
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

State-of-Charge Estimation from a Thermal-Electrochemical
Model of Lithium-Ion Batteries

Tang, S.; Camacho-Solorio, L.; Wang, Y.; Krstic, M.

TR2017-127 September 2017

Abstract
A thermal-electrochemical model of lithium-ion batteries is presented and a Luenberger ob-
server is derived for State-of-Charge (SoC) estimation by recovering the lithium concentration
in the electrodes. This first-principles based model is a coupled system of partial and ordi-
nary differential equations, which is a reduced version of the Doyle-Fuller-Newman model.
More precisely, the subsystem of Partial Differential Equations (PDEs) is the Single Particle
Model (SPM) while the Ordinary Differential Equation (ODE) is a model for the average tem-
perature in the battery. The observer is designed following the PDE backstepping method.
Since some coefficients in the coupled ODE-PDE system are time-varying, this results in
the time dependency of some coefficients in the kernel function system of the backstepping
transformation and it is non-trivial to show well-posedness of the latter system. Adding
thermal dynamics to the SPM serves a two-fold purpose: improving the accuracy of SoC
estimation and keeping track of the average temperature which is a critical variable for safety
management in lithium-ion batteries. Effectiveness of the estimation scheme is validated via
numerical simulations.
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Abstract

A thermal-electrochemical model of lithium-ion batteries is presented and a Luenberger observer is derived for State-of-Charge (SoC)
estimation by recovering the lithium concentration in the electrodes. This first-principles based model is a coupled system of partial and
ordinary differential equations, which is a reduced version of the Doyle-Fuller-Newman model. More precisely, the subsystem of Partial
Differential Equations (PDEs) is the Single Particle Model (SPM) while the Ordinary Differential Equation (ODE) is a model for the
average temperature in the battery. The observer is designed following the PDE backstepping method. Since some coefficients in the
coupled ODE-PDE system are time-varying, this results in the time dependency of some coefficients in the kernel function system of the
backstepping transformation and it is non-trivial to show well-posedness of the latter system. Adding thermal dynamics to the SPM serves
a two-fold purpose: improving the accuracy of SoC estimation and keeping track of the average temperature which is a critical variable
for safety management in lithium-ion batteries. Effectiveness of the estimation scheme is validated via numerical simulations.
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1 Introduction

1.1 Motivation

Due to its high power and energy storage density, its lack
of memory effect and low self discharge, lithium-ion tech-
nology is a common choice among the rechargeable battery
family [1]. Besides its wide employment in portable elec-
tronics, lithium-ion batteries are now being adopted in elec-
trified transportation [2] such as electric vehicles and hybrid
electric vehicles. Lithium-ion technology is being consid-
ered for grid energy storage as well.

The key indicator for the amount of electrical energy avail-
able in batteries is the SoC which, simply put, is the ratio of
instantaneous remaining battery charge to its maximum ca-
pacity [3]. Thus, in order to predict the available power and
energy in the battery during operation, online estimation of
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the SoC serves as an important factor for regulating both
charging and discharging. Besides, it is generally required
that the SoC remains within appropriate bounds all the time
during the battery operation for safety reasons. Hence, a re-
liable and accurate estimation of the SoC is required for
proper battery management.

1.2 Lithium-ion battery models

Accuracy of the SoC estimation depends highly on the qual-
ity of the selected model. Thus, one is encouraged to com-
pare the different models available for describing the bat-
tery dynamics. Models for lithium-ion batteries can be cat-
egorized into two classes. The first class consists of em-
pirical models, in which the most frequently used ones are
Equivalent Circuit Models (ECMs) [4,5]. ECMs use elec-
tric circuit elements such as voltage sources, resistances and
RC networks to approximate the dynamics of the battery.
Currently, most battery management systems employ ECMs
for various tasks: power and energy estimation, cell bal-
ancing, thermal management, state-of-health estimation and
charge/discharge control. The second class of models are
based on first principles [6]. These electrochemical models
account for the main underlying physics in the battery, more
precisely, they offer an explicit description of the battery
dynamics in terms of the main electrochemical parameters



and variables. The need for accurate SoC estimation as well
as visibility of important electrochemical states and param-
eters, specially in high power and high energy applications,
motivates the study of estimation based on electrochemical
models.

The widely studied electrochemical Doyle-Fuller-Newman
(DFN) model has been shown to accurately describe the
main phenomena in lithium-ion batteries [3,7]. However, the
complexity of the model is too high for online SoC esti-
mation [8]. Among the various approximations to the DFN
model, the SPM [9,10] is commonly used to derive online
SoC estimation algorithms [11]. In the SPM, diffusion of
lithium ions in each electrode is simplified as diffusion in
a single spherical particle and electrolyte concentration is
assumed to be constant. Still, the SPM has several limita-
tions, for example, being accurate only at low currents [3].
Another limitation is that the SPM is restricted to the cases
with small variation in internal temperature, which comes
from the fact that SPM ignores the dependence of the bat-
tery parameters on temperature. In fact, lithium-ion batteries
meet issues such as an increase in internal resistance and
decrease of capacity, as functions of battery internal average
temperature [10,12].

1.3 Estimation algorithms

Extensive efforts have been devoted to developing SoC es-
timation algorithms, for example, Extended Kalman Filters
(EKFs) for ECMs [5] and for the SPM [13]. Estimation al-
gorithms have also been derived for reduced electrochemical
models with temperature dynamics, e.g., a linear observer
derived to satisfy the conservation of lithium ions [8] and
a linear observer using pole placement [14]. These estima-
tion algorithms, together with others based on the unscented
Kalman filter or particle filters, rely on some discretization
of the diffusion phenomena.

Discretization generally implies a trade-off between high
accuracy of the approximation, i.e., a large number of states,
and a small number of tuning gains in the observer, i.e. a
small number of states. The backstepping approach can be
employed to design boundary observers for PDEs in which
the discretization is not required. The readers can refer to
[15] for a preliminary example of boundary observer design
for diffusion PDEs via backstepping. This method has been
used for the stabilization of various unstable PDE systems,
see the tutorial book [16], in which backstepping boundary
controllers and observers are designed for some unstable
parabolic, hyperbolic PDEs and other types of PDEs. It has
also been applied for stabilizing some coupled PDE-ODE
systems [17,18].

1.4 Contribution

The main contribution of this paper is the derivation of a lin-
ear observer for SoC estimation from a simplified thermal-
electrochemical model of lithium-ion batteries, i.e., a cou-

pled ODE-PDE model composed by the SPM and a model
for the averaged internal temperature [10,19]. Adding ther-
mal dynamics to SPM serves a two-fold purpose: improv-
ing the accuracy of SoC estimation and keeping track of the
average temperature which is a critical variable for safety
management in lithium-ion batteries.

The observer is designed following the PDE backstepping
method. It is worth noting that backstepping observers have
not been introduced to the problem of battery SoC estimation
until very recently [11], and by this means the discretization
of the diffusion PDEs in the model is avoided. We consider
the result presented in this paper as an additional step in
the efforts to design estimation and control algorithms for
lithium-ion batteries from electrochemical models without
relying on the discretization of the PDEs in these models.

The main technical challenges in our design consist of prov-
ing the well-posedness of the kernel function system for
the backstepping transformation. The fact that some coeffi-
cients in the thermal-electrochemical model system are time-
varying results in a kernel function system with time-varying
coefficients, for which the well-posedness is non-trivial to
derive. Indeed, this work is a continuation and completion
of a previous result for SoC estimation from a thermal-
electrochemical model of lithium-ion batteries in [19].

