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Abstract—We analyze the secrecy outage probability of selec-
tive relaying wiretap channels with K decode-and-forward (DF)
relays and N collaborative eavesdroppers. In the main channel,
we consider a two-hop relay network where the best relay is
selected to transmit and the relay link is combined with the direct
source-to-destination link at the destination. In the eavesdropper
channel, we consider that the eavesdroppers can collaborate to
exchange the information obtained from the source and relays.
Different from previous works, we introduce an eavesdropping
probability measure to model different intercepting capabilities
of the malicious nodes. For this network, we derive new closed-
form expressions for the secrecy outage probability in Rayleigh
fading channels. The impact of the number of eavesdroppers
and the eavesdropping probabilities are accurately reflected in
the array gain of the asymptotic secrecy outage probability.

I. INTRODUCTION

The world of wireless communications has experienced un-
precedented growth in recent years, spurred by the popularity
of intelligent devices and the exuberant demand for multimedia
content [1]. Given the convenience and ubiquity of wireless
connections, it is anticipated that large volumes of private
and user-sensitive information will be transmitted over the
air. Indeed, designing a robust security service will be a top
priority in next generation wireless networks.

As a complement to traditional cryptographic techniques,
physical layer security has been developed to promote secure
data transmission by exploiting channel characteristics of the
wireless medium [2, 3]. In seminal studies [4], the wiretap
channel was introduced as the fundamental model for physical
layer security and the secrecy capacity was defined as the
maximum rate at which messages are reliably transmitted to
the legitimate receiver without being intercepted by unintended
parties. Inspired by these studies, various secure transmission
strategies based on multi-input multi-output (MIMO) tech-
niques have been investigated such as beamforming (e.g., [5]),
artificial noise (e.g., [6]), and antenna selection (e.g., [7, 8]).

Recently, relay-aided physical layer security has attracted
considerable attention as an alternative paradigm to MIMO
techniques. Specifically, due to its low complexity nature,
the advantages of selective relaying in wiretap channels have
been investigated in [9–12]. Considering the network with a
single legitimate destination and a single eavesdropper, [9] and
[10] evaluated the intercept probability and security-reliability
tradeoff, respectively. Considering the network with multiple
legitimate destinations and multiple eavesdroppers without a
direct link, [11] proposed a number of relay selection criteria
and derived the secrecy outage probability. Most recently, [12]

characterized the benefits of selective relaying for security
improvement in cognitive radio networks. While [9–12] have
uncovered key insights into relay selection in wiretap channels,
a common assumption in these studies is that the eavesdrop-
per(s) are always listening to the main channel. However, in
practical wireless applications with multiple distributed users,
the eavesdroppers may not always be perfectly synchronized
with the source and/or relays to successfully eavesdrop on their
transmissions [13]. Furthermore, when considering collabora-
tive eavesdropping, some communication resources used for
information exchange between the eavesdroppers may prevent
them from always listening to the main channel.

In this paper, we analyze the secrecy performance of relay
selection in K-relay network with N eavesdroppers. In this
network, we assume that the eavesdroppers can collaborate
to share information obtained from the source and the relay
with each other. Importantly, we describe the cost of this
collaboration using an eavesdropping probability which is
modeled as a Bernoulli random variable. The use of the eaves-
dropping probability makes this work particularly suitable for
the scenario where eavesdroppers do not always overhear the
legitimate communication. We assume that relay selection is
adopted among K decode-and-forward (DF) relays such that
a single relay is selected to retransmit the source signal to
the destination. To quantitatively assess the impact of the
eavesdropping probability on the secrecy performance, we
derive new exact and asymptotic closed-form expressions for
the secrecy outage probability in Rayleigh fading channels.
Aided by our analysis together with numerical results, an
important conclusion is reached that the asymptotic diversity
order and array gain increases with the number of relays K.
Furthermore, the asymptotic array gain clearly demonstrates
the negative impact of increasing number of eavesdroppers
N and eavesdropping probabilities on the secrecy outage
probability.

II. PROTOCOL DESCRIPTION

We consider a wiretap relay channel, as shown in Fig. 1,
where the eavesdropper channel consists of N colluding
eavesdroppers, En (n = 1, . . . , N ), and the main channel
consists of a source node, S, a destination node, D, and K
decode-and-forward relays, Rk (k = 1, . . . , K).

