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Abstract

As a holistic approach, optimal co-design of a control system determines both the plant and
controller simultaneously to optimize certain performance metrics. Prior co-design work typ-
ically assume a control system in the classic state space form, and thus compromise the range
of applicability. This paper considers co-design for control systems in the linear descrip-
tor form, with the purpose to minimize the H2 norm of a closedloop transfer function. We
demonstrate that the gradient of the cost function with respect to plant parameters can be
computed analytically, and thus extend the previous gradient-based codesign algorithm to
the linear descriptor system case.
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Abstract—As a holistic approach, optimal co-design of a is the derivation of the gradient computation formula for

control system determines both the plant and controller simlta- the linear descriptor system, which consequently enables t

neously to optimize certain performance_metncs. Prior codesign previous gradient-based co-design algorithm in [7].
work typically assume a control system in the classic statepace

form, and thus compromise the range of applicability. This mper 1€ rest of this paper is organized as follows. Section Il
considers co-design for control systems in the linear desgtor  introduces fundamentals of linear descriptor systems fand

form, with the purpose to minimize the #, norm of a closed- mulates the optimal co-design problem. Gradient comptati
loop transfer function. We demonstrate that the gradient ofthe gy the linear descriptor system case is derived in Seciion |

cost function with respect to plant parameters can be comp&d oy Section IV offers some future research directians
analytically, and thus extend the previous gradient-basedco- ’

design algorithm to the linear descriptor system case. concludes this paper.

|. INTRODUCTION

Control system design needs to determine the physical plant ) o )
and controller. Compared to sequential design, simultaseo In this section, we first introduce fundamentals about linea
design, or co-design, of the plant and controller may res@gScriptor systems, and then formulate the co-design prob-
in improved system performance [1]. The co-design idea hig- Finally, we recite the iterative and alternating csida
been applied to a wide range of areas, including smart bujlgfocedure [7]. Throughout this paper, dynamical systeres ar

ings [1], mechatronic systems [2], [3], aerospace crafis [Ainear time-invariant (LTI) and in continuous-time domaxil
and electric motors [5]. matrices are assumed to have compatible dimensions.

Il. PRELIMINARIES AND PROBLEM FORMULATION

Numerous approaches have been proposed to solve co-

design problems, for instance co-design of a linear timé& The Descriptor System and its Solution

invariant (LTI) control system withH, or H.. objectives [1],  consider an LTI descriptor system

[6], [7] and its nonlinear variant [8], [9], co-design for ffi@

frequency positive-realness property [10], co-design tof t Ez = Az + Bu

controller and underlying communication system [11], etc. y = Cu, @)

See [1], [8] and references therein for details. A majority o

existing work assumes that the system model is either inwhere & € R"*" A € R"*" B € R"*" C € R™*" are

readily transformable to the classic state space repr@semt constant system matriceg, might be singular and has a rank
= f(z,u), y=hizu) r = rankE < n, r € R™ is the state vectory € R™-

o T the control action, andy € R" the measurement. The

This is restrictive for two reasons. First, models of nunosro system (11-B) has a unique solution for any initial conditio

engineering systems, e.g. chemical processes [12], eamstt and any continuous input function if def — A) # 0

mechanical systems [13], and power systems [14], howe\&6], [17]. Equivalently, a system (lI-B) with the property

naturally take general state space representations suttteasdets£ — A) # 0 is also called regular. Given the regular

descriptor form pencil (sE — A), its resolvent matrix has the following unique
Fi = f(o,u), y=h(zu). series expansion about= co [18], [19]

Second, for complex _syst_ems in Fhe descriptor form,_it is not (sE— Ay =51 i b, m >0, @)
always obvious to derive its classic state space repregmnta
Readers are referred to [15] for more details.

