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Abstract

We study here the problem of adaptive ‘soft-landing’ control for electromagnetic actuators. The soft landing requires accurate

control of the actuator’s moving element between two desired positions. We propose a nonlinear adaptive controller to solve the

problem of robust trajectory tracking for the moving element, when considering model uncertainties with linear parametrization.

The controller is an integral Input-to-State Stability (iISS) backstepping controller, merged with gradient descent estimation filters

to estimate model uncertainties with linear parametrization. We show that it ensures bounded tracking errors for bounded estimation

errors. Furthermore, iISS result allows us to represent the bound on tracking error as a decreasing function of the estimation error.

We demonstrate the effectiveness of this controller with numerical tests.

I. INTRODUCTION

Nowadays, electromagnetic actuators are used in many practical applications, e.g. opening and closing cargo doors in aircraft

systems, precision positioning stages actuation, brakes in industrial systems. In this work we concentrate on a particular control

problem of nonlinear electromagnetic actuator called ‘soft landing’ problem. The soft landing requires accurate control of the

moving element of the actuator between two desired positions. This ‘soft-landing’ performance has to be guaranteed over long

periods of time during which the actuator components may age. The main objective is to attain small contact velocity, which

in turn ensures low component-wear operation of the actuator. Due to these practical constraints we have developed a robust

control algorithm that aims for a zero impact velocity, and adapts to some of the actuator aging parts. We present here the

results of this study.

Many papers have been dedicated to the soft-landing problem for electromagnetic actuators, e.g. [1]-[10]. Several controllers

have been developed in [1], [4], [5], [9] based on linear models of the system. Linear models allow for a relatively easy design

of the control but due to their linearity, are not valid for a full operation range of the actuator. To control the system over

a larger operating state space, the controller has to be based on more complex nonlinear models of the actuators. Different

nonlinear controllers have been used in [2], [3], [6], [8], [11], [12], [10], [13]. For example in [6], the authors proposed a

nonlinear controller to solve the problem of armature stabilization for an electromechanical valve actuator. The authors proved
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a global asymptotic stability result using Sontag’s nonlinear controller. However, this approach did not solve the problem

of armature trajectory tracking and did not consider robustness of the controller with respect to system’s uncertainties and

changes in parameters over time. In [2], the authors studied the problem of electromagnetic valve actuator control in an internal

combustion engine. The solution proposed by the author is based on iteratively solving a constrained nonlinear optimal problem

using Nelder-Mead algorithm. The robustness of this feedforward-based approach has neither been proven nor tested. In [12],

the authors designed a backstepping based controller for electromagnetic actuators position regulation. However, robustness

w.r.t. uncertainties in parameters of the system are not considered in this paper. In [10], the authors designd a feasible trajectory

within the solenoid voltage limits, and then used a flatness-based controller designed on a nominal model, i.e. without model

uncertainties, to track the desired trajectory. In [13], a Lyapunov-based controller was designed to stabilize the armature in

finite time. The controller was tuned using numerical analysis. This controller can be considered as a passive robust control

designed to compensate for bounded friction forces. In [8], a nonlinear sliding mode approach was used to solve the problem

of trajectory tracking for an electromagnetic valve actuator. The authors used a nonlinear model to design the sliding mode

control. The reported results showed good tracking performances, however, the sliding mode controller uses discontinuous

control signals to ensure the convergence to a sliding surface, which could over-stress the actuator. Furthermore, sliding-mode

control is well known to be a passive robust controller, in the sense that it deals with model uncertainties with a pre-defined

range of uncertainties, which might necessitate higher control amplitude than what is actually needed, and could be unable

to cope with uncertainties that falls outside of the expected uncertainties’ bounds. In [3], the authors used a single parameter

extremum seeking learning method to solve the problem of soft landing for an electromechanical valve actuator. In [14], a

multiparameter extremum seeking-based control was presented. The authors first designed a nonlinear controller based on

Lyapunov redesign technique and then added a multiparameter extremum seeking algorithm to tune the feedback gains of the

controller. Although the learning algorithms in [3], [14] were not directly tailored to ensure robustness of the controller with

respect to model uncertainties or parameters drift over time, one could argue that this robustness is intrinsic due the iterative

nature of the learning process. In [15], the authors designed a backstepping based controller for electromagnetic actuators which

was robustified by an extremum seeking algorithm to estimation some uncertain parameters of the system. The effectiveness

of the proposed scheme was illustrated numerically, however, no rigorous analysis was present concerning the stability of the

combined model-based nominal controller and the model-free learning algorithm.

In this work, we propose an alternative solution to the robust soft-landing problem. We choose an active robust control approach,

and use a nonlinear model of the electromagnetic actuator to design a nonlinear adaptive backstepping controller. We use the

so-called integral Input-to-State stability (iISS) theory to develop a nonlinear iISS-adaptive controller, merged with gradient-

descent estimation filters. This controller ensures bounded tracking errors as well as bounded estimation errors. Furthermore,

due to the iISS result, we can show that the tracking errors decrease with the estimation errors.