In the main channel, we assume that there is a direct link
between the source and the destination and selection combin-
ing (SC) is implemented at the destination to select a single
link between the direct link and the K relay links. Selective



relaying can be implemented using a centralized approach
where the best relay with the highest end-to-end SNR, R̃, is
selected to transmit based on channel state information (CSI)
of the main channel [14].

The instantaneous received signal-to-noise ratio (SNR) of
the direct S → D link is given by

γSD =
P

N0
|hSD|2 (1)

where P is the transmit power, N0 is the variance of the
additive white Gaussian noise, and |hSD|2 is the Rayleigh
fading channel gain of the direct link. For DF relaying, the
instantaneous end-to-end SNR of the S → Rk → D relay
link is given by

γSRkD = min (γSRk
, γRkD) , (2)

where γSRk
= P

N0
|hSRk

|2 is the instantaneous SNR of the
S → Rk link with Rayleigh fading channel gain |hSRk

|2, and
γRkD = P

N0
|hSRk

|2 is the instantaneous SNR of the Rk → D

link with Rayleigh fading channel gain |hRkD|2.
Based on (1) and (2), the instantaneous received SNR with

SC at the destination is given by

γD = max(γSD, γSR1D, . . . , γSRKD). (3)

The corresponding achievable rate of the main channel can be
written as

CD = log2 (1 + γD) . (4)

In the eavesdropper channel, we consider that the eaves-
droppers attempt to eavesdrop on both the source and relay
transmissions. We assume that the eavesdroppers collaborate
to maximize the total received SNR by applying maximum-
ratio combining (MRC) across all the received signals from
the source S and the best relay R̃. Furthermore, we assign
eavesdropping probabilities to each eavesdropper to model
the probability of successfully obtaining information from the
source or relay links. These probabilities apply to collaborative
eavesdroppers where constraints on signalling synchronization,
transmission bandwidth, and channel capacity of the eaves-
dropper links may prevent them from always listening to the
main channel.

The instantaneous received SNR of the S → En link is
defined as

γSEn
= In × P

N0
|hSEn

|2, (5)

where |hSEn
|2 is the Rayleigh fading channel gain of the S →

En link, and In is a Bernoulli random variable representing the
probability pn that the eavesdropper is listening in the same
time interval as the source transmission, i.e., Pr(In = 1) = pn

and Pr(In = 0) = 1 − pn with 0 ≤ pn ≤ 1. Similarly, the
instantaneous received SNR of the R̃ → En link is given by

γR̃En
= In × P

N |hR̃En
|2, (6)

where |hR̃E |2 is the Rayleigh fading channel gain of the R̃ →
En link and In is a Bernoulli random variable representing the
probability pn that the eavesdropper is listening in the same
time interval as the relay transmission.

Fig. 1. A cooperative wiretap channel with selective decode-and-forward
relaying in the presence of N collaborative eavesdroppers.

Based on (5) and (6), the instantaneous received SNR with
MRC across all N eavesdroppers is given by

γE =
N∑

n=1

(γSEn
+ γR̃En

). (7)

The corresponding achievable rate of the eavesdropper channel
is given by

CE = log2 (1 + γE) . (8)

The achievable secrecy rate, C, is the difference between
the achievable rate of the main channel and the eavesdropper
channel, which is given by [14]

C �
[
log2

(
1 + γD

1 + γE

)]+
, (9)

where

[x]+ = max(x, 0) =
{

x, x ≥ 0
0 x < 0.

(10)

Based on (9), the secrecy outage probability is defined as
the probability that the achievable secrecy rate falls below a
specified target rate. Accordingly, the secrecy outage proba-
bility can be written as

Pr(C < R) =Pr

(
1 + γD

1 + γE
< 2R

)
, (11)

where R is the target secrecy rate. We note that the secrecy
outage probability applies to the passive eavesdropping sce-
nario where the source and relays do not know the CSI of the
eavesdropper channel.

III. STATISTICAL DISTRIBUTIONS FOR SELECTIVE

RELAYING WIRETAP CHANNELS

In this section, we present the statistical distributions of γD

and γE for Rayleigh fading channels which will be used in the
derivation of the secrecy outage probability in Section IV. We
first present the cumulative distribution function (CDF) and
probability density function (PDF) of γD based on [15]. Next,
we derive new closed-form expressions for the moment gen-
erating function (MGF) of γE from which the corresponding
PDF and CDF are derived.