This paper aims to lift this limitation by investigating co-where¢,, —m < k < co are the Laurent parameters, ands
design of control systems in the linear descriptor form.sThthe nilpotent index. The series expansion (2) is valid ingbe
paper generalizes the gradient-based co-design algoottyn 0 < |s| < ¢ for certaind > 0. The solution of the descriptor
inally proposed in previous work [7]. Our main contributiorsystem (II-B) can be expressed directly in terms of the Laiure

k=—m



parameters [18], [19] Problem 2.3:Given the system (4), find a dynamic output
) feedback control laww = Ky and a set of parameter values

t
z(t) = <e¢°A““ +/ e®At=7) g0 Bu(r)dr 6 such that theH{5 norm of T}, is minimized, i.e.,

0

o @) minein;ize [Tz (0, K)||3,
_ (= m,.(m) _ k (k) ’
<( ¢_1E)"x (t)+kz:(:)( ¢-1E)"¢_1Bu (t)> subjectto A €O, K stabilizesP(6).

y(t) = C(poE — g1 A)x(t). Remark 2.4:Problem 2.3 is substantially more difficult to
solve compared to Problem 2.1. Actually, when the system

On solutions of discrete-time descriptor systems, see [20 - . . ) .
P y ¢ (20] matrices in (5) are affine i and the controller is state

for detalls. feedback, finding a stabilizing pailk, ¢) is already known
B. Problem Formulation to be NP-hard [23]. While in our case, the system matrices
Consider a control system in linear descriptor form are not necessarily affine i
E@)i = A(f)x + Bi1(0)w + B2(0)u C. lterative and Alternating Co-design Procedure
z=C1(0)x + D12(0)u (4) This paper follows the same co-design procedure as in [7],
y = Co(0) + Doy (O)w, i.e., Problem 2.3 is tackled by solving the optimal contrallp

lem and the optimal parameter update problem alternately an
wherez € R" is the state§ € R" the plant parameter, jteratively. The iterative and alternating co-design jaure is
w € R™ the external disturbance, € R": the regulated symmarized in Algorithm 1, wher®*) represents the system
output, andy € R"™ the measured output. Given inputarameter in the:-th iteration, K*) the optimal controller
[w',u]T and outputs[z",y]T, the system (4) has thefor the systemP(6*)), and f (6, K) abbreviates the objective

following transfer function function || T,.. (6, K)||2,
b) 2'
T Pai(0) Paa(0)] Algorithm 1: Alternating Co-design Algorithm
whereP,; = Ci(sE — A)~'B; + D;;. Let T, be the closed- ~Choose a(gf)\resholde(o()o, N5
loop transfer function fromu to z. The H, optimal control '”'t'%')ze 0% = 6o, K the optimal controller for
problem is given as follows. P"™);

Problem 2.1:Given the system (4) with a fixed, find a  S€tr=1,k=0;
dynamic output feedback control law= Ky such that the ~ While 7> e do

H5 norm of T, is minimized, i.e., Calculated "+ from (%), K)) ;
o Compute the optimal controllek (*+1) for
minimize [| T2 (K) |34, P(Ok+1)):
subject to K stabilizesP, Computer = FOMED) gor DKETY)

(600, K@) '
whereT,,.(K) = Pi; + P2 K(I — PyoK) 1 Pyy. Setk=k+1;

Provided thatF is an identity matrix, the system is in the
classic state space form, and the corresponding Pr_oblem 2-{ve assume the initial paramet¥f) is given and the initial
can be solved analytically [21]. FoH, control of linear cost £(#(), K(©)) is finite. Algorithm 1 begins with an initial

descriptor systems (1I-B), see [22] and references forieta a0t and the corresponding optimal control, and repeas th
Similarly, the optimal plant design induces the optimahpla process of performing the new plant desigif+! for a

parameter problem as follows _ given pair(d®® K(*)), and determining the optimal controller
Problem 2.2: Given the system (4) and its StabI|IZIngK(k+1) for a givend*+1) Particularly, the new plant design

controlleru = Ky, find the plant parametet such that the g 5chieved by the plant parameter update algorithm in Ap-
Hs norm of T,,,. is minimized, i.e., pendix A.

minimize T2 (0, K)|| 2, Remark 2.5Convergence analysis of the gradient-based co-
0 - design algorithm for the linear descriptor system case @n b
subjectto 0 €O, K stabilizesP(6). established as in [7], and thus omitted here. The algorithm

Throughout this paper, we assume that all system matricgvergence is guaranteed by the following fact

in (4) are differentiable with respect tbc © where® is com- 1) the costfunction is monptonically decreasing in the plan
pact. We also assume that the pai(6), B, (6)] is stabilizable parameter update algorithm _
and the paiffA(9), C»(0)] is detectable for alp € ©. 2) the optimal control design for a givel*) also ensures