1.5 Organization

The rest of this paper is organized as follows. In Section 2, a
temperature-compensated SPM model is presented; and the
corresponding SoC estimation problem is formulated in Sec-
tion 3. In Section 4, a linear observer is developed for esti-
mation of the lithium concentration in the electrodes through
boundary state measurements via the backstepping method.
The observer error system is proved to be exponentially sta-
ble with an arbitrarily designated decay rate, for which the
well-posedness is derived by making use of the abstract evo-
lution equation theory. It is worth noting that solving the
kernel function system for the backstepping transformation
is not trivial because of its dependence on the temperature
[20,21]. Under some more relaxed assumptions and simpli-
fications than those in [19], the existence and regularity of
the solution to the system is proved in this section. The SoC
estimation accuracy is verified by the numerical simulation
results presented in Section 5. Finally, some concluding re-
marks and possible future research topics are given in Sec-
tion 6.

2 SPM-T Model

In this section, the working mechanism of lithium-ion bat-
teries is briefly introduced through an overview of the DFN
model. Then, the single particle model with temperature
dynamics [10,19], named SPM-T model, is presented for
the purpose of SoC estimation, which can be viewed either
as a simplification of the DFN model or as temperature-
compensated SPM.
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2.1 Working principles of lithium-ion batteries

A lithium-ion battery cell consists of three main regions:
negative electrode, separator and positive electrode; all of
them characterized by a porous structure. Each electrode
includes active materials, conductive fillers, a current col-
lector and a binder. The porous structure of the electrodes
provides a large surface area and small distances between
lithium ions and active material surfaces for reactions to oc-
cur. The separator is placed between the negative and posi-
tive electrodes to forbid the flow of electrons between two
electrodes while allowing the movement of lithium ions dis-
solved in the electrolyte. The active materials, intercalated
in the lattices of the corresponding electrode, are insertion
compounds, i.e. these are host structures in which lithium
can be reversibly inserted or extracted. Electrolyte fills all
remaining parts of the battery.

The DFN model is derived based on the porous structure all
through the lithium-ion battery [3,12]. In the DFN model,
each electrode is viewed as superposition of active materi-
als, inert filler and electrolyte; justified by the porous con-
figuration. As depicted in Fig. 1, all intercalation particles
are assumed to be spheres with a uniform, averaged radius,
and the battery is formulated as a pseudo two-dimensional
model. The first dimension represents the path along the spa-
tial direction x from the anode, through the separator, to the
cathode; and the second dimension is a radial direction rs
used to represent the intercalation and diffusion of lithium
ions in the active materials.

Lithium ions move from the negative electrode to the positive
electrode during discharging and in the opposite direction
during charging. Lithium concentration in the solid phase,
i.e. concentration of lithium ions in the active materials,
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Fig. 1. DFN schematic.

Table 1
Nomenclature

Variables

cs Lithium concentration in the solid phase

css Lithium concentration at the surface of the particle

ce Constant lithium concentration in the electrolyte

c̄s Volume averaged lithium concentration in the solid phase

j Molar flux of lithium at the surface of the particle

φs Electric potential in the solid phase

φe Electric potential in the electrolyte

η Reaction overpotential

U Open-circuit potential

i0 Exchange current density

ie Electrolyte current density normalized by cross-sectional area

T Internal average temperature

Tamb Ambient temperature

I External current density normalized by cross-sectional area

V Terminal voltage

q̄s Volume averaged flux

Parameters

L Length

Ds Diffusion coefficient of lithium in the solid phase

De Diffusion coefficient of lithium in the electrolyte

cmax
s Maximum lithium concentration in the solid phase

Rs Radius of the particle

αa Anodic transfer coefficient

αc Cathodic transfer coefficient

reff Effective reaction rate in the solid phase

Rf Film resistance of the solid-electrolyte interphase

Rc Contact resistance between the electrode and current collector

εs Volume fraction of the active material

εe Volume fraction of the electrolyte

as Interfacial surface area

F Faraday’s constant

R Universal gas constant

NLi,s Total number of lithium ions in the solid phase

σ Electronic conductivity in the solid phase

κ Ionic conductivity in the electrolyte

t0
c Transference number of the ions w.r.t. the solvent velocity

fc/a Mean molar activity coefficient in the electrolyte

ρavg Average density

cP Heat capacity

hcell Heat transfer coefficient

E Activation energy coefficient

Super- and subscripts

+ Positive electrode

− Negative electrode

sep Separator

s Solid phase

e Electrolyte

follows the Fick’s law of diffusion:

∂c±s
∂ t

(t,x,rs) =
1
r2

s

∂

∂ rs

[
D±s (T (t))r

2
s

∂c±s
∂ rs

(t,x,rs)

]
,

t > 0, x ∈
(
0±,L±

)
, rs ∈

(
0,R±s

)
, (1)

∂c±s
∂ rs

(t,x,0) = 0, t > 0, x ∈
(
0±,L±

)
, (2)

∂c±s
∂ rs

(t,x,R±s ) =−
1

D±s (T (t))
j±(t,x), t > 0,x ∈

(
0±,L±

)
,

(3)
c±s (0,x,rs) = c±s0(x,rs), x ∈

[
0±,L±

]
,rs ∈

[
0,R±s

]
, (4)
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where the temporal variable is t, the spatial variables are x
and rs. The states of the PDE model (1)–(4) are c±s (t,x,rs)∈
R; the solid phase lithium concentration. The molar fluxes
j±(t,x) are related to the reaction overpotential η±(t,x) by
the Butler-Volmer equation

j±(t,x) =
i±0 (t,x)

F

[
e

αaF
RT (t)η±(t,x)− e−

αcF
RT (t)η±(t,x)

]
.

The reaction overpotentials η±(t,x) are computed from

η
±(t,x) =φ

±
s (t,x)−φ

±
e (t,x)−U±(c±ss(t,x),T (t))

−FR±f (T (t)) j±(t,x).

Lithium concentration in the liquid phase ce(t,x), i.e. con-
centration of lithium ions in the electrolyte, satisfies the dif-
fusion equation

∂ce

∂ t
(t,x) =

∂

∂x

[
De

∂ce

∂x
(t,x)+

1− t0
c

εeF
ie(t,x)

]
. (5)

Equations for solid electric potential φs(t,x) and electrolyte
electric potential φe(t,x) are

∂φs

∂x
(t,x) =

ie(t,x)− I(t)
σ

, (6)

∂φe

∂x
(t,x) =− ie(t,x)

κ

+
2RT (t)

F
(1− t0

c )

(
1+

dln fc/a

dlnce
(t,x)

)
∂ lnce

∂x
(t,x), (7)

where I(t) is the external current density normalized by
cross-sectional area. Charge conservation in the electrodes
provides a relation between electrolyte current densities
i±e (x, t) and molar fluxes j±(t,x):

∂ i+e
∂x

(t,x) =−a+s F j+(t,x),

∂ i−e
∂x

(t,x) = a−s F j−(t,x),

with boundary conditions i−e (t,0
−) = i+e (t,L

+) = 0 and
i−e (t,L

−) = i+e (t,0
+) = I(t). In the separator, ie(t,x) = I(t).

Output voltage is the difference between the two solid
electric potentials computed as

V (t) = φs(t,L+)−φs(t,0−).

The readers should refer to [3] for a complete description of
the DFN model and for the boundary conditions for equa-
tions (5)–(7). Note that we are using the convention: positive
current for discharging and negative current for charging.

