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Abstract
As a holistic approach, optimal co-design of a control system determines both the plant and
controller simultaneously to optimize certain performance metrics. Prior co-design work typ-
ically assume a control system in the classic state space form, and thus compromise the range
of applicability. This paper considers co-design for control systems in the linear descrip-
tor form, with the purpose to minimize the H2 norm of a closedloop transfer function. We
demonstrate that the gradient of the cost function with respect to plant parameters can be
computed analytically, and thus extend the previous gradient-based codesign algorithm to
the linear descriptor system case.
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Abstract—As a holistic approach, optimal co-design of a
control system determines both the plant and controller simulta-
neously to optimize certain performance metrics. Prior co-design
work typically assume a control system in the classic state space
form, and thus compromise the range of applicability. This paper
considers co-design for control systems in the linear descriptor
form, with the purpose to minimize the H2 norm of a closed-
loop transfer function. We demonstrate that the gradient of the
cost function with respect to plant parameters can be computed
analytically, and thus extend the previous gradient-basedco-
design algorithm to the linear descriptor system case.

I. I NTRODUCTION

Control system design needs to determine the physical plant
and controller. Compared to sequential design, simultaneous
design, or co-design, of the plant and controller may result
in improved system performance [1]. The co-design idea has
been applied to a wide range of areas, including smart build-
ings [1], mechatronic systems [2], [3], aerospace crafts [4],
and electric motors [5].

Numerous approaches have been proposed to solve co-
design problems, for instance co-design of a linear time-
invariant (LTI) control system withH2 or H∞ objectives [1],
[6], [7] and its nonlinear variant [8], [9], co-design for finite
frequency positive-realness property [10], co-design of the
controller and underlying communication system [11], etc.
See [1], [8] and references therein for details. A majority of
existing work assumes that the system model is either in or
readily transformable to the classic state space representation

ẋ = f(x, u), y = h(x, u).

This is restrictive for two reasons. First, models of numerous
engineering systems, e.g. chemical processes [12], constrained
mechanical systems [13], and power systems [14], however
naturally take general state space representations such asthe
descriptor form

Eẋ = f(x, u), y = h(x, u).

Second, for complex systems in the descriptor form, it is not
always obvious to derive its classic state space representation.
Readers are referred to [15] for more details.

This paper aims to lift this limitation by investigating co-
design of control systems in the linear descriptor form. This
paper generalizes the gradient-based co-design algorithmorig-
inally proposed in previous work [7]. Our main contribution

is the derivation of the gradient computation formula for
the linear descriptor system, which consequently enables the
previous gradient-based co-design algorithm in [7].

The rest of this paper is organized as follows. Section II
introduces fundamentals of linear descriptor systems, andfor-
mulates the optimal co-design problem. Gradient computation
for the linear descriptor system case is derived in Section III.
Finally, Section IV offers some future research directionsand
concludes this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce fundamentals about linear
descriptor systems, and then formulate the co-design prob-
lem. Finally, we recite the iterative and alternating co-design
procedure [7]. Throughout this paper, dynamical systems are
linear time-invariant (LTI) and in continuous-time domain. All
matrices are assumed to have compatible dimensions.

A. The Descriptor System and its Solution

Consider an LTI descriptor system

Eẋ = Ax+Bu

y = Cx,
(1)

whereE ∈ R
n×n, A ∈ R

n×n, B ∈ R
n×nu , C ∈ R

ny×n are
constant system matrices,E might be singular and has a rank
r = rankE ≤ n, x ∈ R

n is the state vector,u ∈ R
nu

the control action, andy ∈ R
ny the measurement. The

system (II-B) has a unique solution for any initial condition
and any continuous input function if det(sE − A) 6= 0
[16], [17]. Equivalently, a system (II-B) with the property
det(sE − A) 6= 0 is also called regular. Given the regular
pencil(sE−A), its resolvent matrix has the following unique
series expansion abouts = ∞ [18], [19]