This paper is organized as follows: We first present in Section II some notations and preliminaries. In Section III, we recall the

nonlinear model of electromagnetic actuators. Then, in Section IV, we report the adaptive nonlinear controller, with stability

analysis. Numerical validation of the proposed controller is given in Section V, and finally, concluding remarks are stated in

Section VI.
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II. PRELIMINARIES

Throughout the paper we use the notation ˙(.) for the short notation of time derivative, and we use ‖.‖ to denote the Euclidean

norm; i.e., for x ∈ R
n we have ‖x‖ =

√
xTx. Also, we denote by Ck functions that are k times differentiable. A continuous

function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to class

K∞ if a = ∞ and α(r) → ∞ as r → ∞. A continuous function β : [0, a) × [0,∞) → [0,∞) is said to belong to class KL
if, for each fixed s, the mapping β(r, s) belongs to class K with respect to r and, for each fixed r, the mapping β(r, s) is

decreasing with respect to s and β(r, s) → 0 as s→ ∞.

Next, we introduce some definitions that will be used in the paper. To help present the definitions in a general setting, we first

consider the general dynamical time-varying system

ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0 (1)

where x(t) ∈ D ⊆ R
n such that 0 ∈ D, f : [t0, t1)×D → R

n is such that f(·, ·) is jointly continuous in t and x, and for every

t ∈ [t0, t1), f(t, 0) = 0 and f(t, ·) is locally Lipschitz in x uniformly in t for all t in compact subsets of [0,∞). The above

assumptions guarantee the existence and uniqueness of the solution x(t) over the interval [t0, t1). Without loss of generality,

we assume t0 = 0.

Definition 1 (LaSalle-Yoshizawa [16]): Consider the time-varying system (1) and assume [0,∞)×D is a positively invariant

set with respect to (1) where f(t, ·) is Lipschitz in x, uniformly in t. Assume there exist a C1 function V : [0,∞)×D → R,

continuous positive definite functions W1(·) and W2(·) and a continuous nonnegative function W (·), such that for all (t, x) ∈
[0,∞) ×D,

W1(x) ≤ V (t, x) ≤W2(x),

V̇ (t, x) ≤ −W (x) (2)

Then, there exists D0 ⊆ D such that for all (t0, x0) ∈ [0,∞) × D0, x(t) → R , {x ∈ D : W (x) = 0} as t → ∞. If, in

addition, D = R
n and W1(·) is radially unbounded, then for all (t0, x0) ∈ [0,∞) × R

n, x(t) → R , {x ∈ R
n : W (x) = 0}

as t→ ∞.

Definition 2 (Integral Input-to-State Stability [17]): Consider the system

ẋ = f(t, x, u) (3)

where x ∈ D ⊆ R
n such that 0 ∈ D,and f : [0,∞)×D×Du → R

n is piecewise continuous in t and locally Lipschitz in x and

u, uniformly in t. The inputs are assumed to be measurable and locally essentially bounded functions u : R≥0 → Du ⊆ R
m.

Given any control u ∈ Du and any ξ ∈ D0 ⊆ D, there is a unique maximal solution of the initial value problem ẋ = f(t, x, u),

x(t0) = ξ. Without loss of generality, assume t0 = 0. The unique solution is defined on some maximal open interval, and it is

denoted by x(·, ξ, u). System (3) is locally integral input-to-state stable (LiISS) if there exist functions α, γ ∈ K and β ∈ KL
such that, for all ξ ∈ D0 and all u ∈ Du, the solution x(t, ξ, u) is defined for all t ≥ 0 and

α(‖x(t, ξ, u)‖) ≤ β(‖ξ‖, t) +

∫ t

0

γ(‖u(s)‖)ds (4)

for all t ≥ 0. Equivalently, system (3) is LiISS if and only if there exist functions β ∈ KL and γ1, γ2 ∈ K such that

‖x(t, ξ, u)‖ ≤ β(‖ξ‖, t) + γ1

(
∫ t

0

γ2(‖u(s)‖)ds
)

(5)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du.
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Definition 3 (iISS-Lyapunov [18],[19]): A C1 function V : D → R is called an iISS-Lyapunov function for system (3) if

there exist functions α1, α2, σ ∈ K, and a continuous positive definite function α3, such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (6)

for all x ∈ D and

V̇ ≤ −α3(‖x‖) + σ(‖u‖) (7)

for all x ∈ D and all u ∈ Du.

Definition 4 (Smooth Dissipativity [19]): System (3) with output h is dissipative if there exists a C1, proper and positive

definite function V , together with a σ ∈ K and a continuous positive definite function α4, such that

V̇ ≤ −α4(‖h(x(t, ξ, u))‖) + σ(‖u‖) (8)

for all x ∈ D and all u ∈ Du. If this property holds with a V that is also smooth, system (3) with output h is said to be

smoothly dissipative. Finally, if (8) holds with h = 0, i.e., there exists a smooth proper and positive definite V , and a σ ∈ K,

so that

V̇ ≤ σ(‖u‖) (9)

holds for all x ∈ D and all u ∈ Du, the system (3) is said to be zero-output smoothly dissipative.

Definition 5 (Weakly Zero-Detectability [19] ): Let an output for the system (3) be a continuous map h : D → R
p, with

h(0) = 0. For each initial state ξ ∈ D0, and each input u ∈ Du, let y(t, ξ, u) be the corresponding output function; i.e.,

y(t, ξ, u) = h(x(t, ξ, u)), defined on some maximal interval [0, Tξ,u). The system (3) with output h is said to be weakly

zero-detectable if, for each ξ such that Tξ,0 = ∞ and y(t, ξ, 0) ≡ 0, it must be the case that x(t, ξ, 0) → 0 as t→ ∞.

Definition 6 (0-input locally uniformly asymptotically stable [20]): The system (3) is 0-input locally uniformly asymptoti-

cally stable (0-LUAS), if the unforced system

ẋ = f(t, x, 0) (10)

is LUAS.