2.2 The SPM-T model

The DFN model accurately describes many aspects of the
lithium-ion cells working mechanism; however, the com-

plexity of the model is too high for online SoC estimation.
For this reason, we present a simplified model which is
the single particle model with temperature dynamics, i.e.,
the SPM-T model. The SPM-T model [10,19] is derived by
making the following assumptions and simplifications:

• concentration of lithium ions in the electrolyte ce(t,x) is
uniform in both time and space,

• molar fluxes j±(t,x) are uniform in the x-direction,
• concentration of lithium ions in the active materials

cs(t,x) is uniform in the x-direction.

Moreover, each electrode is modeled as a single spherical
particle in this simplification; representative of all particles
in the electrode. Compared with the SPM-T model presented
in [10], here we choose not to take into account the elec-
trolyte resistance Rcell, i.e., we set Rcell = 0 [8].

In the coupled SPM-T model, the SPM subsystem is

∂c±s
∂ t

(t,rs) =
1
r2

s

∂

∂ rs

[
D±s (T (t))r

2
s

∂c±s
∂ rs

(t,rs)

]
,

t > 0,rs ∈ (0,R±s ), (8)
∂c±s
∂ rs

(t,0) = 0, t > 0, (9)

∂c±s
∂ rs

(t,R±s ) =−
1

D±s (T (t))
j±(t), t > 0, (10)

c±s (0,rs) = c±s,0(rs), rs ∈ [0,R±s ]. (11)

The states of the system (8)–(11) are c±s (t,rs) ∈R, with the
temporal variable t and the spatial variables rs. The relation
between molar fluxes j±(t) and current I(t) becomes linear:

j+(t) =− I(t)
a+s FL+

, j−(t) =
I(t)

a−s FL−
.

By assuming the same value to the anodic and cathodic trans-
fer coefficients, i.e., α , αa = αc, a simple relation between
reaction overpotentials and molar fluxes can be found as

η
±(t) =

RT (t)
αF

sinh−1
(

F
2i±0 (t)

j±(t)
)
,

where

i±0 (t) = r±eff(T (t))
[
c±ss(t)

]αc [ce,0
(
c±,max

s − c±ss(t)
)]αa , (12)

with c±ss(t) , c±s (t,R
±
s ). The parameter ce,0 in the equation

(12) denotes the electrolyte concentration at equilibrium.
Solid electric potentials are computed from

φ
±
s (t) = η

±(t)+U±(c±ss(t),T (t))+FR±f (T (t)) j±(t).

Output voltage is now the difference between solid electric
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potentials in the positive electrode and negative electrode:

V (t) =φ
+
s (t)−φ

−
s (t)

=− RT (t)
αF

[
sinh−1

(
1

2i+0 (t)
I(t)

a+L+

)
+ sinh−1

(
1

2i−0 (t)
I(t)

a−L−

)]
−
(

R+
f (T (t))
a+L+

+
R−f (T (t))

a−L−

)
I(t)

+U+(c+ss(t),T (t))−U−(c−ss(t),T (t)). (13)

Parameters D±s (T (t)), r±eff(T (t)) and R±f (T (t)) are functions
with an Arrhenius-like dependence [8] on the battery cell
internal average temperature T (t), i.e.,

D±s (T (t)) = D±s (T (0))e
ED±s

T (t)−T (0)
T (t)T (0) , (14)

r±eff(T (t)) = r±eff(T (0))e
Er±eff

T (t)−T (0)
T (t)T (0) , (15)

R±f (T (t)) = R±f (T (0))e
ER±f

T (t)−T (0)
T (t)T (0) , (16)

where ED±s
, Er±eff

, ER±f
, are activation energy coefficients.

Internal average temperature satisfies the following ODE
[12, Section 12.3.7]

ρ
avgcP

dT
dt

(t) = hcell (Tamb(t)−T (t))− I(t)V (t)

+ I(t)
{

U+(c̄+s (t),T (t))−U−(c̄−s (t),T (t))

−T (t)
[

∂U+(c̄+s (t),T (t))
∂T

− ∂U−(c̄−s (t),T (t))
∂T

]}
+RcI(t)2, t > 0, (17)
T (0) = Tamb(0), (18)

where c̄±s (t) are the average concentrations defined as

c̄±s (t) =
3

(R±s )3

∫ R±s

0
r2

s c±s (t,rs)drs.

The system states are the solid phase lithium ion concen-
trations c±s (t,rs) ∈ R in the PDE (8)–(11) and the internal
average temperature T (t) in the ODE (17)–(18).

3 Problem Formulation

3.1 Estimation objective

Our objective is to estimate the battery SoC, defined as the
normalized averaged lithium concentration in the negative
electrode, i.e.,

SoC(t) =
3

(R−s )3

∫ R−s

0
r2

s
c−s (t,rs)

c−s,max
drs =

c̄−s (t)
c−s,max

, (19)

from measurements of the input current I(t) and the output
voltage V (t). For this purpose, boundary observers can be
constructed to estimate the concentrations of lithium ions in
the electrodes c−s (t,rs) by using the boundary values, i.e., the
corresponding surface concentrations c−ss(t). Note however
that in (13), boundary values c−ss(t) are not directly avail-
able from measurement of V (t). Instead, they appear in V (t)
with a nonlinear fashion, i.e., the nonlinearities within the
exchange current densities i−0 (t) and within the subtraction
between the nonlinear Open-Circuit Potential (OCP) func-
tions U−(t,c−ss(t)). Therefore, in order to overcome the lack
of boundary value measurements required by the boundary
observers, an inversion of the output function V (t) with re-
spect to the boundary values is needed.

To ease inversion of the output voltage, the lithium concen-
tration dynamics in one of the electrodes will be simplified.
Inversion will then be done with respect to the surface con-
centration of the electrode with unsimplified lithium con-
centration dynamics. The leading terms in the output voltage
are the OCP functions and we are assuming that the OCP
functions are invertible with respect to the surface concen-
tration in the corresponding unsimplified electrode. In this
paper, we will simplify the lithium concentration dynamics
in the negative electrode and invert the output function with
respect to the surface concentration in the positive electrode,
and a boundary observer will then be derived for estimation
of lithium ion concentration in the positive electrode.

Remark 1 The decision of simplifying the negative elec-
trode dynamics instead of the positive one is made based on
the sensitivity of OCPs to surface concentrations. For some
common lithium ion active materials, ∂U+/∂c+ss is larger that
∂U+/∂c−ss in magnitude, thus making it easier to recover c+ss
from the voltage measurement V (t).

One can easily prove that the total amount of lithium ions
in solid phase NLi,s is conserved [8], i.e.,

dNLi,s

dt
= 0, (20)

where

NLi,s = ε
+L+c̄+s (t)+ ε

−L−c̄−s (t).

Since we assume NLi,s is a known quantity, i.e. a parameter in
the model, then we can also compute the battery SoC in the
negative electrode from the averaged lithium concentration
in the positive electrode, i.e.