(sE −A)−1 = s−1
∞
∑

k=−m

φks
−k, m ≥ 0, (2)

whereφk,−m ≤ k < ∞ are the Laurent parameters, andm is
the nilpotent index. The series expansion (2) is valid in theset
0 ≤ |s| ≤ δ for certainδ > 0. The solution of the descriptor
system (II-B) can be expressed directly in terms of the Laurent



parameters [18], [19]

x(t) =

(

eφ0Atx0 +

∫ t

0

eφ0A(t−τ)φ0Bu(τ)dτ

)

−

(

(−φ−1E)mx(m)(t)+

m−1
∑

k=0

(−φ−1E)kφ−1Bu(k)(t)

)

y(t) = C(φ0E − φ−1A)x(t).

(3)

On solutions of discrete-time descriptor systems, see [19], [20]
for details.

B. Problem Formulation

Consider a control system in linear descriptor form

E(θ)ẋ = A(θ)x +B1(θ)w +B2(θ)u

z = C1(θ)x+D12(θ)u

y = C2(θ)x+D21(θ)w,

(4)

where x ∈ R
n is the state,θ ∈ R

nθ the plant parameter,
w ∈ R

nw the external disturbance,z ∈ R
nz the regulated

output, andy ∈ R
ny the measured output. Given inputs

[w⊤, u⊤]⊤ and outputs[z⊤, y⊤]⊤, the system (4) has the
following transfer function

P (θ) =

[

P11(θ) P12(θ)
P21(θ) P22(θ)

]

, (5)

wherePij = Ci(sE−A)−1Bj +Dij . Let Twz be the closed-
loop transfer function fromw to z. The H2 optimal control
problem is given as follows.

Problem 2.1:Given the system (4) with a fixedθ, find a
dynamic output feedback control lawu = Ky such that the
H2 norm ofTwz is minimized, i.e.,

minimize
K

||Twz(K)||H2

subject to K stabilizesP,

whereTwz(K) = P11 + P12K(I − P22K)−1P21.
Provided thatE is an identity matrix, the system is in the

classic state space form, and the corresponding Problem 2.1
can be solved analytically [21]. ForH2 control of linear
descriptor systems (II-B), see [22] and references for details.

Similarly, the optimal plant design induces the optimal plant
parameter problem as follows

Problem 2.2: Given the system (4) and its stabilizing
controlleru = Ky, find the plant parameterθ such that the
H2 norm ofTwz is minimized, i.e.,

minimize
θ

||Twz(θ,K)||H2

subject to θ ∈ Θ, K stabilizesP (θ).

Throughout this paper, we assume that all system matrices
in (4) are differentiable with respect toθ ∈ Θ whereΘ is com-
pact. We also assume that the pair[A(θ), B2(θ)] is stabilizable
and the pair[A(θ), C2(θ)] is detectable for allθ ∈ Θ.

The co-design problem is to determine an output feedback
control lawu = Ky and the plant parameterθ simultaneously
such that theH2 norm of the closed-loop transfer function
Twz is minimized.

Problem 2.3:Given the system (4), find a dynamic output
feedback control lawu = Ky and a set of parameter values
θ such that theH2 norm ofTwz is minimized, i.e.,

minimize
θ,K

||Twz(θ,K)||H2

subject to θ ∈ Θ, K stabilizesP (θ).

Remark 2.4:Problem 2.3 is substantially more difficult to
solve compared to Problem 2.1. Actually, when the system
matrices in (5) are affine inθ and the controller is state
feedback, finding a stabilizing pair(K, θ) is already known
to be NP-hard [23]. While in our case, the system matrices
are not necessarily affine inθ.

C. Iterative and Alternating Co-design Procedure

This paper follows the same co-design procedure as in [7],
i.e., Problem 2.3 is tackled by solving the optimal control prob-
lem and the optimal parameter update problem alternately and
iteratively. The iterative and alternating co-design procedure is
summarized in Algorithm 1, whereθ(k) represents the system
parameter in thek-th iteration,K(k) the optimal controller
for the systemP (θ(k)), andf(θ,K) abbreviates the objective
function ||Twz(θ,K)||2

H2
.