In the main channel, the CDF of γD is given by [15]

FγD
(γ) = FγSD

K∏
k=1

FγSRkD

= 1 − e
− γ

γSD +
∑̃

(−1)ke
−γ

(∑k
j=1

(
1

γSR�j

+ 1
γR�j

D

))

−
∑̃

(−1)ke
−γ

(
1

γSD
+
∑k

j=1

(
1

γSR�j

+ 1
γR�j

D

))
, (12)

where FγSD
(γ) is the CDF of γSD given by

FγSD
(γ) = 1 − e

− γ
γSD , (13)

and FγSRkD
(γ) is the CDF of γSRkD given by

FγSRkD
(γ) = 1 − e

−γ

(
1

γSRk
+ 1

γRkD

)
. (14)

In (12), the average received SNRs are defined as γSD =
E[γSD], γSRk

= E[γSRk
], γRkD = E[γRkD], where E[·]

denotes the expectation, and the summation over all combina-
tions of the relay links is∑̃

=
K∑

k=1

K−k+1∑
�1=1

K−k+2∑
�2=�1+1

· · ·
K∑

�k=�k−1+1

. (15)

Based on (12), the PDF of γD can be derived as

fγD
(γ) =

1
γSD

e
− γ

γSD −
∑̃

(−1)k
k∑

j=1

(
1

γSR�j

+
1

γR�j
D

)

× e
−γ

∑k
j=1

(
1

γSR�j

+ 1
γR�j

D

)

+
∑̃

(−1)k

⎛⎝ 1
γSD

+
k∑

j=1

(
1

γSR�j

+
1

γR�j
D

)⎞⎠
× e

−γ

(
1

γSD
+
∑k

j=1

(
1

γSR�j

+ 1
γR�j

D

))
. (16)

In the eavesdropper channel, the MGF of γE is

MγE
(s) =

N∏
n=1

MγSEn
(s)MγR̃En

(s), (17)

where MγSEn
(s) is the MGF of γSEn

and MγR̃En
(s) is the

MGF of γR̃En
. We derive MGFs of γSEn

and γR̃En
based on

their respective PDFs given by [16]

fγSEn
(γ) = (1 − pn)δ(γ) +

pn

γSEn

e
− γ

γSEn u(γ), (18)

and

fγR̃En
(γ) = (1 − pn)δ(γ) +

pn

γR̃En

e
− γ

γ
R̃En u(γ), (19)

where pn is the eavesdropping probability of the nth eaves-
dropper, δ(γ) is the delta function, u(γ) is the unit step
function, and γSEn

= E[γSEn
], γR̃En

= E[γR̃En
] are the

average received SNRs. The corresponding MGFs are given
by

MγSEn
(s) =

∫ ∞

0

esγfγSEn
(γ)dγ = 1 − pn +

pn

1 − sγSEn

,

(20)

and

MγR̃En
(s) =

∫ ∞

0

esγfγR̃En
(γ)dγ = 1 − pn +

pn

1 − sγR̃En

.

(21)

We proceed to expand the MGF of γE using partial fraction
decomposition which results in

MγE
(s) =

N∏
n=1

(1 − pn +
pn

1 − sγSEn

)(1 − pn +
pn

1 − sγR̃En

)

=
N∏

n=1

(1 − sγSEn
(1 − pn))(1 − sγR̃En

(1 − pn))
(1 − sγSEn

)(1 − sγR̃En
)

=
N∏

n=1

(1 − pn)2 +
N∑

n=1

(
εpn

1 − sγSEn

+
εpn

1 − sγR̃En

)
, (22)

where we define the variables

εpn
= pn

N∏
i=1

γSEn
− (1 − pi)γR̃Ei

γSEn
− γR̃Ei

N∏
i=1
i�=n

γSEn
− (1 − pi)γSEi

γSEn
− γSEi

,

(23)

and

εpn
= pn

N∏
i=1

γR̃En
− (1 − pi)γSEi

γR̃En
− γSEi

N∏
i=1
i�=n

γR̃En
− (1 − pi)γR̃Ei

γR̃En
− γR̃Ei

.