SoC(t) =
NLi,s− ε+L+c̄+s (t)

ε−L−c−s,max
. (21)

3.2 Output function inversion

The goal of the output function inversion is to write V (t) as
a function of only of c+ss(t) and I(t).
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3.2.1 Write V (t) as a function of c±ss(t), c̄±s (t) and I(t)

The first step is to simplify the internal average temperature
dynamics to derive an expression for T (t) only in terms
of time and current, i.e., a time-varying function Ť (t) ,
Ť (t, I(t),Tamb(t)) independent of the concentrations c±s (t),
c±ss(t). We start by substituting the output voltage equation
(13) into the original average temperature equation (17):

ρ
avgcP

dT
dt

(t) = hcell (Tamb(t)−T (t))

+ I(t)
RT (t)
αF

[
sinh−1

(
1

2i+0 (t)
I(t)

a+L+

)
+ sinh−1

(
1

2i−0 (t)
I(t)

a−L−

)]
+

(
R+

f (T (t))
a+L+

+
R−f (T (t))

a−L−
−Rc

)
I(t)2

− I(t)
[
U+(c+ss(t),T (t))−U−(c−ss(t),T (t))

]
+ I(t)

{
U+(c̄+s (t),T (t))−U−(c̄−s (t),T (t))

−T (t)
[

∂U+(c̄+s (t),T (t))
∂T

− ∂U−(c̄−s (t),T (t))
∂T

]}
. (22)

We assume that the functions U±(·,T (t)) and i±0 (·) are inde-
pendent of concentrations but possibly time-varying, and we
replace their dependence on temperature T (t) with depen-
dence on the ambient temperature Tamb(t). For this purpose,
denote

Ǔ±1 (t),U±(c±ss(t),Tamb(t)),

Ǔ±2 (t),U±(c̄±s (t),Tamb(t)),

ǐ0
±
(t), i±0 (Tamb(t)),

where subscript 1 in Ǔ is used to denote the approximation
of U±(·,T (t)) when they are evaluated at the surface con-
centration and subscript 2 when they are evaluated at the
averaged concentration. Similarly, for the temperature de-
pendent parameters R±f (T (t)) and r±eff(T (t)), we also replace
dependence on T (t) with Tamb(t), i.e.,

ˇreff
±(t), r±eff(Tamb(t)),

Ř f
±
(t), R±f (Tamb(t)).

Thus, we can rewrite the equation (22) as

ρ
avgcP

dŤ
dt

(t) = χ(t)Ť (t)+ω(t), (23)

where

χ(t) =−hcell +
R

αF
I(t)
[

sinh−1

(
1

2ǐ0
+
(t)

I(t)
a+L+

)

+ sinh−1

(
1

2ǐ0
−
(t)

I(t)
a−L−

)]
− I(t)

[
∂Ǔ+

2
∂T

(t)−
∂Ǔ−2
∂T

(t)
]
,

ω(t) =hcellTamb(t)+
(

Ř+
f (t)

a+L+
+

Ř−f (t)
a−L−

−Rc

)
I(t)2

− I(t)
[
Ǔ+

1 (t)−Ǔ−1 (t)
]
+ I(t)

[
Ǔ+

2 (t)−Ǔ−2 (t)
]
,

then, it holds that

Ť (t) =Ť (0)e
1

ρ
avgcP

∫ t
0 χ(τ)dτ

+
1

ρavgcP

∫ t

0
e

1
ρ

avgcP

∫ t−τ

0 χ(σ)dσ

ω(τ)dτ. (24)

Substituting (24) into (13) yields the following simplified
output function:

V (t) =− RŤ (t)
αF

[
sinh−1

(
1

2i+0 (t)
I(t)

a+L+

)
+ sinh−1

(
1

2i−0 (t)
I(t)

a−L−

)]
−
(

R+
f (Ť (t))
a+L+

+
R−f (Ť (t))

a−L−

)
I(t)

+U+(c+ss(t), Ť (t))−U−(c−ss(t), Ť (t)),

,h1(t,c±ss(t), c̄
±
s (t), I(t)). (25)

3.2.2 Write V (t) as a function of c+ss(t) and I(t)

In order to further simplify the output function, we are to
establish relations between c+ss(t) and the other concentra-
tions c−ss(t), c̄+s (t), c̄−s (t). Consider the following approxi-
mate polynomial solution profiles of the electrode diffusion
dynamics [22] 1 :

c̄±s (t) = c±ss(t)−
8R±s
35

q̄±s (t)+
R±s

35D±s (Ť (t))
j±(t), (26)

1 Note that (26) is obtained by assuming the following polynomial
solution profile

c±s (t,r) =
39
4

c±ss(t)−3q̄±s (t)R
±
s −

35
4

c̄±s (t)

+
(
−35c±ss(t)+10q̄±s (t)R

±
s +35c̄±s (t)

) (r±s )2

(R±s )2

+

(
105

4
c±ss(t)−7q̄±s (t)R

±
s −

105
4

c̄±s (t)
)

r4
s

(R±s )4 .
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where the volume averaged fluxes q̄±s (t) satisfy

d
dt

q̄±s (t) =−
30D±s (Ť (t))

(R±s )2 q̄±s (t)−
45

2(R±s )2 j±(t).

Moreover, from the conservation (20) of lithium ions in solid
phase NLi,s, we can write the relation

c̄−s (t) = α c̄+s (t)+β , (27)

where α = − ε+L+
ε−L− and β =

NLi,s
ε−L− . It then immediately fol-

lows from (26) and (27) that

c̄−s (t) = α

(
c+ss(t)−

8R+
s

35
q̄+s (t)+

R+
s

35D+
s (Ť (t))

j+(t)
)
+β ,

(28)

and

c−ss(t) =c̄−s (t)+
8R−s
35

q̄−s (t)−
R−s

35D−s (Ť (t))
j−(t)

=α

(
c+ss(t)−

8R+
s

35
q̄+s (t)+

R+
s

35D+
s (Ť (t))

j+(t)
)
+β

+
8R−s
35

q̄−s (t)−
R−s

35D−s (Ť (t))
j−(t). (29)

Therefore, from (25), (26), (28) and (29), we obtain a further
simplified version of the output function:

V (t) = h2(t,c+ss(t), I(t)). (30)

3.2.3 Inversion of the function h2

As long as the function (30) is a one-to-one correspondence
w.r.t. c+ss(t), uniformly in I(t), one could invert it to derive
the boundary concentration in the positive electrode as

c+ss(t) = h0(t,V (t), I(t)).

3.3 Normalization and state transformation

We perform normalization and state transformation to sim-
plify the system and thus also the structure of to-be-designed
observer. Let r = rs/R+

s for normalization and proceed the
state transformation c(t,r) = rsc+s (t,rs), then the PDE sub-

system (8)–(11) is transformed into 2

∂c
∂ t

(t,r) =
D+

s (Ť (t))
(R+

s )2
∂ 2c
∂ r2 (t,r), t > 0, r ∈ (0,1), (31)

c(t,0) = 0, t > 0, (32)
∂c
∂ r

(t,1)− c(t,1) =
R+

s

D+
s (Ť (t))

I(t)
a+FL+

, I1(t), t > 0,

(33)
c(0,r) = c0(r) = R+

s rc+s (0,R
+
s r), r ∈ [0,1]. (34)

Our objective now is to design an observer for this normal-
ized and transformed PDE system.

4 Backstepping State Observer

With the inversion of the output function in Section 3.2,
the boundary concentration in the positive electrode is
then available for observer design. Again, we assume that
the internal averaged temperature is a time-varying and
concentration-independent function which can be com-
puted from the simplified equation (24). Thus, the function
D+

s (Ť (t)) will be treated as known. Moreover, assume that
I(t),U±(·, Ť (t)) and V (t) are piecewise (real) analytic. In
what follows, we only consider the proof piecewisely so
that both I(t) and V (t) are analytic in each separate time in-
terval. Then, from (24) and with the assumption that ∂U±/∂T
are also analytic in each corresponding time interval, we
can prove by induction that the n-th order derivative of Ť (t)
is differentiable for any nonnegative integer n. Further, we
can derive that Ť (t) is analytic in each time interval. With-
out loss of generality, consider t ∈ [0, tmax] where tmax is an
appropriate finite time for the regularities to hold.