We are now ready to present our work on the specific type of systems studied here, namely, electromagnetic actuators. We

first recall a well known nonlinear model of this system.

III. SYSTEM MODELLING

Following e.g., [3], [11], we consider the nonlinear electromagnetic actuator model

md2x
dt2 = k(x0 − x) − η dx

dt − ai2

2(b+x)2 + fd

u = Ri+ a
b+x

di
dt − ai

(b+x)2
dx
dt , 0 ≤ x ≤ xf ,

(11)

where, x represents the armature position physically constrained between the initial position of the armature 0, and the maximal

position of the armature xf , dx
dt represents the armature velocity, m is the armature mass, k the spring constant, x0 is the initial

length of the spring, η is the damping coefficient (assumed to be constant), ai2

2(b+x)2 represents the electromagnetic force (EMF)

generated by the coil, a, b being constant parameters of the coil, fd a constant term modelling disturbance forces, e.g. static

friction, R the resistance of the coil, L = a
b+x the coil inductance (assumed to be armature-position dependent), ai

(b+x)2
dx
dt

represents the back EMF. Finally, i denotes the coil current, di
dt its time derivative and u represents the control voltage applied

to the coil.
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IV. ADAPTIVE NONLINEAR BACKSTEPPING CONTROL

A. iISS Adaptive Backstepping Controller

Consider the dynamical system (11), and let us define the state vector z := [z1 z2 z3]
T = [x ẋ i]T . The objective of the

control is to make the variables (z1, z2) track a sufficiently smooth (at least C2) time-varying position and velocity trajectories

zref
1 (t), zref

2 (t) =
dzref

1 (t)
dt that satisfy the following constraints:

zref
1 (t0) = z1int

, zref
1 (tf ) = z1f

,

żref
1 (t0) = żref

1 (tf ) = 0,

z̈ref
1 (t0) = z̈ref

1 (tf ) = 0

(12)

where t0 is the starting time of the trajectory, tf is the ending time, z1int
is the initial position and z1f

is the final position.

We want to design a controller that achieves the tracking objective in the presence of model parametric uncertainties, which

makes the problem more challenging.

Let us first write the system (11) in the following way:

ż1 = z2

ż2 = k
m (x0 − z1) − η

mz2 − a
2m(b+z1)2

z2
3 + fd

m

ż3 = − R
a

b+z1

z3 + z3

b+z1
z2 + u

a
b+z1

(13)

Consider the system in (13) with constant uncertainty in the spring constant k, the damping coefficient η and the additive

disturbance fd. Since the parameters are unknown, we will use the certainty equivalence principle [21] and define (obtained

via the constructive proof of Lemma 1) the control input u where the parameters k, η, fd are replaced by their estimates k̂,

η̂ and f̂d:

u = a
b+z1

(

R(b+z1)
a z3 − z2z3

(b+z1)
+ 1

2z3

(

a
2m(b+z1)2

(z2 − zref
2 ) − c2(z

2
3 − ũ)

)

)

+ 2mz2

z3

(

k̂
m (x0 − z1) + η̂

mz2 + f̂d

m + c3(z1 − zref
1 ) + c1(z2 − zref

2 ) + κ1(z2 − zref
2 )‖ψ‖2

2 − żref
2

)

+m(b+z1)
z3

((

k̂
m (x0 − z1) + η̂

mz2 + f̂d

m − a
2m(b+z1)2

z2
3 − żref

2

)(

c1 + κ1‖ψ‖2
2 + η̂

m

)

+ η̂
m ż

ref
2

)

+m(b+z1)
z3

(

2κ1(z2 − zref
2 )

(

(x0−z1)(−z2)
m2 +

z2

(

k̂
m

(x0−z1)+
η̂
m

z2+
f̂d
m

−
az2

3
2m(b+z1)2

)

m2

))

−κ2(z
2
3 − ũ)

∣

∣

2m(b+z1)
2

a

∣

∣

2
[

∣

∣c1 + κ1‖ψ‖2
2 + η̂

m

∣

∣

2
+

∣

∣2κ1(z2 − zref
2 )

∣

∣

2∣
∣

z2

m2

∣

∣

2
]

‖ψ‖2
2

−κ3(z
2
3 − ũ)

∣

∣

2m(b+z1)
2

a

∣

∣

2‖ψ‖2
2 + m(b+z1)

z3

(

− k̂
mz2 − z̈ref

2 + c3(z2 − zref
2 )

)

(14)

with
ũ = 2m(b+z1)

2

a

(

k̂
m (x0 − z1) + η̂

mz2 + f̂d

m + c3(z1 − zref
1 ) + c1(z2 − zref

2 ) − żref
2

)

+ 2m(b+z1)
2

a

(

κ1(z2 − zref
2 )‖ψ‖2

2

) (15)

where ψ ,

[

x0−z1

m − z2

m
1
m

]T

.

We can now state the following lemma.