(24)

The pdf of γE can be derived by taking the inverse Laplace
transform of (22) which results in

fγE
(γ) =δ(γ)

N∏
n=1

(1 − pn)2

+
N∑

n=1

(
εpn

γSEn

e
− γ

γSEn +
εpn

γR̃En

e
− γ

γ
R̃En

)
u(γ),

(25)

and the corresponding CDF is calculated as

FγE
(γ) =

∫ γ

0

fγE
(x)dx =

N∏
n=1

(1 − pn)2

+
N∑

n=1

(
εpn

(
1 − e

− γ
γSEn

)
+ εpn

(
1 − e

− γ
γ

R̃En

))
. (26)

We note that our statistical expressions for γD and γE are
given in simple closed-form which is advantageous in deriving
a range of performance measures for selective relaying wiretap
channels.

IV. SECRECY OUTAGE PROBABILITY

In this section, we derive new closed-form expressions for
the secrecy outage probability of selective relaying wiretap
channels. We derive the exact secrecy outage probability which
characterizes the impacts of the number of relays K, the num-
ber of eavesdroppers N , and the eavesdropping probabilities
pn. Our exact expression is further analyzed in the high SNR
regime to explicitly identify the impacts of K, N , and pn on
the secrecy outage probability.



A. Exact Secrecy Outage Probability

Based on (11), the secrecy outage probability can be further
evaluated as

Pr(C < R) = Pr(C < R|γE ≥ γD)Pr(γE ≥ γD)
+ Pr(C < R|γE < γD)Pr(γE < γD)

=
∫ ∞

0

FγD
(2R(1 + γE) − 1)fγE

(γE)dγE . (27)

Substituting the CDF of γD in (12) and the PDF of γE in (25)
into (27), the secrecy outage probability is derived as

Pr(C < R) = I1 + I2 − I3, (28)

where the first term in (28) is solved as

I1 =
∫ ∞

0

(
1 − e

− (2R−1)
γSD e

−γE
2R

γSD

)
×
(

δ(γE)
N∏

n=1

(1 − pn)2

+
N∑

n=1

(
εpn

γSEn

e
− γE

γSEn +
εpn

γR̃En

e
− γE

γ
R̃En

)
u(γE)

)
dγE

= 1 − e
− (2R−1)

γSD

N∏
n=1

(1 − pn)2

−
N∑

n=1

⎛⎝ εpn
e
− (2R−1)

γSD(
1 + 2RγSEn

γSD

) +
εpn

e
− (2R−1)

γSD(
1 +

2RγR̃En

γSD

)
⎞⎠u(γE), (29)

by utilizing the identity of∫ ∞

0

e
−x 2R

γSD e
− x

γSEn dx =
γSEn

1 + 2RγSEn

γSD

. (30)

Similarly, we can derive the second term in (28) as

I2 =
∫ ∞

0

⎛⎝∑̃(−1)ke
−∑k

j=1

(
2R−1

γSR�j

+ 2R−1
γR�j

D

)

e
−γE

(∑k
j=1

(
2R

γSR�j

+ 2R

γR�j
D

))⎞⎠×
(

δ(γE)
N∏

n=1

(1 − pn)2

+
N∑

n=1

(
εpn

γSEn

e
− γE

γSEn +
εpn

γR̃En

e
− γE

γ
R̃En

)
u(γE)

)
dγE

=
N∏

n=1

(1 − pn)2
∑̃

(−1)ke
−∑k

j=1

(
2R−1

γSR�j

+ 2R−1
γR�j

D

)

+
∑̃

(−1)k
N∑

n=1

⎛⎜⎜⎝ εpn
e
−∑k

j=1

(
2R−1

γSR�j

+ 2R−1
γR�j

D

)
(

1 +
∑k

j=1

(
2RγSEn

γSR�j

+ 2RγSEn

γR�j
D

))

+
εpn

e
−∑k

j=1

(
2R−1

γSR�j

+ 2R−1
γR�j

D

)
(

1 +
∑k

j=1

(
2RγR̃En

γSR�j

+
2RγR̃En

γR�j
D

))
⎞⎟⎟⎠ (31)

and the third term is given by

I3 =
N∏

n=1

(1 − pn)2
∑̃

(−1)ke
−
(

2R−1
γSD

+
∑k

j=1

(
2R−1

γSR�j

+ 2R−1
γR�j

D

))

+
∑̃ N∑

n=1

⎛⎜⎜⎝ (−1)kεpn
e
−
(

2R−1
γSD

+
∑k

j=1

(
2R−1

γSR�j

+ 2R−1
γR�j

D

))
(

1 + 2RγSEn

γSD
+
∑k

j=1

(
2RγSEn

γSR�j

+ 2RγSEn

γR�j
D

))

+
(−1)kεpn

e
−
(

2R−1
γSD

+
∑k

j=1

(
2R−1

γSR�j

+ 2R−1
γR�j

D

))
(

1 +
2RγR̃En

γSD
+
∑k

j=1

(
2RγR̃En

γSR�j

+
2RγR̃En

γR�j
D

))
⎞⎟⎟⎠

(32)

We note that the per-hop SNRs in (31) and (32) can be
re-expressed in terms of the direct link SNR as γSR�j

=
κSR�j

γSD, γR�j
D = κR�j

DγSD, where κSR�j
, κR�j

D ∈ R
+.