A Luenberger-type observer for the normalized and trans-
formed PDE system (31)–(34) can be designed:

∂ ĉ
∂ t

(t,r) =
D+

s (Ť (t))
(R+

s )2
∂ 2ĉ
∂ r2 (t,r)+ p1(t,r)(c(t,1)− ĉ(t,1)),

t > 0, r ∈ (0,1), (35)
ĉ(t,0) = 0, t > 0, (36)
∂ ĉ
∂ r

(t,1)− ĉ(t,1) = I1(t)+ p10(t)(c(t,1)− ĉ(t,1)), t > 0,

(37)
ĉ(0,r) = ĉ0(r), r ∈ [0,1], (38)

which is a copy of the plant together with output error in-
jection terms. Here, ĉ0(r) denotes the initial condition of the
observer, and the boundary state error injection gains p1(t,r)

2 The normalization transformation t̄ = D+
s (Ť (t))/(R

+
s )

2t em-
ployed in [11] is not used in this paper. The reason is that T (t) is
not known a priori in this case, needing to be measured or derived
at each time step. Thus, the corresponding inverse transformation
can not be trivially obtained.
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and p10(t) are to be determined to guarantee the stability of
the estimation error system

∂ c̃
∂ t

(t,r) =
D+

s (Ť (t))
(R+

s )2
∂ 2c̃
∂ r2 (t,r)− p1(t,r)c̃(t,1),

t > 0, r ∈ (0,1), (39)
c̃(t,0) = 0, (40)
∂ c̃
∂ r

(t,1)− c̃(t,1) =−p10(t)c̃(t,1), (41)

c̃(0,r) = c0(r)− ĉ0(r), c̃0(r), (42)

with c̃(t,r), c(t,r)− ĉ(t,r). In order to find the output injec-
tion gains, the PDE backstepping method [16] is employed.
We would like to find an invertible transformation

c̃(t,r) = w̃(t,r)−
∫ 1

r
p(t,r, ι)w̃(t, ι)dι (43)

so that w̃ satisfies the following exponentially stable target
system:

∂ w̃
∂ t

(t,r) =
D+

s (Ť (t))
(R+

s )2
∂ 2w̃
∂ r2 (t,r)+λ w̃(t,r), (44)

w̃(t,0) = 0, (45)
∂ w̃
∂ r

(t,1) =−1
2

w̃(t,1), (46)

w̃(0,r) = w̃0(r), (47)

where w̃0(r) denotes the initial condition to be determined
for the target system, and λ < min

t≥0
{D−s (Ť (t))}/(4(R+

s )
2
) is

a free parameter to be chosen, which determines the conver-
gence rate of the observer state in (39)–(42) to the system
state in (31)–(34). The following lemma states the exponen-
tial stability of the w̃-system (44)–(47).

Lemma 2 Let t ∈ [0, tmax]. If

λ <
1

4(R−s )
2 min

t≥0
{D+

s (Ť (t))}, (48)

then for any initial data w̃0(·)∈ L2(0,1), the w̃-system (44)–
(47) admits a (mild) solution w̃(t, ·) ∈ L2(0,1) and is expo-
nentially stable at w̃ ≡ 0. Moreover, if the boundary com-
patibility condition is satisfied, the solution is classical.

PROOF. Consider the state space H = L2(0,1). For every
t ∈ [0, tmax], define a linear operator A (t) : Dom(A (t)) ⊂
H→ H as follows:

A (t)ϕ =
D+

s (Ť (t))
(R+

s )2 ϕ
′′+λϕ, ∀ϕ ∈ Dom(A (t)),

Dom(A (t)) = {ϕ ∈ H2(0,1);

ϕ(0) = 0, ϕ
′ (1) =−1

2
ϕ (1)}.

Then, the system (44)–(47) can be written into the following
abstract equation:

d
dt

w̃(t, ·) = A (t)w̃(t, ·), 0≤ t ≤ tmax, (49)

w̃(0, ·) = w̃0(·). (50)

Note that Dom(A (t)) is dense in H and independent of t,
and it can be proved that A (t) is for each t the infinitesi-
mal generator of an exponential stable semigroup. Indeed,
all the assumptions (P1)–(P3) in [23, Section 5.6] are satis-
fied. Thus, from [23, Section 5.6, Theorem 6.1], there ex-
ists a unique evolution system corresponding to (49)–(50)
and (44)–(47) as well. Furthermore, by considering the Lya-
punov function V (t) = 1

2‖w̃(t, ·)‖
2
L2(0,1), we get

V̇ (t) =
∫ 1

0
w̃(t,r)

[
D+

s (Ť (t))
(R+

s )2
∂ 2w̃
∂ r2 (t,r)+λ w̃(t,r)

]
dr

=
D+

s (Ť (t))
(R+

s )2

[
−1

2
w̃2(t,1)−‖w̃r(t, ·)‖2

L2(0,1)

]
+λ‖w̃(t, ·)‖2

L2(0,1)

≤−2

(
D+

s (Ť (t))

4(R+
s )

2 −λ

)
V (t), (51)

where (44) is used in the first line, (45), (46) and integration
by parts are applied in the second line, and the Poincaré
Inequality [16, Lemma 2.1]

‖w̃(t, ·)‖2
L2(0,1)≤ 4‖w̃r(t, ·)‖2

L2(0,1)

is employed in the last line. As a result, from (48), expo-
nential stability of the w̃-system (44)–(47) is proved. 2

For notation simplicity we will denote the L2(0,1)-norm by
‖·‖ in the sequel.

Differentiating the transformation (43) with respect to t gives

c̃t(t,r) =
D+

s (Ť (t))
(R+

s )2

[
∂ 2w̃
∂ r2 (t,r)+ p(t,r,r)w̃r(t,r)

+

(
pι(t,r,1)+

1
2

p(t,r,1)
)

w̃(t,1)
]

+

[
λ − D+

s (Ť (t))
(R+

s )2 pι(t,r,r)
]

w̃(t,r)

−
∫ 1

r

[
pt(t,r, ι)+λ p(t,r, ι)

+
D+

s (Ť (t))
(R+

s )2 pιι(t,r, ι)
]

w̃(t, ι)dι , (52)

where (44), (46) and integration by parts have been used in
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the calculation. Differentiating (43) with respect to r gives

c̃r(t,r) =w̃r(t,r)+ p(t,r,r)w̃(t,r)

−
∫ 1

r
pr(t,r, ι)w̃(t, ι)dι , (53)

c̃rr(t,r) =w̃rr(t,r)+ p(t,r,r)w̃r(t,r)

+

(
d
dr

p(t,r,r)+ pr(t,r,r)
)

w̃(t,r)

−
∫ 1

r
prr(t,r, ι)w̃(t, ι)dι . (54)

From (39)–(42), (43), (45)–(47) and (52)–(54), we derive
that the kernel function p(t,r, ι) needs to satisfy the follow-
ing PDE system:

pt(t,r, ι) =
D+

s (Ť (t))
(R+

s )2 [(prr(t,r, ι)− pιι(t,r, ι)]−λ p(t,r, ι),

(55)
p(t,0, ι) = 0, (56)

p(t,r,r) =
(R+

s )
2

2D+
s (Ť (t))

λ r, (57)

p(0,r, ι) = p0(r, ι), (58)

for which the domain is T = {(t,r, ι); 0≤ t ≤ tmax, 0≤ ι ≤
r ≤ 1}. Here, p0(r, ι) denotes the initial condition for the
kernel system and satisfies

∫ 1

r
p0(r, ι)w̃(t, ι)dι = c0(r)− ĉ0(r)− w̃0(r). (59)

Moreover, the observer gains need to be chosen as

p1(t,r) =−
D+

s (Ť (t))
(R+

s )2

(
pι(t,r,1)+

1
2

p(t,r,1)
)
, (60)

p10(t) =
3
2
− (R+

s )
2

2D+
s (Ť (t))

λ . (61)

In more detail, first, plugging (43), (52) and (54) into (39)
gives (55), (60) and the boundary condition

d
dr

p(t,r,r) =
(R+

s )
2

2D+
s (Ť (t))

λ . (62)

Second, plugging (40) and (45) into (43) gives (56). Third,
(57) is derived from (62) and (56). Then, (61) is derived
from (41), (43), (46), (53) and (57). Finally, (59) is derived
by plugging (42) and (47) into (43).