Lemma 1: Consider the closed-loop dynamics given by (13), (14) and (15), with constant but unknown parameters k, η, fd

and the parameter error vector ∆ ,

[

k − k̂ η − η̂ fd − f̂d

]T

. Then, there exist positive gains c1, c2, c3, κ1, κ2 and κ3

such that (z1(t), z2(t)) are uniformly bounded and the system (13) is locally integral input-to state stable (LiISS) with respect

to (∆, ∆̇).
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Proof: Consider the mechanical subsystem that consists of only the first two equations of (13) with the virtual control

input ũ := z2
3 :

ż1 = z2

ż2 = k
m (x0 − z1) − η

mz2 + fd

m − a
2m(b+z1)2

ũ
(16)

Defining the Lyapunov function Vsub = c3

2 (z1 − zref
1 )2 + 1

2 (z2 − zref
2 )2, with c3 > 0, we would like to design ũ so that

V̇sub = −c1(z2 − zref
2 )2 along the trajectories of (16), but since the system parameters k, η and fd are unknown, we design

the virtual input to be ũ given by (15). Inserting ũ from (15) into V̇sub, we obtain

V̇sub = c3(z1 − zref
1 )(ż1 − żref

1 ) + (z2 − zref
2 )(ż2 − żref

2 )

= (z2 − zref
2 )(c3(z1 − zref

1 ) + k
m (x0 − z1) − η

mz2 − żref
2 − a

2m(b+z1)2
ũ)

= −c1(z2 − zref
2 )2 + (z2 − zref

2 )( (k−k̂)(x0−z1)
m − (η−η̂)z2

m + fd−f̂d

m ) − κ1(z2 − zref
2 )2‖ψ‖2

2

(17)

Using the definitions of the vectors ψ and ∆, we have

V̇sub ≤ c1(z2 − zref
2 )2 + |z2 − zref

2 |‖ψT ‖2‖∆‖2 − κ1(z2 − zref
2 )2‖ψ‖2

2

≤ −c1(z2 − zref
2 )2 − κ1

[

|z2 − zref
2 |‖ψ‖2 − ‖∆‖2

2κ1

]2

+
‖∆‖2

2

4κ1

≤ −c1(z2 − zref
2 )2 +

‖∆‖2
2

4κ1

(18)

where ∆ =
[

k − k̂ η − η̂ fd − f̂d

]T

is the vector holding the discrepancy between actual system parameters and estimated

parameters. Note that we have made use of the nonlinear damping term −κ1(z2 − zref
2 )2‖ψ‖2

2 to attain a negative quadratic

term of ψ and ∆

(

i.e.,−κ1

[

|z2 − zref
2 |‖ψ‖2 − ‖∆‖2

2κ1

]2
)

and a positive term that is a function of ∆ only
(

‖∆‖2
2

4κ1

)

. Next, we

define the Lyapunov function for the full system: Vaug = Vsub +
(z2

3−ũ)2

2 . Taking the derivative of Vaug along the trajectories

of the full system, leads to the following inequality:

V̇aug ≤ −c1(z2 − zref
2 )2 +

‖∆‖2
2

4κ1
+ (z2

3 − ũ)
(

−a(z2−zref
2 )

2m(b+z1)2
− ˙̃u

)

+(z2
3 − ũ)(2z3(−R(b+z1)

a z3 + z2z3

(b+z1)
+ b+z1

a u))
(19)

where ˙̃u writes as
˙̃u = 4m(b+z1)z2

a ( k̂
m (x0 − z1) − η̂

mz2 + f̂d

m + c3(z1 − zref
1 )

+c1(z2 − zref
2 )) + 4m(b+z1)z2

a (κ1(z2 − zref
2 )‖ψ‖2

2 − żref
2 )

+ 2m(b+z1)
2

a (
˙̂
k
m (x0 − z1) −

˙̂η
mz2 +

˙̂
fd

m ) + 2m(b+z1)
2

a (( k
m (x0 − z1)

− η
mz2 + fd

m − a
2m(b+z1)2

z2
3 − żref

2 )(c1 + κ1‖ψ‖2
2 − η̂

m ) − η̂
m ż

ref
2 )

+ 2m(b+z1)
2

a (2κ1(z2 − zref
2 )( (x0−z1)−z2

m2

+
z2(

k
m

(x0−z1)−
η
m

z2+
fd
m

−
az2

3
2m(b+z1)2

)

m2 ))

+ 2m(b+z1)
2

a (− k̂
mz2 − z̈ref

2 + c3(z2 − zref
2 ))

(20)

By substituting the control input given in (14) into (19), we attain the following inequality:

V̇aug ≤ −c1(z2 − zref
2 )2 +

‖∆‖2
2

4κ1
− c2(z

2
3 − ũ)2

−(z2
3 − ũ)

(

2m(b+z1)
2

a

( (k−k̂)(x0−z1)
m + (η−η̂)z2

m + fd−f̂d

m

)(

c1 + κ1‖ψ‖2
2 + η̂

m

)

)

−(z2
3 − ũ)

(

2κ1(z2 − zref
2 )

( 2z2(b+z1)
2

ma

)( (k−k̂)(x0−z1)
m + (η−η̂)z2

m + fd−f̂d

m

)

)

−(z2
3 − ũ)

( 2m(b+z1)
2

a

)( ˙̂
k
m (x0 − z1) +

˙̂η
mz2 +

˙̂
fd

m

)

−κ3(z
2
3 − ũ)2

∣

∣

2m(b+z1)
2

a

∣

∣

2‖ψ‖2
2

−κ2(z
2
3 − ũ)2

[

∣

∣

2m(b+z1)
2

a

∣

∣

2∣
∣c1 + κ1‖ψ‖2

2 + η̂
m

∣

∣

2
+

∣

∣2κ1(z2 − zref
2 )

∣

∣

2∣
∣

2z2(b+z1)
2

ma

∣

∣

2
]

‖ψ‖2
2

(21)
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Using the aforementioned definitions of the vectors ψ and ∆, and noting that ∆̇ =
[

− ˙̂
k − ˙̂η − ˙̂

fd

]T

, we can further bound

V̇aug in the following way:

V̇aug ≤ −c1(z2 − zref
2 )2 +

‖∆‖2
2

4κ1
− c2(z

2
3 − ũ)2

+
∣

∣z2
3 − ũ

∣

∣

∣

∣

2m(b+z1)
2

a

∣

∣

∣

∣c1 + κ1‖ψ‖2
2 + η̂

m

∣

∣‖ψT ‖2‖∆‖2

+
∣

∣z2
3 − ũ

∣

∣

∣

∣2κ1(z2 − zref
2 )

∣

∣

∣

∣

2z2(b+z1)
2

ma

∣

∣‖ψT ‖2‖∆‖2

+
∣

∣z2
3 − ũ

∣

∣

∣

∣

2m(b+z1)
2

a

∣

∣‖ψT ‖2‖∆̇‖2

−κ3(z
2
3 − ũ)2

∣

∣

2m(b+z1)
2

a

∣

∣

2‖ψ‖2
2

−κ2(z
2
3 − ũ)2

[

∣

∣

2m(b+z1)
2

a

∣

∣

2∣
∣c1 + κ1‖ψ‖2

2 + η̂
m

∣

∣

2
+

∣

∣2κ1(z2 − zref
2 )

∣

∣

2∣
∣

2z2(b+z1)
2

ma

∣

∣

2
]

‖ψ‖2
2

(22)

By making use of the nonlinear damping terms the same way as they have been utilized in deriving (18), we obtain

V̇aug ≤ −c1(z2 − zref
2 )2 +

‖∆‖2
2

4κ1
− c2(z

2
3 − ũ)2

−κ2

[

∣

∣z2
3 − ũ

∣

∣

∣

∣

2m(b+z1)
2

a

∣

∣

∣

∣c1 + κ1‖ψ‖2
2 + η̂

m

∣

∣‖ψ‖2 − ‖∆‖2

2κ2

]2

+
‖∆‖2

2

4κ2

−κ2

[

∣

∣z2
3 − ũ

∣

∣

∣

∣2κ1(z2 − zref
2 )

∣

∣

∣

∣

2z2(b+z1)
2

ma

∣

∣‖ψ‖2 − ‖∆‖2

2κ2

]2

+
‖∆‖2

2

4κ2

−κ3

[

∣

∣z2
3 − ũ

∣

∣

∣

∣

2m(b+z1)
2

a

∣

∣‖ψ‖2 − ‖∆̇‖2

2κ3

]2

+
‖∆̇‖2

2

4κ3

(23)

Finally, using the inequality (23), we have

V̇aug ≤ −c1(z2 − zref
2 )2 − c2(z

2
3 − ũ)2 +

(

1
4κ1

+ 1
2κ2

)

‖∆‖2
2 +

‖∆̇‖2
2

2κ3
(24)

It is easy to see that the uncertain system can be expressed in the following nonlinear time-varying form:

ė = f(t, e, ∆̃) (25)

with e ∈ De, ∆̃ ∈ D∆̃, where e := [z1 − zref
1 z2 − zref

2 z2
3 − ũ]T and ∆̃ = [∆ ∆̇]T . Then, by considering the output map

defined by h = [z2 − zref
2 z2

3 − ũ]T , we can show by analyzing the zero-dynamics of (25) with h ≡ 0, ∆̃ ≡ 0, that the

system (25) with h is weakly zero-detectable. Indeed, ∆̃ ≡ 0 means that we are analyzing the zero dynamics of the feedback

system in the nominal case. Now considering the output condition h ≡ 0, together with the dynamics (15), and (16), leads to

the following zero dynamics

ż1 = z2

ż2 = żref
2 − c3(z1 − zref

1 ) − c1(z2 − zref
2 ) (26)

Writing the second equation in (26) in terms of z1 and zref
1 only, and introducing ez1

:= z1 − zref
1 , we obtain

ëz1
+ c1ėz1

+ c3ez1
= 0 (27)

It can be seen that if c3 and c1 are selected such that

−c1 ±
√

c21 − 4c3 < 0 (28)

the roots of the characteristic equation of (27) would be negative, which in turn would imply lim
t→∞

z1 = zref
1 starting from

any initial condition z1(t0).

Next, using the weakly-zero- detectability property together with inequality (24), we can conclude that the system (25) is LiISS

with respect to the input ∆̃. To do so, we proceed as follows:

First, inequality (24), with ∆̃ = 0, leads to

V̇aug ≤ −c1(z2 − zref
2 )2 − c2(z

2
3 − ũ)2 (29)
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which by LaSalle-Yoshizawa Theorem (Definition 1), implies that the states of the error dynamics (25) converge asymptotically

to the set {e ∈ De, s.t. h(e) = 0}, which by the zero-dynamics analysis presented above implies that e → 0 asymptotically.

This proves the 0-LUAS of the error dynamics (25). Next, using (24), we can write

V̇aug ≤ −c1(z2 − zref
2 )2 − c2(z

2
3 − ũ)2 +

(

1
4κ1

+ 1
2κ2

)

‖∆‖2
2 +

‖∆̇‖2
2

2κ3

≤
(

1
4κ1

+ 1
2κ2

)

‖∆‖2
2 +

‖∆̇‖2
2

2κ3

(30)

which by Definition 4 with the input ∆̃, implies that the error dynamics (25) are zero-output smooth dissipative.