The co-design problem is to determine an output feedback the decrease of the cost function.
control lawu = Ky and the plant parametérsimultaneously  Different stopping criteria can be used to ensure
such that the?{> norm of the closed-loop transfer functionthe convergence of the co-design algorithm, for in-
T, is minimized. stance, the relative improvement ratigf (%), K(*)) —



FoUF+D KR+ /£(9©) K(©) is used here. Another stop- The closed-form expression 6fT,,./d6; is derived on the
ping criteria is||§(%) — g(k+1)]), following assumption.
Assumption 3.1Given E. and for a fixed 6, there

exists a matrixJ; € Rrtnxxntng for 1 < i < ng such that
This section focuses on derivation of an analytical formul@ B, — 2k

90; *
of the gradientVf(#) used in the plant parameter update Remark 3.2With E, — diag{E, I,,,. }, Assumption 3.1 is

aEc

IIl. ANALYTICAL COMPUTATION OF THE GRADIENT

algorithm. ; .
. . . equivalent to the existence of a matti); satisfyingU;1 F =
tro(l?(la\;en a state space representation of #igoptimal con- 0E/09;. It is difficult to discuss generally how restrictive

Ar | By Assumption 3.1 is. We have the following conclusions for
K= {TK’W] ; (6) certain simple cases.
with Ax € RM6Xnx B € RMEXNy (e € RMXME Dy € 1) If F is diagonal, Assumption 3.1 always holds.
2) If Eislinearind,i.e.,E(0) = Z;‘io E;0;, Assumption
is written asU;; E(0) = E,. Without loss of generality,
Eeie = Ac(0, K)zc + B:(0, K)w @ we look at the special case
=C.(0,K)x.+ D.(0, K)w

R™ "y the closed-loop system is written as follows

where E. = diag{F, I,,,.,} with I, the nx-dimensional U g“gl glzzl 8 gll 512 8
H H i T . T1T 71 21Y1 22V1 21 22 )
identity matrix,z. = [¢', z%]", and 0 0 . 0 0 0
_ |A(9) + B2(0) Dk C2(0)  Ba2(0)Crk
A0, K) = :
BrC(0) Ax and conclude that Assumption 3.1 holds and the closed-
BO.K) — B1(0) + B2(0) D D21 () form solution isU;; = diag{1/6:,1/61,0,...}. Hence,
(0,K) = Bg D21 () we know Assumption 3.1 always holds if the system (4)
_ has linear parameterizations.
C.(0,K) = |[C1(0)+ D12(0)DrCs(0) D12(0)C !
D (9 K) B 1[)1(9)D ;( ; xC2(6) 12(0) K} 3) For other cases, Assumption 3.1 may not hold. How-
(0, K) = Di2(6)Dx D (0). ever, for a loosely coupled systeiy, appears sparsely
The transfer functior,.(#, K) has the following concise in E, and 9E/00; is sparse. This further implies
representation rankoE /00; < rankE. Hence, Assumption 3.1 is likely
satisfied for a fixed valué. On the other hand, it may
Tw-(0,K) = [ A0, K) | B.(6, K) } (8) be difficult to attain the closed-form solution &%; and
Ce(0, K) | D.(0, K) one may need to compulé;; for each different value

andT,.(0, K) = C.(sE. — A,) "' B, + D.. of 0.
As K stabilizes P(f), T, is stable andA. in (7) is  meanwhile, the matrixU; might not be unique.

Hurwitz. Denoted; the i-th component ob and; the unit Remark 3.3:Let us consider the following augmented
vector in the direction ofg;. The gradientVf(¢) can be descriptor system

