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Abstract
This work presents a shared-control architecture that determines driver intention to switch an
automotive vehicle system between autonomous and manual modes. In all modes, the driver
actuates the system solely using the steering wheel. The control system determines the
driver’s intention by checking whether the vehicle’s current state satisfies certain pre-defined
transition conditions. Three modes are considered: manual, lane-keeping, and lane-change.
Transitions are activated primarily using maximal-admissible set-membership conditions; in
the case of transition from lane-keeping to a lane change, the system also compares whether
the cost of tracking the center lane is greater than the cost of tracking a minimaljerk lane-
change trajectory. Experimental results are presented using a CarSim-based driving simulator
with gaming-wheel steering. They show smooth transitions between modes and a quick
transition from autonomous to manual mode.
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Smooth Transitions in Shared Control Using Constraint-Admissible Sets

Uroš Kalabić Stefano Di Cairano

Abstract— This work presents a shared-control architecture
that determines driver intention to switch an automotive ve-
hicle system between autonomous and manual modes. In all
modes, the driver actuates the system solely using the steering
wheel. The control system determines the driver’s intention by
checking whether the vehicle’s current state satisfies certain
pre-defined transition conditions. Three modes are consid-
ered: manual, lane-keeping, and lane-change. Transitions are
activated primarily using maximal-admissible set-membership
conditions; in the case of transition from lane-keeping to a lane
change, the system also compares whether the cost of tracking
the center lane is greater than the cost of tracking a minimal-
jerk lane-change trajectory. Experimental results are presented
using a CarSim-based driving simulator with gaming-wheel
steering. They show smooth transitions between modes and a
quick transition from autonomous to manual mode.

I. INTRODUCTION

In Level 2 and 3 autonomous driving, control systems
are expected to perform the task of lane-keeping in ideal
conditions without help from the driver, while allowing for
the possibility of human intervention [1], and it is therefore
important to consider the interaction with the driver in the
design of the control system. Different methods of doing so
exist in practice and in the literature. Particular examples of
successful deployment of shared control systems are found in
aircraft applications, for which autopilot systems have been
in use for over eight decades. In an aircraft, the pilot engages
the autopilot feature to better focus on other important tasks,
such as flight-planning, and is always ready to take over man-
ual control if needed [2]. Since the operating environment of
aircraft changes slowly, the handover between manual and
autonomous flying is negotiated and orderly, i.e., the pilot
disengages the autopilot manually and takes over control
in a practiced and deliberate manner. Automotive vehicles,
however, operate in a relatively unpredictable environment
and we therefore must assume that, when the driver takes
over control, the handover must be quick, i.e., the control
system must try to provide close-to-full control authority to
the driver at all times.

In this work, we introduce a shared-control architecture
that allows cooperation between a driver and vehicle for use
in highway driving. A point of novelty is that all transitions
are achieved via manual control of the vehicle using the
steering wheel. Specifically, the driver achieves transition
between modes by actuating the vehicle into the appropriate
state that results in a transition between modes. Because the
steering wheel is always attached to the rack, the driver
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is always able to control the vehicle; as such, the switch
between modes is relatively quick and smooth.

The proposed system works in one of three modes: man-
ual, lane-keeping, and lane-change. Specifically, transitions
between modes are activated by satisfying transition condi-
tions that are based on membership of constraint-admissible
sets. The constraints characterizing these admissible sets are
designed to test whether the vehicle state can safely and
appropriately initiate a transition to a particular mode. In
the case of the manual-to-lane-keeping transition, the test
is whether the vehicle is close enough to the center of the
lane and moving slowly enough laterally to safely engage
autonomous tracking; in the case of the lane-keeping-to-lane-
change transition, the test is whether it is more costly, based
on some prescribed cost function, to change lane or track
the current lane and whether this can be done smoothly;
in the case of the autonomous-to-manual transition, i.e.,
driver takeover, the test is whether the vehicle state has
left a prescribed region in which constraints associated with
smooth control will no longer be enforceable. In a sense,
manual driving is treated as an error state.