Now, since the system (25) is 0-LUAS, by a converse Lyapunov theorem (e.g., [16]), there exists a C1 function V0 for the

system (3) such that

α1(e) ≤ V0(e) ≤ α2(e) (31)

∂V0

∂t + ∂V0

∂e f(t, e, 0) ≤ −α0(‖e‖), ∀e ∈ De (32)

holds for some continuous positive definite functions α1, α2, α0 ∈ K. If we take the derivative of V0 along the trajectories of

the whole system (25), we have

∂V0

∂t + ∂V0

∂e f(t, e, ∆̃) = ∂V0

∂t + ∂V0

∂e f(t, e, 0) + ∂V0

∂x [f(t, e, ∆̃) − f(t, e, 0)] (33)

Since V0 is continuously differentiable and we consider e in a compact subset De, there exists a positive constant KV0
such

that
∥

∥

∥

∂V0

∂e

∥

∥

∥
≤ KV0

, ∀e ∈ De (34)

Moreover, the system (25) is locally Lipschitz in e and ∆̃, uniformly in t. This implies that there exists a positive constant

L∆̃(e) such that
∥

∥

∥
f(t, e, ∆̃) − f(t, e, 0)

∥

∥

∥
≤ L∆̃(e)‖∆̃‖ (35)

∀e ∈ De, ∀∆̃ ∈ D∆̃, ∀t ≥ 0. Since e ∈ De, where De is compact, Lumax
:= maxe∈De

L∆̃(e) exists. Thus, using the inequality

(32), and the definitions for KV0
and Lumax

, we have

∂V0

∂t + ∂V0

∂e f(t, e, 0) + ∂V0

∂e [f(t, e, ∆̃) − f(t, e, 0)] ≤ −α0(‖e‖) +KV0
Lumax

‖∆̃‖ (36)

After defining the K-function σ0(s) = KV0
Lumax

s, for s ∈ R≥0, we rewrite (36) as

V̇0 ≤ −α0(‖e‖) + σ0(‖∆̃‖) (37)

Thus, by Definition 3, V0 is an iISS Lyapunov function for the system (25). Consider the iISS Lyapunov function V0 for system

(25) satisfying (31) and (37). Then, by sufficiency discussion in [18] and [19], system (25) is locally iISS (LiISS).

Finally, the LiISS property implies that there exist functions α ∈ K, β ∈ KL and γ ∈ K, such that, for all e(0) ∈ De and

∆̃ ∈ D∆̃, e is defined and

‖e(t)‖ ≤ β(‖e(0)‖, t) + α(

∫ t

0

γ(‖∆̃‖))ds (38)

for all t ≥ 0.
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B. Estimation Module

The motivation behind proving that the system is LiISS with respect to (∆, ∆̇) is that, if by an estimation method, the

vectors ‖∆‖ and ‖∆̇‖ can be taken to 0, then we can claim via (38) that the system remains stable. The advantage of using

this method is that it provides modularity in the sense that the control law can be designed independently from the estimation

law [21]. Thus, it would be sufficient to design an estimation law that will take ‖∆‖ and ‖∆̇‖ to 0 over the cycles of motion

of the armature. Indeed, electromagnetic actuators are usually used in iterative processes. We will take advantage of this cyclic

use of the actuators to estimate the uncertain parameters over cycles. To do so, we propose to use gradient descent-based

estimation filters, that will be switched on during the life cycle of the actuator based on a fault detection signal. The fault

detection signal that we use is simply based on a cost function measurement, at the final desired motion time tf , the distance

between the desired trajectory zref
1 , zref

2 (refer to Section IV-A) that the armature can track under nominal conditions, and

the actual trajectories of the armature. The cost function that we consider here is given by

Q = q1(z1(tf ) − z1(tf )ref )2 + q2(z2(tf ) − zref
2 (tf ))2, q1, q2 > 0 (39)

When the cost function (39) is higher than a predefined fault-threshold, the filters are switched on to estimate the uncertainties

that caused the fault, i.e., the tracking performance degradation. The filters start estimating the uncertainties iteratively, in the

sense that at each new iteration the filters restart their computations from their new initial conditions given by the final values

of the estimated uncertainties obtained at the previous iteration. This iterative estimation process continues until the uncertain

parameters are estimated which in turn implies that the cost function drops back below the fault-threshold.

Let us first recall the gradient descent-based filters [21]. We consider the three uncertain parameters k, η, fd. These parameters

enter the dynamics through the following equation:

ż2 = − az2
3

2m(z1 + b)2
+

[

x0−z1

m
−z2

m
1
m

]T











k

η

fd











(40)

The main problem with the estimation for the system at hand is that, there is only a single equation through which the uncertain

parameters enter the dynamics (40). Due to this model structural constraint, we can estimate only one parameter at a time.

Following [21], the filters to estimate each parameter k, η and fd are given bellow:

- For the parameter k the estimate k̂ is computed as:

Ω̇ = (A0 − λ (x0−z1)
2

m2 P )Ω + (x0−z1)
m

Ω̇0 = (A0 − λ (x0−z1)
2

m2 P )(Ω0 + z2)−ηz2

m − fd

m +
a/2z2

3

m(z1+b)2

ε = z2 + Ω0 − Ωk̂

˙̂
k = Γ Ωε

1+νΩ2 .

(41)

- For the parameter η the estimate η̂ is computed as:

Ω̇ = (A0 − λ
z2
2

m2P )Ω− z2

m

Ω̇0 = (A0 − λ
z2
2

m2P )(Ω0 + z2) − k (x0−z1)
m − fd

m +
a/2z2

3

m(z1+b)2

ε = z2 + Ω0 − Ωη̂

˙̂η = Γ Ωε
1+νΩ2 .