As such, we present our new closed-form expression for
the exact secrecy outage probability in (33) where Σk =∑k

j=1(
1

κSR�j

+ 1
κR�j

D
). The exact expression in (33) is easy

to evaluate since it contains finite sums of simple expressions
and accurately provides the secrecy outage probability across
the whole SNR range.

B. Asymptotic Secrecy Outage Probability

Next, we proceed to derive the asymptotic secrecy outage
probability by evaluating the first order Taylor series expansion
of (33) as γSD → ∞. We note that our asymptotic results can
be re-expressed as [15]

Pr(C < R)
γSD→∞≈ (GaγSD)−Gd (34)

to clearly identify the diversity order Gd which represents the
slope of the asymptotic curve, and the array gain Ga which
represents the shift of the asymptotic curve from the reference
curve of γ−Gd

SD .
For the special case of K = 1 and general N , the asymptotic

secrecy outage probability is derived as

Pr(C < R)
γSD→∞≈ (2R − 1)2

γ2
SD

(
1

κSR1

+
1

κR1D

)
×
[
1 +

2.2R

(2R − 1)

N∑
n=1

(
εpn

γSEn
+ εpn

γR̃En

)
+

2.22R

(2R − 1)2

N∑
n=1

(
εpn

γ2
SEn

+ εpn
γ2

R̃En

)]
(35)

From (35), we observe that the diversity order reflected in the
negative power of γSD is a constant value of 2. This indicates
that the diversity order is independent of the number of
eavesdroppers N and the eavesdropping probabilities pn. Our
result in (35) also clearly identifies that, for a fixed diversity
order, the array gain decreases with increasing N and pn. This
is expected given that the secrecy outage probability worsens
as the number of collaborative eavesdroppers increases and the
probability of successful eavesdropping increases.



Pr(C < R) = 1 − e
− (2R−1)

γSD

⎛⎝ N∏
n=1

(1 − pn)2 +
N∑

n=1

⎛⎝ εpn(
1 + 2RγSEn

γSD

) +
εpn(

1 +
2RγR̃En

γSD

)
⎞⎠u(γE)

⎞⎠
+
∑̃

(−1)ke
− (2R−1)Σκ

γSD

⎛⎝ N∏
n=1

(1 − pn)2 +
N∑

n=1

⎛⎝ εpn(
1 + 2RγSEn

Σκ

γSD

) +
εpn(

1 +
2RγR̃En

Σκ

γSD

)
⎞⎠u(γE)

⎞⎠
−
∑̃

(−1)ke
− (2R−1)(1+Σκ)

γSD

⎛⎝ N∏
n=1

(1 − pn)2 +
N∑

n=1

⎛⎝ εpn(
1 + 2RγSEn

(1+Σκ)

γSD

) +
εpn(

1 +
2RγR̃En

(1+Σκ)

γSD

)
⎞⎠u(γE)

⎞⎠ (33)

For the special case of general K and N = 1, the asymptotic
secrecy outage probability is derived as

Pr(C < R)
γSD→∞≈ (2R − 1)K+1

γK+1
SD

K∏
k=1

(
1

κSRk

+
1

κRkD

)

×
[
1 +

K+1∑
k=1

2kR(K + 1)!
(2R − 1)k(K + 1 − k)!

×
(

p1(γSE1
− (1 − p1)γR̃E1

)γk
SE1

γSE1
− γR̃E1

+
p1(γR̃E1

− (1 − p1)γSE1
)γk

R̃E1

γR̃E1
− γSE1

)]
(36)

From (36), we can see that the diversity order increases with
of the number of relays K. This means that the secrecy outage
probability decays more rapidly as K increases which high-
lights the significant security advantage of selective relaying
in wiretap channels.

