or at
home. In another scenario, the user can specify the charging ob-
jective as 50% full in 1 hour if he/she has a drive to the airport in
1 hour but only needs half capacity. The charger can make wiser,
more health-oriented charging decisions while meeting the user
specifications with such information. Second, a direct, positive
impact on user satisfaction may result arguably, because offering
a user options to meet his/her different charging needs is indica-
tive of a better service quality and enhance his/her perception of
level of involvement.

We will build health-aware and user-involved charging
strategies via investigating two problems. The first one is charg-
ing with fixed terminal charging state. In this case, the user will
give target state-of-charge (SoC) and charging duration, which
will be incorporated as terminal state constraint. The second
problem is tracking-based charging, where the charging is im-
plemented via tracking a charge trajectory. The trajectory is gen-
erated on the basis of user-specified objectives and battery con-
ditions. The design will include health considerations. The so-
lutions, developed on the basis of linear quadratic optimal con-
trol, will be presented as controlled charging laws expressed in
explicit equations. The proposed methods differ from existing
ones in [8, 11, 12] in two aspects. From the viewpoint of appli-
cation, they keep into account both user specifications and bat-
tery health. Technically, they, though based on optimization of

FIGURE 2: The battery RC model.

quadratic cost functions, do not require real-time optimization
and thus are computationally more attractive. We notice that the
linear quadratic control is a fruitful area, with many established
results and new progresses, e.g., [19–22], potentially deployable
for the charging control problem.

The rest of the paper is organized as follows. Section 2
presents an RC model oriented towards charging dynamics. Sec-
tion 3 offers the development of charging strategies, with Sec-
tion 3.1 on charging with fixed terminal charging state decided
by the user and Section 3.2 on tracking-based charging. Section 4
shows numerical results to illustrate the effectiveness of the de-
sign. Finally, concluding remarks are gathered in Section 5.

2 RC Model for Charging
While the energy storage within a battery results from com-

plex electrochemical and physical processes, it has been useful to
draw an analogy between the battery electrical properties and an
equivalent circuit which consists of multiple linear passive ele-
ments such as resistors, capacitors, inductors and virtual voltage
sources. Throughout the paper, we consider a second-order RC
model shown in Figure 2.

Developed by Saft Batteries, Inc., this model was intended
for the simulation of battery packs in hybrid EVs [23, 24]. It
has been used in [25] to study battery model identification. The
bulk capacitor Cb represents the battery’s capability to store en-
ergy, and the capacitor Cs accounts for the surface effects, where
Cb�Cs. The associated resistances are Rb and Rs, respectively,
with Rb � Rs. Let Qb and Qs be the charge stored by Cb and
Cs, respectively, and define them as the system states. The state-
space representation of the model is given by (1). It can be ver-
ified that this system is controllable and observable, indicating
the feasibility of controlled charging and status monitoring.

When a positive current is applied for charging, both Qb and
Qs will grow. However, the voltage of Cs, denoted as Vs, in-
creases at a rate much faster than the voltage of Cb, denoted as
Vb. For a high current I, the terminal voltage V , which is largely
dependent on the fast increasing Vs, will grow quickly. Then Qs
will reach the maximum in a short time and end the charging pro-
cess, though Qb still remains at a low level. This is in accordance
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of the “rate capacity effect”, which means that the total charge
absorbed by the battery goes down with the increase in charg-
ing current as stated by the Peukert’s law. In addition, the RC
model can also describe another concerning effect, the “recovery
effect”. That is, when the charging stops, the terminal voltage V
will decrease by (1), due to the charge transfer from Cs to Cb.

The overall SoC is given by

SoC =
Qb−Qb +Qs−Qs

Q̄b−Qb + Q̄s−Qs
, (2)

where Q j and Q̄ j with j = b,s denote the unusable and the max-
imum allowed charge.

To develop and apply digital control, the model in (1) can
be discretized with a sampling period of Ts. The discrete-time
model takes the following standard form:

{
xk+1 = Axk +Buk,

yk =Cxk +Duk.
(3)

where x =
[
Qb Qs

]>, u = I, y = V , and A, B, C and D can be
decided via applying a discretization method to (1).