4.1 Well-posedness of the kernel function p(r, ι , t)

Lemma 3 The initial data p0(·, ·) is an analytic function in
T= {(r, ι); 0≤ ι ≤ r≤ 1}, and the system (55)–(58) admits
an analytic solution p(t, ·, ·) in T .

PROOF. We first transform the system (55)–(58) into an
equivalent integral equation. Let ξ = r+ ι , η = r− ι and
q(t,ξ ,η) = p(t,r, ι), then we have from (55)–(58) that q
satisfies the following PDE:

qt(t,ξ ,η) = 4
D+

s (Ť (t))
(R+

s )2 qξ η(t,ξ ,η)−λq(t,ξ ,η), (63)

q(t,ξ ,−ξ ) = 0, (64)

q(t,ξ ,0) =
(R+

s )
2

4D+
s (Ť (t))

λξ , (65)

with the initial condition

q(0,ξ ,η) = p
(

0,
ξ +η

2
,

ξ −η

2

)
.

The equation (63) can be rewritten as

qξ η(t,ξ ,η) =
(R+

s )
2

4D+
s (Ť (t))

(qt(t,ξ ,η)+λq(t,ξ ,η)) . (66)

Integrating (66) with respect to η from 0 to η and using
boundary condition (65), we have

qξ (t,ξ ,η) =
(R+

s )
2

4D+
s (Ť (t))

λ +
(R+

s )
2

4D+
s (Ť (t))

×
∫

η

0
(qt(t,ξ ,β )+λq(t,ξ ,β ))dβ . (67)

Integrating (67) with respect to ξ from −η to ξ gives the
following integro-differential equation (IDE):

q(t,ξ ,η) =
(R+

s )
2

4D+
s (Ť (t))

λ (ξ +η)+
(R+

s )
2

4D+
s (Ť (t))

×
∫

ξ

−η

∫
η

0
(qt(t,α,β )+λq(t,α,β ))dβ dα, (68)

where (64) is used.

Second, we apply the method of successive approximation.
Let

C =
(R+

s )
2

4D+
s (Ť (0))e

ED+
s
/Ť (0)

, f (t) = e
ED+

s
/Ť (t)

,

then from (14), we look for a solution of (68) in the form of

q(t,ξ ,η) =
∞

∑
n=0

qn(t,ξ ,η),

where

q0(t,ξ ,η) = λC(ξ +η) f (t), (69)
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and

qn+1(t,ξ ,η)

=C f (t)
∫

ξ

−η

∫
η

0
[qn

t (t,α,β )+λqn(t,α,β )]dβ dα. (70)

Recall that Ť (t) is analytic, and since it is physically impos-
sible for the temperature to reach zero Kelvin, i.e., Ť (t) 6= 0,
then it is reasonable to assume that 1

Ť (t)
is an analytic func-

tion in t ∈ [0, tmax], and thus there exists a constant C f such
that for every nonnegative integer k, the following bound
holds:

∣∣∣ f (k)(t)∣∣∣ :=
∣∣∣∣ dk

dtk f (t)
∣∣∣∣≤Ck+1

f k! . (71)

Since the composition of analytic functions is analytic, then
q0(t,ξ ,η) is an analytic function in t ∈ [0, tmax] and it can
be derived from (69) and (71) that

|∂ i
t q0(t,ξ ,η)|≤ λCCi+1

f i!(ξ +η), ∀i ∈ N,

with respect to (ξ ,η), uniformly for t ∈ [0, tmax].

In what follows we are to prove by induction that for any
integer n≥ 0 the following estimate holds:

|∂ m
t qn(t,ξ ,η)| ≤λCn+1Cm+n+1

f (C f +λ )n

× (m+2n)!
2nn!

ξ nηn(ξ +η)

n!(n+1)!
. (72)

Assume that (72) holds for an integer n ≥ 0, then, for any
integer m≥ 0, we derive from (70) that

∣∣∂ m
t qn+1(t,ξ ,η)

∣∣
=

∣∣∣∣∂ m
t

[
C f (t)

∫
ξ

−η

∫
η

0
[qn

t (t,α,β )+λqn(t,α,β )]dβ dα

]∣∣∣∣
=C

∣∣∣∣ m

∑
i=0

[(
m

i

)
∂

m−i
t f (t)

×
∫

ξ

−η

∫
η

0

[
∂

i+1
t qn(t,α,β )+λ∂

i
t qn(t,α,β )

]
dβ dα

]∣∣∣∣.
Through further calculation, we obtain the following esti-

mates∣∣∂ m
t qn+1(t,ξ ,η)

∣∣
≤C

m

∑
i=0

{(
m

i

)
Cm+n+2

f (m− i)!

×λCn+1
[
C f +

λ

i+2n+1

]
(C f +λ )n

× (i+2n+1)!
2nn!

}
ξ n+1ηn+1(ξ +η)

(n+1)!(n+2)!

≤ λCn+2Cm+n+2
f (C f +λ )n+1

×
m

∑
i=0

[(
m

i

)
(m− i)!

(i+2n+1)!
2nn!

]
ξ n+1ηn+1(ξ +η)

(n+1)!(n+2)!

= λCn+2Cm+n+2
f (C f +λ )n+1

× (m+2(n+1))!
2n+1(n+1)!

ξ n+1ηn+1(ξ +η)

(n+1)!(n+2)!
,

where the following equalities have been used:

∫
ξ

−η

∫
η

0

αnβ n(α +β )

n!(n+1)!
dβ dα =

ξ n+1ηn+1(ξ +η)

(n+1)!(n+2)!
,

m

∑
i=0

(
m

i

)
(m− i)!(i+ j)!=

(m+ j+1)!
j+1

.

By induction, (72) holds for any integer n≥ 0.

Finally, the existence and of q(t,ξ ,η) and p(t,r, ι) can be
proved. Fixing m = 0 in (72) gives

|qn(t,ξ ,η)| ≤λCn+1Cn+1
f (C f +λ )n (2n)!

2nn!
ξ nηn(ξ +η)

n!(n+1)!
.

Then we can show that the series
∞

∑
n=0

qn(t,ξ ,η) converges

absolutely and uniformly. Indeed, the following bound
holds:

|q(t,ξ ,η)| ≤
∞

∑
n=0
|qn(t,ξ ,η)|

≤
∞

∑
n=0

λCn+1Cn+1
f (C f +λ )n (2n)!

2nn!
ξ nηn(ξ +η)

n!(n+1)!

= λCC f (ξ +η)
∞

∑
n=0

φ1(ξ ,η ;n),

where

φ1(ξ ,η ;n) = [CC f (C f +λ )ξ η ]n
(2n)!
2nn!

1
n! ·(n+1)!