computed as follows

- 0 < T’wzaTwz >4 In 0 z _ 0 In €T
VIO =3 g s [A<9> Fo) 7
i o7 ©) 0 .
:Z2<Twzaa—ew_z>éi 9) w 32 9) uw (12)
i=1 ¢ z=0 (9):5 + D12(9)
w_here< .,. > is the inner product defined on thé;, space. y = Co(0)z + Doy (0)w.
SinceT,.(0,K) = C.(sE. — A.)"'B. + D., we have the
following formula for 97,/ 96; For the augmented system (12), Assumption 3.1 always holds
oT,. 0C. 1 _, 0B, and can be seemingly lifted. Hence, conclusions in this@ect
90, 00, (sEc — Ac)™ Bet Ce(sEe — Ac) 00; are always applicable to (12), and co-design of the sys#®m!(
D, . can be performed on the basis of the augmented system (12).
90, Ce(sEe — Ac) (10) However, compared with the system (4), the augmented sys-
OE. 0A, tem (12) is2n dimension, and its nilpotent index increases
|:SW - W] (sE.— Ac) "B by n, which may introduce extra difficulty in solving the co-

design problem.
where the last term is derived by considering the following We have the following

identity [24]
oy _Yila_yy% 0T/ 00;.
or Ox '

result about realizations of

(11) Proposition 3.4:Given Assumption 3.1, the transfer func-



tion 07,,./00; has the following stable realization ‘Ho norm in [25]. For the descriptor system case, we have the
following conclusion about the inner product.

. oE A Uide — 0 UiBe Proposition 3.6: Assume the resolvent matrices of the
(Is ® E)éi = AC A &+ 2B, w regular pencilsE,. — A, ands&; — A; have the unique series
O 0 6CD 90, expansion given by
Z = |:Cc oo Cc} &+ )
(13) (sE. — A.) - Z ¢ks , m>0
wherel; ® E, is the Kronecker product; = [¢4, &5, 117, k=—m
w is defined in (4), and (5€ — Ai)™ Z fbkzs R
8Tzw k=—m;
‘ The inner product< T, %Tez > can be computed from
Proof: It is clear thathwl = %e(sE. — Ac)"'B. + solving
C.(sE, — A.) 1 2Be De has a reallzat|0n
(sFe = Ae)™" G5t + G doAcL + LATGL, = —n(0) (152)
Ec 0 51'2 _ Ac 512 C 8Twz o
[ 0 EJ {&1] = [ 0 } Lh + & < Tz, 90, > = trace (C(¢oE. — ¢_1A.)
. D, X L(¢oi& — d_1.:A)TCF 15b
Zi1 = [%(9): Cc} [?ﬂ + —w (do, ¢-1,iAi) ) (15D)
' ' where 7(0) = = ¢oBBldj; + ¢-1BBlol; —
wherez;; = Tzwlw. For a realization ofl,,» = C.(sE. — ¢,1BC[5'1.T¢§1. — po BB T ..
At [s%’g } (sE. — A.)"'B., we know that the Proof: From the unique series expansion of the resolvent

transfer functlorﬂ“zwg is equivalent to the following dynamics matrices(sE. — A.)~" and(s&; — A;)~", we have the impulse
responses of the closed-loop system (7) and the system (13)

: OF, ; 0A
Y — . S el as follows
Ec§13 Ac§13 + ael 512 691 512
E.fia = Ackia + Bow zo(t) = e?' ¢y B, — ¢_1 B,
zio = Ce&i3 &i(t) = e iAitpy By — 1B,
where z;o = T,,ow. Given Assumption 3.1, we have The inner product is alternatively defined by
_ 94 trace( [, ye(t)yl (t)dt), wherey, andy; are the output of
Eizs = Ackis + Ui E&in — TOC@Q the closed-loop system (7) and the system (13), respegtivel
DA ‘ and are given by
= Ac i3 + UzAc i2 U B
53 ( 89 ) 5 ? v yc(t) :CC(¢0EC - ¢—1Ac)xc(t)

With the definition of¢;, we have (13). Also, the stability of Yi(t) =Ci(do,i& — p—1,:4:)&(1).
the system (13) is implied by that 6§ E.— A.)~!. Proposition
is therefore shown.