For health consideration, we need to constrain the differ-
ence between Vb and Vs throughout the charging process. Here,
Ṽ = Vb−Vs drives the migration of the charge from Cs to Cb.
It, intuitively, delineates the gradient of the concentration of ions
within the electrode. Created during charging, the concentra-
tion gradient induces the diffusion of ions. However, too large a
gradient value will cause internal stress increase, heating, solid-
electrolyte interphase (SEI) formation and other negative side
effects [26–28]. Mechanical degradation of the electrode and
capacity fade will consequently happen. Thus uniformity of
the ion concentration should be pursued at the maximum pos-
sible level during charging. It is noteworthy that such a restric-
tion should be implemented more strictly as the SoC increases,
because the adverse effects of a large concentration difference
would be stronger in this case.

Next, we will build the charging strategies on the basis of
the RC model. The development will be laid out in the frame-
work of linear quadratic control, taking into account both health
awareness and user needs.

3 Health-Aware and User-Involved Charging Strate-
gies
In this section, we develop charging strategies for two cases.

The first one is concerned with the user defining the final charg-
ing state. It will be treated via linear quadratic control subject to
fixed terminal state resulting from the user objective. In the sec-
ond case, charging is managed via tracking a charging trajectory
which is produced according to the user objective.

3.1 Charging with Fixed Terminal Charging State
A charging scenario that frequently arises is: according to

the next drive need, a user will inform the charging management
system of his/her objective in terms of target SoC and charging
duration. This can occur for overnight parking at home, several-
hour parking at the workplace, or when a drive to some place is
needed in just half an hour. As discussed before, the objective
offered by the user, if incorporated into the dynamic charging
decision making process, would create support for health protec-
tion more effective than charging with maximum speed.

From the perspective of control design, the considered
charging task can be formulated as an optimal control problem,
which minimizes a cost function commensurate with the harm to
health and subject to the user’s goal. With the model in (3), the
following linear quadratic control problem is of interest:

min
u0,u1,··· ,uN−1

1
2

x>N SNxN +
1
2

N−1

∑
k=0

(
x>k G>QkGxk +u>k Ruk

)
,

subject to xk+1 = Axk +Buk, x0,

xN = x̄.

(4)

where P ≥ 0, Qk ≥ 0, R > 0 and G =
[
1/Cb −1/Cs

]
. In above,

Gxk is the voltage difference between Cb and Cs indeed. The
quadratic cost function, defined over the user-specified time
range [0,NTs], intends to constrain the voltage difference and
magnitude of the charging current. The minimization is subject
to the state equation and the fixed terminal state x̄ as a result of
user’s target SoC. In the final state, the battery should be at the
equilibrium point with Vb = Vs. Together with (2), x̄, can be de-
termined from the specified SoC value. The weight coefficient
Qk should be chose in a way such that it increases over time,
in order to reflect the truth that the stronger health protection is
needed as the SoC builds up.

A closed-form solution for (4) can be developed, which
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will lead to the state-feedback-based charging strategy as fol-
lows [19]:

Kk = (B>SNB+R)−1B>Sk+1A, (5)

Sk = A>Sk+1(A−BKk)+Qk, (6)

Tk = (A−BKk)
>Tk+1, TN = I, (7)

Pk = Pk+1−T>k+1B(B>Sk+1B+R)−1B>Tk+1, PN = 0, (8)

Ku
k =

(
B>Sk+1B+R

)−1
B>, (9)

uk =−
(

Kk−Ku
k Tk+1P−1

k T>k
)

xk−Ku
k Tk+1P−1

k x̄. (10)

Since the state xk is not measurable directly, it is necessary
to convert the above strategy to be based on the output feedback.
One straightforward avenue to achieve this would be to replace xk
by its prediction x̂k that minimizes another quadratic cost func-
tion. This is justifiable by the certainty equivalence principle,
which allows the optimal output-feedback control design to be
divided into the separate designs of an optimal state-feedback
control an optimal estimator [29]. Here, we use the one-step-
forward Kalman predictor given by