.
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Since

lim
n→∞

φ1(ξ ,η ;n+1)
φ1(ξ ,η ;n)

= lim
n→∞

[CC f (C f +λ )ξ η ]
(2n+1)

(n+1)(n+2)
= 0 < 1,

then from the ratio criterion, the series
∞

∑
n=0

φ1(ξ ,η ;n) is

convergent. Consequently, the existence and of q(t,ξ ,η) and
p(t,r, ι) is established, which are analytic in T . Moreover,
the following bound holds for p(t,r, ι)

|p(t,r, ι)|≤ 2λCC f r
∞

∑
n=0

φ2(r, ι ;n),

where

φ2(r, ι ;n) = φ1(ξ ,η ;n). 2

4.2 Invertibility of the transformation (43)

Indeed, the continuity of the kernel p(t,r, ι) in (43) guaran-
tees the existence of an inverse transformation. We write the
inverse transformation as

w̃(t,r) = c̃(t,r)+
∫ 1

r
ρ(t,r, ι)c̃(t, ι)dι , (73)

then we could derive from (43) and (73) that the kernel
ρ(t,r, ι) needs to satisfy

ρ(t,r, ι) = p(t,r, ι)+
∫

ι

r
p(t,r,σ)ρ(t,σ , ι)dσ . (74)

In order to solve the equation (74), a similar (successive
approximation) procedure as in Subsection 4.1 can be fol-
lowed, see also, [16, Section 4.4]. A similar well-posedness
result for its inverse can also be obtained and this derivation
is omitted here.

Note also that the initial condition w̃0(r) for the tar-
get w̃-system (44)–(47) is determined by ĉ0(r) and
ρ0(r, ι) = ρ(0,r, ι). Indeed, from (42) and (73), w̃0(r) can
be calculated as

w̃0(r) = c0(r)− ĉ0(r)+
∫ 1

r
ρ0(r, ι)[c0(ι)− ĉ0(ι)]dι .

4.3 Exponential convergence of the observer

Some assumptions and simplifications have been made to
ease the analysis. For completeness and clarity we summa-
rize these assumptions and simplifications before stating our
main result.

(A1) To derive an output inversion function, i.e., to recover
c+ss(t) from the voltage measurement, we have assumed
that T (t) is a time-varying function independent of con-
centrations. We have used the notation Ť (t) and com-
pute its value from equation (23). For this assumption
to hold, some underlying simplifications and assumptions
have been made:
(i). Parameters R±f (T (t)) and r±eff(T (t)) are approximated

by Ř±f (t), R±f (Tamb(t)) and ř±eff(t), r±eff(Tamb(t)).
(ii). Functions U±(·,T (t)) are assumed to be indepen-

dent of concentrations, and their dependence on T (t)
has been replaced with dependence on Tamb(t). We
have used the notation Ǔ±1 (t),U±(c±ss(t),Tamb(t)) and
Ǔ±2 (t),U±(c̄±s (t),Tamb(t)).

(A2) To derive an output inversion function, diffusion of
lithium in the negative electrode has been simplified. This
is done by assuming a polynomial solution profile for the
diffusion dynamics in the negative electrode.

(A3) For observer design, we have used Ť (t) to replace T (t).
(A4) For observer design, functions I(t), U±(·,T (t)), V (t)

and ∂U±/∂T(·,T (t)) are assumed to be piecewise analytic.

Now, our main result can be presented. Consider an appro-
priate time interval [0, tmax] for the assumed regularities in
(A4) to hold. With the well-posedness of the kernel function
in the transformation (43) together with the invertibility of
the transformation, the following main theorem holds.

Theorem 4 Let t ∈ [0, tmax]. Under the simplifications and
assumptions (A1)–(A4), if

λ <
1

4(R+
s )

2 min
t≥0
{D+

s (Ť (t))},

then for any initial value ĉ(0, ·)∈ L2(0,1), the observer error
c̃-system (39)–(42) is exponentially stable at c̃ ≡ 0 in the
L2 norm, which means the designed observer (35)–(38) is
exponentially convergent to the system (31)–(34).

PROOF. It follows directly from (51) that

‖w̃(t, ·)‖≤ ‖w̃(0, ·)‖e
−
(

D+
s (Ť (t))

4(R+s )
2 −λ

)
t
. (75)

From the state transformations (43) and (73), the equivalence
of the states c̃(t,r) and w̃(t,r) is established, i.e., there exist
positive constants M1,M2 such that

M1‖w̃(t, ·)‖≤ ‖c̃(t, ·)‖≤M2‖w̃(t, ·)‖. (76)

Then, the proof is completed with (75) and (76). 2

Remark 5 Theorem 4 is rigidly proved under the assump-
tion that the averaged internal temperature is independent of
the lithium ion concentrations in the electrodes; computed

11



from the linear ODE (23). Here, we would like to clarify
that these assumptions are posed solely for the theoretical
derivations. Indeed, in the next section we are to present
some simulation results showing that the original unsimpli-
fied equation for the averaged internal temperature (17) can
be used in the implementation of the estimation algorithm,
which depends on lithium ion concentrations in the elec-
trodes, and still achieve convergence of the SoC estimate.
Since only estimates of lithium ion concentration are avail-
able to compute the internal averaged temperature, we are
actually computing an open-loop estimate calculated from
(17) and use the notation T̂ (t), i.e.,

ρ
avgcP

dT̂ (t)
dt

(t)

= hcell
(
Tamb(t)− T̂ (t)

)
+ I(t)

RT̂ (t)
αF

[
sinh−1

(
1

2 ˆi+0 (t)

I(t)
a+L+

)

+ sinh−1

(
1

2 ˆi−0 (t)

I(t)
a−L−

)]
+

(
R+

f (T̂ (t))
a+L+

+
R−f (T̂ (t))

a−L−
−Rc

)
I(t)2

− I(t)
[
U+(ĉ+ss(t), T̂ (t))−U−(ĉ−ss(t), T̂ (t))

]
+ I(t)

{
U+( ˆ̄c+s (t), T̂ (t))−U−( ˆ̄c−s (t), T̂ (t))

− T̂ (t)
[

∂U+( ˆ̄c+s (t), T̂ (t))
∂T

− ∂U−

∂T
( ˆ̄c−s (t), T̂ (t))

]}
, (77)

where ˆi±0 (t) are computed from (12) with concentration val-
ues replaced by their estimates.

In the original state variables and unnormalized coordinates,
the observer for lithium-ion concentration in the positive
electrode reads

∂ ĉ+s
∂ t

(t,rs) =
D+

s (T̂ (t))
r2

s

∂

∂ rs

[
r2

s
∂ ĉ+s
∂ rs

(t,rs)

]
+ p̄1(t,rs)(c+ss(t)− ĉ+ss(t)), (78)

∂ ĉ+s
∂ t

(t,0) =0, (79)

∂ ĉ+s
∂ r

(t,Rs) =
I(t)

D+
s (T̂ (t))a+FL+

+ p̄10(t)(c+ss(t)− ĉ+ss(t)), (80)

with

p̄1(t,rs) =
p1(t, rs

Rs
)

rs
, p̄10(t) =

p10(t)
Rs

. (81)

The SoC estimation can then be derived from (19) and (21),
with c+s (t,rs) replaced by their estimated values ĉ+s (t,rs).

Additionally, estimates ĉ−s (t,rs) and ĉ−ss(t,rs) on the nega-
tive electrode can be computed from (28)–(29), with the es-
timates ĉ+ss(t,rs) and ĉ+ss(t,rs) on the positive electrode ob-
tained from (78)-(81) and the open-loop estimate T̂ (t) from
(77).

5 Simulation Results

The ambient temperature is assumed to be constant; Tamb =
298 [K] = 24.85 [◦C]. Simulations are performed with pa-
rameters of a LiCoO2-LiC6 cell. Parameters and OCP func-
tions U± are borrowed from [24] and the references within.
Note that the OCP functions depend on the internal average
temperature and here a linear approximation is employed:

U±(c±ss(t),T ) =U±(c±ss(t),Tamb)

+
∂U±(c±ss(t),Tamb)

∂T
(T −Tamb).