Algorithm 1: Alternating Co-design Algorithm

Choose a thresholdǫ ∈ (0, 1) ;
Initialize θ(0) = θ0, K(0) the optimal controller for
P (θ(0)) ;
Setr = 1, k = 0 ;
while r > ǫ do

Calculateθ(k+1) from (θ(k),K(k)) ;
Compute the optimal controllerK(k+1) for
P (θ(k+1));

Computer = f(θ(k),K(k))−f(θ(k+1),K(k+1))
f(θ(0),K(0))

;

Setk = k + 1 ;

We assume the initial parameterθ(0) is given and the initial
costf(θ(0),K(0)) is finite. Algorithm 1 begins with an initial
plant and the corresponding optimal control, and repeats the
process of performing the new plant designθ(k+1) for a
given pair(θ(k),K(k)), and determining the optimal controller
K(k+1) for a givenθ(k+1). Particularly, the new plant design
is achieved by the plant parameter update algorithm in Ap-
pendix A.

Remark 2.5:Convergence analysis of the gradient-based co-
design algorithm for the linear descriptor system case can be
established as in [7], and thus omitted here. The algorithm
convergence is guaranteed by the following fact

1) the cost function is monotonically decreasing in the plant
parameter update algorithm

2) the optimal control design for a givenθ(k) also ensures
the decrease of the cost function.

Different stopping criteria can be used to ensure
the convergence of the co-design algorithm, for in-
stance, the relative improvement ratio[f(θ(k),K(k)) −



f(θ(k+1),K(k+1))]/f(θ(0),K(0)) is used here. Another stop-
ping criteria is||θ(k) − θ(k+1)||.

III. A NALYTICAL COMPUTATION OF THE GRADIENT

This section focuses on derivation of an analytical formula
of the gradient∇f(θ) used in the plant parameter update
algorithm.

Given a state space representation of theH2 optimal con-
troller

K =

[

AK BK

CK DK

]

, (6)

with AK ∈ R
nK×nK , BK ∈ R

nK×ny , CK ∈ R
nu×nK , DK ∈

R
nu×ny , the closed-loop system is written as follows

Ecẋc = Ac(θ,K)xc +Bc(θ,K)w

z = Cc(θ,K)xc +Dc(θ,K)w,
(7)

where Ec = diag{E, InK
} with InK

the nK-dimensional
identity matrix,xc = [xT , xT

K ]T , and

Ac(θ,K) =

[

A(θ) + B2(θ)DKC2(θ) B2(θ)CK

BKC2(θ) AK

]

Bc(θ,K) =

[

B1(θ) +B2(θ)DKD21(θ)
BKD21(θ)

]

Cc(θ,K) =
[

C1(θ) +D12(θ)DKC2(θ) D12(θ)CK

]

Dc(θ,K) = D12(θ)DKD21(θ).

The transfer functionTwz(θ,K) has the following concise
representation

Twz(θ,K) =

[

Ac(θ,K) Bc(θ,K)
Cc(θ,K) Dc(θ,K)

]

(8)

andTwz(θ,K) = Cc(sEc −Ac)
−1Bc +Dc.

As K stabilizesP (θ), Twz is stable andAc in (7) is
Hurwitz. Denoteθi the i-th component ofθ and θ̂i the unit
vector in the direction ofθi. The gradient∇f(θ) can be
computed as follows

∇f(θ) =

nθ
∑

i=1

∂ < Twz, Twz >

∂θi
θ̂i

=

nθ
∑

i=1

2 < Twz,
∂Twz

∂θi
> θ̂i

(9)

where< ., . > is the inner product defined on theH2 space.
SinceTwz(θ,K) = Cc(sEc − Ac)

−1Bc + Dc, we have the
following formula for ∂Twz/∂θi

∂Twz

∂θi
=
∂Cc

∂θi
(sEc −Ac)

−1Bc+ Cc(sEc −Ac)
−1 ∂Bc

∂θi

+
∂Dc

∂θi
− Cc(sEc −Ac)

−1

×

[

s
∂Ec

∂θi
−

∂Ac

∂θi

]

(sEc −Ac)
−1Bc

(10)

where the last term is derived by considering the following
identity [24]

∂Y −1

∂x
= −Y −1 ∂Y

∂x
Y −1. (11)

The closed-form expression of∂Twz/∂θi is derived on the
following assumption.