Lk = AΣkC>(CΣkC>+V )−1, (11)
x̂k+1 = Ax̂k +Buk +Lk(yk−Cx̂k−Duk), (12)

Σk+1 = AΣkA>+W −AΣkC>(CΣkC>+V )−1CΣkA>, (13)

where W and V symmetric positive defnite matrices accounting
for the covriances of the process and measurement noises. Note
that the Kalman filter has been in wide use for battery SoC es-
timation, e.g., in our previous work [30–33]. Then the optimal
control law in (10) changes to be:

uk =−
(

Kk−Ku
k Tk+1P−1

k T>k
)

x̂k−Ku
k Tk+1P−1

k x̄. (14)

Putting together (5)-(9), (11)-(13) and (14), we achieve a
complete description of the charging method via linear quadratic
control with fixed terminal state, which is named LQCwFTS and
illustrated in Table 1. The LQCwFTS method performs state pre-
diction at each time instant, and then feeds the predicted value,
which is a timely update about the battery’s internal state, to
generate the control input, i.e., the charging current to the bat-
tery. Much of the computation for LQCwFTS can be performed
prior to the implementation of the control law. The sequences,
Kk, Sk, Tk, Pk and Ku

k can be computed offline, and then Kk,
Ku

k Tk+1P−1
k T>k and Ku

k Tk+1P−1
k are stored for use when the con-

trol is applied. On the side of the Kalman prediction, offline
computation and storage of Lk can be done. Then the only work

Offline backward computation (from time N to 0)

Kk = (B>SNB+R)−1B>Sk+1A

Sk = A>Sk+1(A−BKk)+Qk

Tk = (A−BKk)
>Tk+1, TN = I

Pk = Pk+1−T>k+1B(B>Sk+1B+R)−1B>Tk+1, PN = 0

Ku
k =

(
B>Sk+1B+R

)−1
B>

Online forward computation (from time 0 to N)

Battery state prediction

Lk = AΣkC>(CΣkC>+V )−1

x̂k+1 = Ax̂k +Buk +Lk(yk−Cx̂k−Duk)

Σk+1 = AΣkA>+W −AΣkC>(CΣkC>+V )−1CΣkA>

Charging decision

uk =−
(

Kk−Ku
k Tk+1P−1

k T>k
)

x̂k−Ku
k Tk+1P−1

k x̄

TABLE 1: The LQCwFTS charging strategy (Linear Quadratic
Control with Fixed Terminal State).

to do during charging is to compute the optimal state prediction
and control by (12) and (14), thus reducing the computational
burden.

3.2 Charging Based on Tracking

For user-involved charging, it will be beneficial if a desired
path is generated in advance on the basis of user-specified ob-
jectives for the charging process to follow. In this case, the path
can serve as the references for the controller to track. The path
generation can be conducted with prior experience or knowledge
of the battery electrochemistries and present conditions, which,
in turn, will enhance the health awareness through charging. An
EV manufacturer can design path generation algorithms and em-
bed them into BMSs, from which the user can select the one that
best fits the needs when he/she intends to charge the EV. While
how to compute an optimal charging path will make a topic of
future research, we focus on developing the charging method to
track the path here.

Suppose that the user describes the target SoC and duration
for charging, which is translated into the final state x̄. Then a
reference trajectory rk for k = 0,1, · · · ,N is calculated with rN =
x̄. Note that the trajectory constrains the difference between Vb
and Vs to guarantee health. The linear quadratic state-feedback
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Offline backward computation (from time N to 0)

Kk = (B>Sk+1B+R)−1B>Sk+1A

Ks
k = (B>Sk+1B+R)−1B>

Sk = A>Sk+1(A−BKk)+Q

sk = (A−BKk)
>sk+1 +Qrk, sN = SNrN

Online forward computation (from time 0 to N)