The magnitude of input current is described in terms of the
cell C-rate (per unit area), which is computed from

C− rate = F
min

{
ε+s L+c+,max

s ,ε−s L−c−,max
s

}
3600[s]

.

5.1 Simulation tests

Simulation tests are performed to evaluate the effectiveness
of the proposed observer with two different current profiles:
a square profile (constant charge, discharge and rest) and a
current profile obtained from the Urban Dynamometer Driv-
ing Schedule (UDDS). For each current profile two cases of
measurements are considered: voltage measurements gener-
ated from the SPM-T model and voltage measurements gen-
erated from the DFN model serving as true data. To generate
voltage measurements, lithium concentration in the negative
electrode is initialized at 80% of the maximum value and
lithium concentration in the positive electrode is initialized
at 50% of the maximum value. For the observer, lithium
concentration in the negative electrode is initialized at 50%
of the maximum value and the one in the positive electrode
is initialized at 67% of the maximum value. The tuning pa-
rameter λ in the observer is set as −1 for all tests 3

3 Ideally, the convergence rate of the designed observer can be
made arbitrarily high by choosing a small enough λ , i.e., a large
enough |λ |. However, since accurate/direct measurement of bound-
ary concentration is not available and approximations required in
output inversion unavoidably introduces error in the (calculated)
boundary measurement, there exists a design trade-off between
high convergence rate of the observer and effective attenuation of
the approximation error/measurement noise. In particular, choos-
ing large values for |λ | makes the system more sensitive to mea-
surement noise and results in larger estimation errors.
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5.1.1 Simulation with square current profile

Figs. 2-5 correspond to the first set of simulation tests, which
use a square current profile shown in Fig. 2. The current con-
sists of repeated cycles of: 36 minutes of 1 C-rate constant
discharging followed by 54 minutes of resting, i.e., zero in-
put, then 36 minutes of 1 C-rate constant charging ending
with 54 minutes of zero input. Only the first 250 minutes
of the simulation results are shown in the figures. True and
estimated SoC are shown in Fig. 3 using (a) SPM-T mea-
surements and (b) DFN measurements. The initial errors in
SoC estimation are due to intentionally chosen, incorrect
initialization of lithium concentrations. Convergence of out-
put voltage coincides with convergence of SoC, and this is
shown in Fig. 4. The estimate of internal average temper-
ature is shown in Fig. 5 using voltage measurements from
the (a) SPM-T model and (b) DFN model; compared against
the true average temperature of the respective models. Note
that, since the internal average temperature is monitored in
an open-loop fashion, one needs to correctly initialize its
value. This conditions is satisfied at thermal equilibrium,
i.e., the internal average temperature of the battery coincides
with the ambient temperature.

0 50 100 150 200 250
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−0.5

0

0.5

1

I(
t)

[C
-r
at
e]

t [min]

Fig. 2. Current profile.

5.1.2 Simulation with UDDS current profile

Figs. 6-9 correspond to simulation tests using a current in-
put derived from a set of UDDS data and scaled to a current
density profile within the range of ±4 C-rate of the battery.
This current profile, shown in Fig. 6, is representative of cur-
rent demands in automotive applications. SoC estimation is
shown in Fig. 7 with the initial errors coming from incorrect
initialization. As seen in Fig. 8, convergence of the output
voltage coincides with convergence of the SoC as well. Fi-
nally, Fig. 9 compares the open-loop estimates of internal
average temperature with the true internal average tempera-
ture from the (a) SPM-T model and (b) DFN model.

Fig. 10 shows (a) the difference in output voltage values
between SPM-T model and SPM and (b) the difference in
temperature values from SPM-T model and DFN model for
constant discharge currents. One can see that the difference
in output voltage values from SPM-T model and SPM ac-
centuates at high currents rate (a) while temperature values
from SPM-T model and DFN model remain relatively close
for currents as high as 4 C-rate.
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Fig. 3. True and estimated SoC. (a). Observer with SPM-T mea-
surements. (b). Observer with DFN measurements.

0 50 100 150 200 250

3.6

3.7

3.8

3.9

4

4.1

V
(t
)
[V

]

t [min]

 

 

V

V̂

(a)

0 50 100 150 200 250

3.6

3.7

3.8

3.9

4

4.1

V
(t
)
[V

]

t [min]

 

 

V

V̂

(b)

Fig. 4. True and estimated voltage. (a). Observer with SPM-T
measurements. (b). Observer with DFN measurements.
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Fig. 5. True and estimated internal average temperature. (a). Ob-
server with SPM-T measurements. (b). Observer with DFN mea-
surements.
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Fig. 6. Current profile.

5.2 Numerical implementations

Numerical implementations of the SPM-T and the DFN
models follow the equations presented in Subsection 2.2
and Subsection 2.1, respectively. A finite volume method is
used for the spatial discretization of PDEs in the models,
and then the Euler-backward method is used for the tem-
poral discretization of the resulting system of ODEs. The
observer is implemented using the same discretization pro-
cedure. Note that in the numerical implementation of the
observer, lithium concentration in the negative electrode is
approximated by the polynomial profile presented in [22],
as described briefly in Subsection 3.2.

For the numerical implementation of the kernel function
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Fig. 7. True and estimated SoC. (a). Observer with SPM-T mea-
surements. (b). Observer with DFN measurements.
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Fig. 8. True and estimated voltage. (a). Observer with SPM-T
measurements. (b). Observer with DFN measurements.
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Fig. 9. True and estimated interval average temperature. (a). Ob-
server with SPM-T measurements. (b). Observer with DFN mea-
surements.

p(t,r, ι) and the computation of the observer gain, a trape-
zoidal approximation of the IDE (68) is used to obtain an
ODE, which is then discretized in time with the Euler-
backward method. As mentioned in Section 4, time normal-
ization t ′ = D+

s (T (t))/(R
+
s )

2t by the temperature-dependent
function is not preferable; here the normalization is per-
formed by a constant instead, i.e., t ′ = D+

s (Tamb)/(R+
s )

2t.

6 Conclusions and Future Work

This paper discusses the problem of SoC estimation for
the lithium-ion batteries based on a thermal-electrochemical
model. In this regard, an infinite-dimensional Luenberger
observer is proposed. For the transformation between the ob-
server error system and the exponentially stable target sys-
tem, well-posedness of the time-varying PDE backstepping
kernel functions are rigorously proved. Then, exponential
stability of the observer error system is established, which
proves effectiveness of the designed observer. We consider
this result as an additional step in the effort to design estima-
tion (and control) algorithms for lithium-ion batteries from
electrochemical models, without relying on the discretiza-
tion of the PDEs in these models.

The observer requires only one design/tuning parameter as
compared with the possibly large number of tuning param-
eters required in estimation methods based on finite dimen-
sional battery models, e.g., EKF. Compared with estimation
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Fig. 10. SPM-T model validation. (a) Output voltage error be-
tween SPM and DFN, and between SPM-T and DFN. (b) Internal
averaged temperature computed from the DFN model and from
the SPM-T model.

based on the infinite dimensional SPM alone, it takes into
account the temperature dependence of model parameters
and catches the battery responses better than SPM, espe-
cially at high C-rates. Simultaneously, the internal average
temperature can be monitored in an open-loop fashion.

Some simplifications are made in this paper, and their re-
laxation could be considered as a future research direction.
Another possible extension is to retain the concentration dy-
namics in the negative electrode and design one observer for
each electrode [25]. One could also consider multiple active
materials in the electrodes [26] or add models for degra-
dations (e.g., capacity fade) to the battery model [27]. Ob-
server design for the battery internal, core and surface [28],
or even the distributed [29] temperature is a subject worth
investigating as well.
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