Assumption 3.1:Given Ec and ∂Ec

∂θi
for a fixed θ, there

exists a matrixUi ∈ R
n+nK×n+nK for 1 ≤ i ≤ nθ such that

UiEc =
∂Ec

∂θi
.

Remark 3.2:With Ec = diag{E, InK
}, Assumption 3.1 is

equivalent to the existence of a matrixUi1 satisfyingUi1E =
∂E/∂θi. It is difficult to discuss generally how restrictive
Assumption 3.1 is. We have the following conclusions for
certain simple cases.

1) If E is diagonal, Assumption 3.1 always holds.
2) If E is linear inθ, i.e.,E(θ) =

∑nθ

j=0 Ejθj , Assumption
is written asUi1E(θ) = Ei. Without loss of generality,
we look at the special case

Ui1





E11θ1 E12θ1 0
E21θ1 E22θ1 0
0 0 ∗



 =





E11 E12 0
E21 E22 0
0 0 0



 ,

and conclude that Assumption 3.1 holds and the closed-
form solution isUi1 = diag{1/θ1, 1/θ1, 0, . . . }. Hence,
we know Assumption 3.1 always holds if the system (4)
has linear parameterizations.

3) For other cases, Assumption 3.1 may not hold. How-
ever, for a loosely coupled system,θi appears sparsely
in E, and ∂E/∂θi is sparse. This further implies
rank∂E/∂θi ≪ rankE. Hence, Assumption 3.1 is likely
satisfied for a fixed valueθ. On the other hand, it may
be difficult to attain the closed-form solution ofUi1 and
one may need to computeUi1 for each different value
of θ.

Meanwhile, the matrixUi might not be unique.
Remark 3.3: Let us consider the following augmented

descriptor system

[

In 0
0 0

] [

ẋ
ẍ

]

=

[

0 In
A(θ) −E(θ)

] [

x
ẋ

]

+

[

0
B1(θ)

]

w +

[

0
B2(θ)

]

u

z = C1(θ)x +D12(θ)u

y = C2(θ)x +D21(θ)w.

(12)

For the augmented system (12), Assumption 3.1 always holds
and can be seemingly lifted. Hence, conclusions in this section
are always applicable to (12), and co-design of the system!(4)
can be performed on the basis of the augmented system (12).
However, compared with the system (4), the augmented sys-
tem (12) is2n dimension, and its nilpotent index increases
by n, which may introduce extra difficulty in solving the co-
design problem.

We have the following result about realizations of
∂Twz/∂θi.

Proposition 3.4:Given Assumption 3.1, the transfer func-



tion ∂Twz/∂θi has the following stable realization

(I3 ⊗ Ec)ξ̇i =





Ac UiAc −
∂Ac

∂θi
0

0 Ac 0
0 0 Ac



 ξi +





UiBc

Bc
∂Bc

∂θi



w

zi =
[

Cc
∂Cc

∂θi
Cc

]

ξi +
∂Dc

∂θi
w

(13)
whereI3 ⊗ Ec is the Kronecker product,ξi = [ξTi3, ξ

T
i2, ξ

T
i1]

T ,
w is defined in (4), and

zi =
∂Tzw

∂θi
w.