Battery state prediction

Lk = AΣkC>(CΣkC>+V )−1

x̂k+1 = Ax̂k +Buk +Lk(yk−Cx̂k−Duk)

Σk+1 = AΣkA>+W −AΣkC>(CΣkC>+V )−1CΣkA>

Charging decision

uk =−Kk x̂k +Ks
ksk+1

TABLE 2: The LQT charging strategy (Linear Quadratic Track-
ing).

tracking for charging can be considered as:

min
u0,u1,··· ,uN−1

1
2
(xN− rN)

> SN (xN− rN)

+
1
2

N−1

∑
k=0

[
(xk− rk)

>Q(xk− rk)+u>k Ruk

]
,

subject to xk+1 = Axk +Buk, x0,

(15)

where SN ≥ 0, Q ≥ 0 and R > 0. The optimal solution to the
above problem is expressed as follows [19]:

Kk = (B>Sk+1B+R)−1B>Sk+1A, (16)

Ks
k = (B>Sk+1B+R)−1B>, (17)

Sk = A>Sk+1(A−BKk)+Q, (18)

sk = (A−BKk)
>sk+1 +Qrk, sN = SNrN , (19)

uk =−Kkxk +Ks
ksk+1. (20)

Following lines analogous to the development of LQCwFTS,
the output-feedback tracker for charging can be created based
on (16)-(20) through the employment of the Kalman predictor
in (11)-(13). Specifically, (20) will use x̂k rather than xk, i.e.,

uk =−Kkx̂k +Ks
ksk+1. (21)

Summarizing (16)-(19), (11)-(13) and (21) will yield the lin-
ear quadratic tracking strategy, or LQT, for charging, see Table 2.

Similar to the aforeproposed LQCwFTS, the LQT can have much
computation completed offline. Then only the Kalman state pre-
diction and optimal tracking control (21) need to be computed
during the actual control run.

It is noted that the control run of the LQT strategy will lead to
a steady state where the gains Kk and Ks

k will be fixed. The steady
state can be computed prior with knowledge of the discrete al-
gebraic Riccati equation (DARE). In this case, the steady-state
LQT strategy is named SS-LQT. The SS-LQT will enjoy fur-
ther simplicity and computational efficiency in terms of its time
and space complexities, thus more desirble for practical use.

4 Numerical Illustration
In this section, we present simulation examples to evaluate

the performance of the proposed charging strategies. Let us con-
sider a lithium-ion battery with known RC model parameters.
Assume Cb = 82KF, Rb = 1.1mΩ, Cs = 4.074KF, Rs = 0.4mΩ,
and Ro = 1.2mΩ [23]. It has a nominal capacity of 7Ah. The
initial SoC is 30%. The user specifies that certain SoC must be
achieved within certain duration.

Example 1 - Application of LQCwFTS: Suppose that charg-
ing should be completed in 2 hours. A series of target SoC val-
ues, 55%, 65%, 75%, 85% and 95%, are set for the simulation
purpose. The sampling period ts = 1s, so the number of data
points is N = 7200. We apply the LQCwFTS method to carry out
the charging tasks. For the control run, Qk = 0.1 · (5× 107)k/N

and R = 0.1. The exponential increase of Qk illustrates increas-
ing emphasis on health as the charging goes on.