(42)
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Parameter Value

m 0.27 [kg]

R 6 [Ω]

η 7.53 [kg/sec]

x0 8 [mm]

k 158 [N/mm]

a 14.96× 10−6 [Nm2/A2]

b 4× 10−5 [m]

TABLE I: Numerical values of the mechanical parameters

- For the parameter fd the estimate f̂d is computed as:

Ω̇ = (A0 − λ 1
m2P )Ω + 1

m

Ω̇0 = (A0 − λ 1
m2P )(Ω0 + z2)−ηz2

m − k (x0−z1)
m +

a/2z2
3

m(z1+b)2

ε = z2 + Ω0 − Ωf̂d

˙̂
fd = Γ Ωε

1+νΩ2 .

(43)

In the above equation A0, P = PT > 0 are constant design matrices that satisfy the Lyapunov equation PA0 + A0P = −I ,

and λ > 0, ν > 0 are design variables.

We can now state the following result.

Lemma 2: Consider the closed-loop dynamics given by (13), (14) and (15), with one constant unknown parameter k, η, or

fd. Then, there exist positive gains c1, c2, c3, κ1, κ2 and κ3 such that the closed-loop dynamics given by (13), (14), (15)

and the filters (41), (42), (43) are bounded with asymptotically decreasing tracking errors, and that the unknown parameter is

asymptotically estimated.

Proof: The boundedness of the estimation errors ∆, ∆̇ over a finite time interval, together with their asymptotic

convergence is known ([21], Lemma 6.5). Next, the boundedness and the asymptotic convergence of the tracking errors e

is concluded from the boundedness and convergence of ∆̃ = [∆, ∆̇]
′

together with the inequality (38) of Lemma 1.

Remark 1: The feedback controller (14) and (15) assumes the knowledge of the state vector z. Cheap, precise and small

current sensors are easily available. If the specific application allows it, the armature position can be measured using special

sensors, which are usually expensive and bulky, e.g. laser sensors, and the velocity can then be obtained by simple numerical

filtering. In some specific applications where it is not possible to incorporate a position sensor, e.g. combustion engines, and

artificial heart valves, another solution is to use observers to estimate the armature position and velocity from the current

measurements, e.g. using an extension of the Luenberger linear estimator to nonlinear systems presented in [22], or the

sliding-mode based observers used in [8].

V. SIMULATIONS

We show here the behavior of the proposed approach on the example of electromagnetic actuator presented in [12], where the

model (11) is used with the numerical values of Table I. The desired trajectory has been selected as the 5th order polynomial

xref (t) =
∑5

i=0 ai(t/tf )i, where the ai’s have been computed to satisfy the boundary constraints xref (0) = 0.2, xref (tf ) =

xf , ẋ
ref (0) = ẋref (tf ) = 0, ẍref (0) = ẍref (tf ) = 0, with tf = 0.5 sec, xf = 0.7 mm. To make the simulation tests more

realistic we assumed that a random white noise with a maximum excursion of 0.01 mm is added to the position measurement
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signal. Indeed, in practical settings the armature position could be measured by precise position sensors, e.g. laser sensors,

which can generate noisy signals due for example to electrical noises or mechanical vibrations of the armature. We also added

a random white noise to the current measurements with an excursion of 2 × 10−6 A. This is a reasonable approximation of

the electrical noises in the presently available current sensors, e.g. hall-effect sensors, since these sensors, if properly shielded,

have practically very small noise appearing on their output signal. We assumed that the armature velocity is computed from

the position signal by direct differentiation. All the measurements are simulated with a sampling rate of 1 ms. Furthermore,

we imposed saturations on the voltage signal between 0 and 60 volts. Finally, to test the controller performance when dealing

with model structural uncertainties, we added in the direct model used in the simulations, the effect of eddy currents on the

coil. Following [23], eddy current effect was modelled by adding a Reddy-Leddy circuit in parallel with the coil’s electrical

circuit. In this case, the model (11) is modified as follows:

md2x
dt2 = k(x0 − x) − η dx

dt − ai2

2(b+x)2 + fd

u = R(ieddy + i) + a
b+x

di
dt − ai

(b+x)2
dx
dt

dieddy

dt = 1
Leddy

(u−R(i+ ieddy) −Reddyieddy)

(44)

where, ieddy denotes eddy current. It was shown in [23], via experimental tests, that the model (44) is a good approximation of

eddy current effect. We tuned the values of the resistance Reddy and the inductance Leddy to have an eddy current maximum

amplitude corresponding to 10% of the coil current i at a nominal functioning of the actuator ( Reddy = 10 Ω, Leddy = 10 H).

We also point out here that in this model we do not consider the saturation region of the flux linkage in the magnetic field

generated by the coil, since we assume a current and armature motion ranges within the linear region of the flux, which is

a reasonable assumption for many applications, e.g. [3], [23]. To test the controller performance we simulate the following

scenario: we consider uncertainties in the model appearing sequentially over time. First, at t = 1 sec, we consider that

the parameter k has an error ∆k = −5 N/mm. Next, we consider that at t = 45 sec, the parameter η sustains an error

∆η = 2 kg/sec, finally at t = 50 sec, we assume a disturbance force fd of −50N (static friction force). We simulate the

controller (14) and (15) with the gains c1 = 100, c2 = 100, c3 = 2500, κ1 = 0.25, κ2 = 0.02, κ3 = 0.25. For the filters (41),