Proof: It is clear thatTzw1 = ∂Cc

∂θi
(sEc − Ac)

−1Bc +

Cc(sEc −Ac)
−1 ∂Bc

∂θi
+ ∂Dc

∂θi
has a realization

[

Ec 0
0 Ec

] [

ξ̇i2
ξ̇i1

]

=

[

Ac 0
0 Ac

] [

ξi2
ξi1

]

+

[

Bc
∂Bc

∂θi

]

w

zi1 =
[

∂Cc

∂θi
Cc

]

[

ξi2
ξi1

]

+
∂Dc

∂θi
w

wherezi1 = Tzw1w. For a realization ofTzw2 = Cc(sEc −

Ac)
−1
[

s∂Ec

∂θi
− ∂Ac

∂θi

]

(sEc − Ac)
−1Bc, we know that the

transfer functionTzw2 is equivalent to the following dynamics

Ecξ̇i3 = Acξi3 +
∂Ec

∂θi
ξ̇i2 −

∂Ac

∂θi
ξi2

Ecξ̇i2 = Acξi2 +Bcw

zi2 = Ccξi3

wherezi2 = Tzw2w. Given Assumption 3.1, we have

Ecξ̇i3 = Acξi3 + UiEcξ̇i2 −
∂Ac

∂θi
ξi2

= Acξi3 +

(

UiAc −
∂Ac

∂θi

)

ξi2 + UiBcw

With the definition ofξi, we have (13). Also, the stability of
the system (13) is implied by that of(sEc−Ac)

−1. Proposition
is therefore shown.

Remark 3.5:If the system (4) is in state space form, we can
compute∂Twz/∂θi as follows

∂Twz

∂θi
=

∂Cc

∂θi
(sI −Ac)

−1Bc + Cc(sI −Ac)
−1 ∂Bc

∂θi

+
∂Dc

∂θi
+ Cc(sI −A)−1 ∂Ac

∂θi
(sI − Ac)

−1Bc.

(14)

The state space representation of (14) is given by (13) with
Ec = I, Ui = 0, which is consistent with results established
in [7].

Given the realization

∂Twz/∂θi =

[

Ai Bi

Ci Di

]

we are ready to compute the inner product in (9). For an LTI
system in state space representation, withDc = 0, the inner
product can be computed in the state space form by forming
a Lyapunov-like equation, similar to the computation of the

H2 norm in [25]. For the descriptor system case, we have the
following conclusion about the inner product.

Proposition 3.6: Assume the resolvent matrices of the
regular pencilssEc −Ac andsEi−Ai have the unique series
expansion given by

(sEc −Ac)
−1 = s−1

∞
∑

k=−m

φks
−k, m ≥ 0

(sEi −Ai)
−1 = s−1

∞
∑

k=−mi

φk,is
−k, mi ≥ 0.

The inner product< Twz,
∂Twz

∂θi
> can be computed from

solving

φ0AcL+ LAT
i φ

T
0,i = −η(0) (15a)

< Twz,
∂Twz

∂θi
> = trace (C(φ0Ec − φ−1Ac)

×L(φ0,iEi − φ−1,iAi)
TCT

i

)

(15b)

where η(0) = φ0BcB
T
i φ

T
0,i + φ−1BcB

T
i φ

T
−1,i −

φ−1BcB
T
i φ

T
0,i − φ0BcB

T
i φ

T
−1,i.

Proof: From the unique series expansion of the resolvent
matrices(sEc−Ac)

−1 and(sEi−Ai)
−1, we have the impulse

responses of the closed-loop system (7) and the system (13)
as follows

xc(t) = eφ0Actφ0Bc − φ−1Bc

ξi(t) = eφ0,iAitφ0,iBi − φ−1,iBi.

The inner product is alternatively defined by
trace(

∫∞

0
yc(t)y

T
i (t)dt), whereyc and yi are the output of

the closed-loop system (7) and the system (13), respectively,
and are given by

yc(t) =Cc(φ0Ec − φ−1Ac)xc(t)

yi(t) =Ci(φ0,iEi − φ−1,iAi)ξi(t).

With L =
∫∞

0 xc(t)ξ
T
i (t)dt, we have the inner product given

by (15b). We introduce a matrixη(t) = xc(t)ξ
T
i (t) and

differentiate it

η̇(t) = φ0Acη(t) + η(t)AT
i φ

T
0,i

Integrating the above equation over[0,∞) gives

η(∞) − η(0) = φ0AcL+ LAT
i φ

T
0,i.