The computational results are illustrated in Figure 3. It is
observed from Figure 3a that the different target SoCs are satis-
fied when the charging ends. The SoC increases approximately
proportionally with time for the first 1.25 hours. Then the rate
slows down gradually to zero as the charging objective is being
approached. This is because of the large weight Qk in the later
stage for health protection. The charging current is kept at almost
a constant level initially during each charging implementation, as
illustrated in Figure 3b. For a higher target SoC, the magnitude
is larger accordingly. However, the current drops quickly as the
SoC grows further. The concerned health indicator, voltage dif-
ferent between Cs and Cb is characterized in Figure 3c. For each
case, Vs−Vb remains around a constant value in the first hour,
despite high-frequency fluctuations due to noise. However, it de-
creases drastically as more charge is pumped into the battery,
maximizing the health of the battery’s internal structure. As a
comparison, we force a constant current of 2.275A through the
battery for 2 hours to reach 95% of the capacity. The voltage dif-
ference, as shown in Figure 3d, will be kept at a fixed level un-
surprisingly. This, however, will cause more serious detrimental
effects, because the battery’s tolerance to the voltage difference
will decrease rapidly with the SoC growth. Thus with this com-
parison, we argue that the LQCwFTS can offer a stronger health
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FIGURE 3: Example 1 - Application of LQCwFTS to charge the battery from 30% to 55%, 65%, 75%, 85% and 95%: (a) the SoC
trajectories; (b) the charging current profiles; (c) the voltage differences as health indicator; (d) voltage difference due to constant current
charging to 95% SoC.

protection during charging.
Example 2 - Application of SS-LQT: We consider the use of

SS-LQT for charging in this example. The problem setting is the
same as in Example 1. The charging trajectories are generated
prior based on the objectives. For simplicity and convenience,
we assume that the desired trajectory for x1 and x2, denoted as rb
and rs, is

r j,k =
1− e−kts/τ j

1− e−Nts/τ j
(r j,N− r j,0)+ r j,0,

for j = b or s, k = 1,2, · · · ,N−1, where r j,0 is the initial charge,
r j,N the target charge, and τ j the time coefficient for j = b or s.
Note that r j,0 and that r j,N can be calculated from the initial SoC
and user-specified target SoC. The resultant trajectories have a
steep increase followed by a gentle slope, which are reasonable
in view of health protection. Letting τb = τs = Nts/4, Vs and Vb
are enforced to be equal. Thus at the trajectory design stage, we
put the minimization of the detrimental effects well into consid-

eration.

With the reference trajectories available, the SS-LQT strat-
egy is applied to charging. The increase of the actual SoC over
time is demonstrated in Figure 4a. All the targets are met. In each
case, the SoC grows at a fast rate when the SoC is at a low level
but at a slower rate when the SoC becomes higher. Figure 4b
shows the current produced by SS-LQT. The current usually be-
gins with a large magnitude but decreases quickly. The voltage
difference, given in Figure 4c, has the similar trend. It is rela-
tively high when the charging starts, but reduces fast. The state
tracking for the task of 95% SoC is shown in Figures 4d and 4e.
It is observed that tracking of rb by x1 exhibits high accuracy.
Tracking of rs by x2 becomes accurate increasingly, despite de-
viation in the first hour. Meanwhile, the further the target SoC is
approached, the smaller the tracking error becomes.

In Examples 1 and 2, different charging current profiles are
noticed for the same charging task. This is caused by the charg-
ing trajectories adopted for the SS-LQT and the selection of the
weight matrices Q and R. Such a difference does not compromise
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FIGURE 4: Example 2 - Application of LQT to charge the battery from 30% to 55%, 65%, 75%, 85% and 95%: (a) the SoC trajectories;
(b) the charging current profiles; (c) the voltage differences; (d) tracking of x1 (i.e., Qb) for 95% target SoC; (e) tracking of x2 (i.e., Qs)
for 95% target SoC.

the value of the proposed charging strategies. Further experimen-
tal evaluation and validation of the strategies will be pursued in
our future work.

5 Conclusions
Effective battery charging management is of vital impor-

tance for the development of EVs, though it has not received

attention deserved. In recent years, fast charging control has
gained some interest. However, the problem of health-aware and
user-involved charging has not been explored in the literature. In
this paper, we propose a set of novel charging strategies, which
aim to accomplish user-defined charging objectives with aware-
ness of the harms to health. They are developed in the frame-
work of linear quadratic control. Compared with most existing
fast charging techniques, they do not require the time-consuming
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real-time optimization. The usefulness of the proposed strategies
is evaluated via a simulation study. This work can also find uses
in consumer electronics and other applicaitons and will provide
further incentives for the study of intelligent charging manage-
ment.
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