(42), (43), we use the gains A0 = −0.5, P = 1, λ = 1, Γ = 100. We underline again here that, due to the structure of the

model, we can estimate only one parameter at the time (see Section IV-B). However, in realistic scenarios we do not know

which one of these parameters is changing. For this reason, we need to find a way to detect which uncertainty is happening,

to do so we propose a simple, yet effective way to detect the type of uncertainty for this particular case of actuators. The

general theory of fault detection and identification (FDI) is more complicated (e.g. [24]) and we are not pretending here to

propose a new FDI solution for the general case. Indeed, as we mentioned before in Section IV-B, we use the cost function

(39) to detect if there is a fault happening in the actuator. After a fault has been detected, we simply swap between the three

filters (41), (42) and (43). We apply the first filter (41) for the first iteration after a fault has been detected, and compute the

associated cost function value Qk̂, then we reset the values of the uncertain parameters to their nominal values and apply the

second filter (42) at the second iteration, we then compute the associated cost function Qη̂ . Finally, at the third iteration we

reset again all the uncertain parameters to their nominal values and apply the third filter (43), we compute the associated cost

value Qf̂d. Then we simply compare these three cost values and we select the filter that has the least cost value. The idea

behind this logic is that for this particular system we noticed that, if an uncertainty occurred for k then the filter (41) leads the

the best cost function and similarly for the two other uncertainties. So even if the faults are not observable directly from the

acceleration output because they all enter the acceleration equation in a linear combination, they are still observable via the
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Fig. 1: Feedback control block diagram

cost function output. We now show the efficiency of this simple selection method below. The overall control feedback setting

is summarized on the block diagram on figure 1. First, we consider that the uncertainties appear abruptly, i.e., step changes

due to a sudden fault in the actuator. We see on figures 2(a), 2(b) and 2(c) that at the instants 1 sec, 45 sec, and 50 sec when

the uncertainties occur, the position tracking performances is lost for few iterations (the obtained trajectories in dashed-line

start diverging from the desired trajectories in solid-line), but then it is recovered after the fault value has been estimated. This

can be seen clearly on figures 2(a) and 2(b) since after the occurrence of the k-fault at t = 1 sec the position tracking was lost

but it was recovered afterwards, as seen on the last iteration just before the occurrence of the η-fault at t = 45 sec. Similar

tracking recovery can be observed on figures 2(b) and 2(c) for η and fd faults. The same loss of performance occurs on the

velocity tracking as shown on figures 3(a), 3(b) and 3(c). The associated cost function (39) is plotted in figures 4. The jumps

in the cost function due to the occurrence of the first k-uncertainty at t = 1 sec and the third fd-fault at t = 50 sec are clear

on figure 4. The other jump at 45 sec due to the η-uncertainty is clear on the zoom shown on figure 4-bottom.

Next, we display on figures 5(a), 5(b), and 5(c), the behavior of the estimation filters. The filters manage to recover the actual

value of the uncertainties quickly. The simple logic that we described earlier to automatically identify the current uncertainty

and then select the proper filter has shown good performance, since after each fault the selection logic swaps through the

different filters and select the best one, as seen for example on figure 5(b), where we see that after the occurrence of the

η-uncertainty the value of η̂ fluctuates while the selection logic is trying the three different filters and quickly the appropriate
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Fig. 2: Desired vs. actual position of the armature

filter, the η-filter in this case, is selected and the estimation of the actual η is achieved within 5 sec of the fault occurrence.

Similarly, we see on figure 5(c) that the fd uncertainty is estimated after few iterations subsequent to the fault occurrence.

Finally, we report on figure 6, the control signal during a sample of iterations, to show that the imposed saturation limits are

not violated, and that the simulated measurement noise appears on the feedback control signal, but this does not deteriorate

the overall performance of the controller.

We also wanted to test the case of time-varying uncertainties, even though, the presented proofs do not explicitly take into

account time-varying uncertainties. We tested the following scenario: First, at t = 1 sec, we consider that the spring stiffness

k has a time-varying error ∆k = −5(1 − exp(−0.5(t − 1))) [N/mm], this error can model the progressive deterioration

of the spring. Then, we consider that at t = 50 sec, the parameter η starts drifting following the time function ∆η =

2(1− exp(−0.5(t− 50))) [kg/sec]. which can model a slowly appearing viscous force. The obtained results are displayed on

figures 7, 8(a) and 8(b).

It is clear from figure 7 that the cost function increase, happens gradually in this case, due to the nature of the fault.

Furthermore, we see on figures 8(a), 8(b), that the controller is capable of tracking these time-varying uncertainties.

VI. CONCLUSION

We have studied in this paper the problem of adaptive control for electromagnetic actuators. We have developed a trajectory

tracking controller based on an adaptive backstepping approach. The proposed controller uses a modular adaptive design,

based on an iISS backstepping controller complemented with a gradient descent-based estimation filters. The controller
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Fig. 5: Parameters’ estimates (time-invariant case)
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presented here deals with constant uncertainties with linear parametrization. It ensures asymptotic position and velocity

tracking error convergence, as well as asymptotic estimation error convergence. We have reported some numerical results

showing the performance of the iISS-backstepping adaptive controller. Possible future directions could include extension of

the results to explicitly take into account time-varying uncertainties in the control design, as well as uncertainties that appear

nonlinearly in model dynamics, e.g. coefficient b of the EMF term. Other possible directions include comparison of model-

based approaches with other robust model-free approaches such as extremum seeking [15], in terms of estimation performance,

tracking performance and convergence speed.
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Fig. 8: Parameters’ estimates (time-variant case)
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