Remark 3.51f the system (4) is in state space form, we ca
computedT’,./06; as follows

With L = fo z.(t)¢F (t)dt, we have the inner product given
by (15b). We introduce a matrix(t) = x.(t)¢f'(t) and
differentiate it

0(t) = goAen(t) +n(t) Al 5,
Owe _ 0Ce (i1 4,)1B, + CufsT — A,) 12 )
90; 90; 90; (14) Integrating the above equation overco) gives
+ % + Ce(sI — A)flaAc (s — A,)™!
20, = ° 00, ‘ 1(00) = n(0) = poAcL + LAY 5 ;-

The state space representation of (14) is given by (13) widlince both the closed-loop system (7) and the auxiliaryesyst

E. =1, U; = 0, which is consistent with results establishegd3) are stabley (o), & (o), and(co) are zero. We therefore

in [7]. o have (15a). This completes the proof. [ ]
Given the realization Remark 3.7:For the state variable case, the inner product

OT,./00; = Ai | B can be computed by
Gl T

we are ready to compute the inner product in (9). For an LTI < Tusy 00;
system in state space representation, vikh= 0, the inner \,here’, is the solution of the equation

product can be computed in the state space form by forming

a Lyapunov-like equation, similar to the computation of the AL+ LA + B.B] =o0. (16)

= tracdC.LC,")



When the plant and controller are discrete time systems, technique to dispense the condition (19) [26]. The idea seto
stead of (16), we solve a discrete time Lyapunov-like eguati « to a large value initially, and decrease its value until (18)

given by
ALA] — L+ BB/ =o.

Remark 3.8Both (15) and (16) can be solved algebraicall
by the technique of vectorization.
Remark 3.9The aforementioned gradient computation ne-

is satisfied. Wher® = {0|0,in, < 0 < 00} andp # 0,
there exists a finitex such thatPg (0 + ap) = Pe (0 + ap)
for all & > @. The backtracking technique can start with this
thitial value. The complete plant parameter update algorit
with backtracking is given as Algorithm 2.

glects constraints ofl, and thus the resultant gradient-base
plant parameter update algorithm typically requires pribje

d
“Algorithm 2: Plant Parameter Update Algorithm

(see Appendix A for details). Alternative to deal with con- Giveno, K, f(6) = [|Tw- (0, K)|[3, ;
straints is the augmented Lagrangian approach, which firstCompute the gradieri f(¢) and setp = —V f(0) ;

constructs an augmented Lagrangian as follows if p=0 then
enew =0,
L(0,K,A) = f(0,K) + Ah(0) .
else

with \ the Lagrangian multiplier anél(0) the constraints on
6. Both A\ and i(#) are vectors with compatible dimensions.
In addition to 6, the plant parameter update algorithm also
needs to updatg. For a gradient-based update algorithm, the
gradient of£(0, K, ) w.r.t. # and A is required, which can be
similarly computed.

IV. CONCLUSION AND FUTURE WORK

Computea and seta = & ;

Choosep € (0,1), ¢1 € (0,1) ;

Setb,ew = Po(0 + ap) ;

while f(0new) > F(6) + c1aV f(6) Tp do
a = po
enew = ]P)@(o + ap) ;

This paper investigated co-design of control systems in
the linear descriptor form. We shown that the gradient of
the cost function w.r.t. plant parameter can be compute&l
analytically, and thus the previous gradient-based cégdes
algorithm can be readily extended to the linear descriptor
system case. Future work includes the application of result?!
to engineering examples and the development of co-design
methods for systems in a more general form, for instance
nonlinear descriptor systems. (3

APPENDIX
A. Plant Parameter Update Algorithm

Given a fixed controllerK, our goal is to find af,.,
such that the closed-loop system performance hsusfficient
improvementThe plant parameter update is given by the rul%]

enew = ]P)@ (9 + ap) (17)

where a € RT represents the step length, the search
direction, andPg(.) the projection operator on the 8t We
use the steepest descent direction —V f(6).

Given the gradient of the cost function w.r.t. plant paramet
a number of algorithms are available to determiné&See [26]
for details. A common way to choose the step lengtls by
the Wolfe conditions [26] given by

f(onew) < f(@) + clonf(G)Tp
vf(onew)Tp > C2vf(9)Tp

for some0 < ¢; < ¢3 < 1. Equation (18) ensures that the[lz]
search gives an improvement whens a descent direction.
Note that (18) will be satisfied for any small, in which
case the improvement may be limited. Therefore, the curgatu
condition (19) is added to ensure that the chosen step lémgt
not too conservative. In practice, we can use the backingcki

(4]

(5]

(7]
(8]

9

[10]
(18)

(19) 11
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