Finally, for general K and N , we derive the asymptotic
secrecy outage probability given in (37). From (37), we can
conclude that the diversity order is in fact Gd = K + 1
which increases with K and is independent of N and pn.
For a fixed diversity order, we also confirm that the array gain
decreases with increasing N and pn. Our asymptotic result in
(37) accurately characterizes the relative contributions of K,
N , and pn in the diversity order and array gain.

V. NUMERICAL RESULTS

In this section, we present illustrative examples to highlight
the impact of the numbers of relays, number of eavesdroppers,
and eavesdropper probability on the secrecy outage probability
of selective relaying wiretap channels. We plot the exact
secrecy outage probability derived in (33), the asymptotic
secrecy outage probability derived in (37), and the simulation
points using Monte Carlo simulation. We note that our analyt-
ical closed-form expressions accurately predict the simulation
points in all the examples. In the main channel, we set the
target secrecy rate to R = 5 dB and randomly vary the relay
link SNRs as γSRk

= κSRk
γSD, and γRkD = κRkDγSD,

where γSD is the direct link SNR. In the eavesdropper
channel, we also randomly vary the eavesdropper link SNRs as
γSEn

= κSEn
γE , and γR̃En

= κR̃En
γE , where γE = 3 dB.

In Fig. 2, we plot the secrecy outage probability versus
γSD for K = 1 relay and N = 1, 2, 3 eavesdroppers.
In the main channel, we set {κSR, κRD} = {1.5, 1.3}
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Fig. 2. Secrecy outage probability for K = 1, N = 1, 2, 3, and
{p1, p2, p3} = {0.1, 0.3, 0.5}.

to model the common scenario where the relay links are
stronger than the direct link. In the eavesdropper chan-
nel, we set the eavesdropping probabilities to p1 = 0.1,
p2 = 0.3, and p3 = 0.5 which models the scenario
where the probability of successful eavesdropping increases
from N = 1 to 3. The eavesdropper link SNRs are var-
ied randomly as {κSE1 , κR̃E1

, κSE2 , κR̃E2
, κSE3 , κR̃E3

} =
{0.1, 0.3, 1.8, 1.3, 0.6, 0.5}. We observe in the plot that the
asymptotic diversity order remains unchanged with increasing
N . We also note that the asymptotic array gain decreases with
increasing N as predicted in (35).

In Fig. 3, we plot the secrecy outage probability ver-
sus γSD for N = 1 eavesdropper and K = 1, 2, 3 re-
lays. In the main channel, the relay link SNRs are var-
ied randomly as {κSR1 , κR1D, κSR2 , κR2D, κSR3 , κR3D} =
{1.5, 1.3, 1.8, 1.5, 2.6, 2.5}. In the eavesdropper channel, we
set p1 = 0.1 and {κSE1 , κR̃E1

} = {0.1, 0.3}. The plot
clearly shows that the asymptotic diversity order increases with
increasing K as predicted in (36).

In Fig. 4, we plot the secrecy outage probability versus
γSD for N = 2 eavesdroppers, K = 2 relays, and eaves-
dropper probabilities {p1, p2} = {0, 0}, {0.1, 0.3}, {1, 1}.
The relay and eavesdropper link SNRs are random var-
ied as {κSR1 , κR1D, κSR2 , κR2D} = {1.5, 1.3, 1.8, 1.5} and
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Fig. 3. Secrecy outage probability for N = 1, K = 1, 2, 3, and p1 = 0.1.

{κSE1 , κR̃E1
, κSE2 , κR̃E2

} = {0.1, 0.3, 1.8, 1.3}. We can see
in the plot that increasing the asymptotic diversity order is
independent of {p1, p2} whereas the asymptotic array gain
decreases with increasing {p1, p2}, which corroborates our
analytical results in (37). We note that {p1, p2} = {1, 1}
corresponds to the ideal scenario where the eavesdropper is
always listening to the main channel.

VI. CONCLUSION

We analyzed the secrecy outage probability of a selective
decode-and-forward (DF) relaying link with K relays and
N eavesdroppers. We considered that the eavesdroppers can
collaborate to share information obtained from the source and
the relay amongst themselves. The cost of the collaboration
is described by an activity probability which is modeled as
a Bernoulli random variable. For this network, we derived
new exact and asymptotic closed-form expressions for the
secrecy outage probability in Rayleigh fading channels. An
interesting extension of this work is to consider a secure
transmission region around the nodes in the main channel
where the eavesdroppers may not receive any information.
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