Since both the closed-loop system (7) and the auxiliary system
(13) are stable,x(∞), ξi(∞), andη(∞) are zero. We therefore
have (15a). This completes the proof.

Remark 3.7:For the state variable case, the inner product
can be computed by

< Twz,
∂Twz

∂θi
>= trace(CcLC

⊤
i )

whereL is the solution of the equation

AcL+ LA⊤
i +BcB

⊤
i = 0. (16)



When the plant and controller are discrete time systems, in-
stead of (16), we solve a discrete time Lyapunov-like equation
given by

AcLA
⊤
i − L+BcB

⊤
i = 0.

Remark 3.8:Both (15) and (16) can be solved algebraically
by the technique of vectorization.

Remark 3.9:The aforementioned gradient computation ne-
glects constraints onθ, and thus the resultant gradient-based
plant parameter update algorithm typically requires projection
(see Appendix A for details). Alternative to deal with con-
straints is the augmented Lagrangian approach, which first
constructs an augmented Lagrangian as follows

L(θ,K, λ) = f(θ,K) + λh(θ)

with λ the Lagrangian multiplier andh(θ) the constraints on
θ. Both λ andh(θ) are vectors with compatible dimensions.
In addition to θ, the plant parameter update algorithm also
needs to updateλ. For a gradient-based update algorithm, the
gradient ofL(θ,K, λ) w.r.t. θ andλ is required, which can be
similarly computed.

IV. CONCLUSION AND FUTURE WORK

This paper investigated co-design of control systems in
the linear descriptor form. We shown that the gradient of
the cost function w.r.t. plant parameter can be computed
analytically, and thus the previous gradient-based co-design
algorithm can be readily extended to the linear descriptor
system case. Future work includes the application of results
to engineering examples and the development of co-design
methods for systems in a more general form, for instance
nonlinear descriptor systems.

APPENDIX

A. Plant Parameter Update Algorithm

Given a fixed controllerK, our goal is to find aθnew
such that the closed-loop system performance has asufficient
improvement. The plant parameter update is given by the rule

θnew = PΘ(θ + αp) (17)

where α ∈ R
+ represents the step length,p the search

direction, andPΘ(.) the projection operator on the setΘ. We
use the steepest descent directionp = −∇f(θ).

Given the gradient of the cost function w.r.t. plant parameter,
a number of algorithms are available to determineα. See [26]
for details. A common way to choose the step lengthα is by
the Wolfe conditions [26] given by

f(θnew) ≤ f(θ) + c1α∇f(θ)⊤p (18)

∇f(θnew)
⊤p ≥ c2∇f(θ)⊤p (19)

for some0 < c1 < c2 < 1. Equation (18) ensures that the
search gives an improvement whenp is a descent direction.
Note that (18) will be satisfied for any smallα, in which
case the improvement may be limited. Therefore, the curvature
condition (19) is added to ensure that the chosen step lengthis
not too conservative. In practice, we can use the backtracking

technique to dispense the condition (19) [26]. The idea is toset
α to a large value initially, and decrease its value until (18)
is satisfied. WhenΘ = {θ|θmin ≤ θ ≤ θmax} and p 6= 0,
there exists a finitēα such thatPΘ(θ + αp) = PΘ(θ + ᾱp)
for all α ≥ ᾱ. The backtracking technique can start with this
initial value. The complete plant parameter update algorithm
with backtracking is given as Algorithm 2.

Algorithm 2: Plant Parameter Update Algorithm

Given θ, K, f(θ) = ||Twz(θ,K)||2H2
;

Compute the gradient∇f(θ) and setp = −∇f(θ) ;
if p = 0 then

θnew = θ ;

else
Computeᾱ and setα = ᾱ ;
Chooseρ ∈ (0, 1), c1 ∈ (0, 1) ;
Setθnew = PΘ(θ + αp) ;
while f(θnew) > f(θ) + c1α∇f(θ)⊤p do

α = ρα ;
θnew = PΘ(θ + αp) ;
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