Set-based control techniques [3] are often used in dealing
with constrained systems. The main construction used in this
work is called the maximal admissible set [4], popular in its
use by reference governor predictive control techniques [5]
and as an appropriate terminal set in model predictive control
[6]. By definition, maximal admissible sets are the set of
all initial states such that a closed-loop control system will
enforce a set of prescribed output constraints for all present
and future time. These sets are useful because they can
be precomputed based on a given set of output constraints
and closed-loop dynamics. In our work, we use them to
test whether operational constraints will be enforced by
our closed-loop controller. We compute different sets to
correspond to different transitions and determine whether the
transition has been activated by testing the set-membership
of the state in each admissible set. Using constraint sets has
been considered for shared control previously, such as in [7],
[8], [9], where control techniques are designed to enforce a
set of prescribed constraints. Furthermore and in addition
to considering constraints, [10] considers the use of state
transitions between driver states of drowsiness.

We present experimental results obtained using a CarSim-
based driving simulator. We present results for three differ-
ent transitions: manual-to-autonomous, lane-keeping-to-lane-
change, and autonomous-to-manual. In the first experiment,
we show that the manual-to-autonomous transition can be
done more smoothly using a constraint-admissible set as
opposed to a constraint set without guarantees of future



constraint enforcement. In the second experiment, we show
the operation of initiating a lane change with minimal effort
on part of the driver. In the third experiment, we show
how constraints can be used to differentiate between manual
takeover and initiation of a lane change.

The rest of the paper is structured as follows. In Section
II, we introduce maximal admissible sets. In Section III,
we introduce the autonomous controllers for lane-keeping
and lane changes. In Section IV, we introduce the logic
governing transitions between modes. In Section V, we
present experimental results using the driving simulator.
Section VI is the conclusion.

II. MAXIMAL ADMISSIBLE SETS

Consider the closed-loop discrete-time system,

x(t+ 1) = Ax(t), (1a)
y(t) = Cx(t) ∈ Y, (1b)

where x(t) ∈ Rn is the system state, y(t) is the constrained
output and Y ⊂ Rp is the set of output constraints which
is assumed to satisfy the Minkowski assumptions, i.e., it
is compact, convex, and contains 0 in its interior. Since
the system is closed-loop, the matrix A is assumed to be
asymptotically stable.

An (output-constrained) admissible set is a set of initial
conditions for the state x(t) with the property that the output
y(t) is guaranteed to remain within a set of constraints for
all present and future time Z+. The maximal admissible set
is the set of all such states, or the union of all admissible
sets. It is denoted by,

O∞ := {x0 : x(0) = x0, y(t) ∈ Y, ∀t ∈ Z+}. (2)

The maximal admissible set O∞ has a few useful proper-
ties. Firstly, if the constraint set Y satisfies the Minkowski
assumptions, so does O∞. Secondly, assuming that 0 ∈ Y
and considering a scalar α > 0, scaling Y to αY scales
the maximal admissible set from O∞ to αO∞. Furthermore,
O∞ is finitely determined, i.e., it can be computed in a
finite number of steps. The computation is done recursively
according to the following algorithm,

Ot+1 := Ot ∩Xt, (3)

where O0 := Rn and Xt := {x0 : CAtx0 ∈ Y }. The
algorithm terminates at the first instance t∗ in which Ot∗+1 =
Ot∗ and O∞ is set to Ot∗ . Such a time is guaranteed to exist
because, due to the asymptotic stability of A and the fact that
Y contains 0 in its interior, it is always true that there exists
k ∈ Z+ such that Xk ⊃ ∩k

′

t=0Xt = Ok′ for some k′ < k.
Another important property is that, when Y is a polytope,

so is O∞. This can be seen by the fact that, when Y is a
polytope, O∞ is computed in (3) as a combination of linear
constraints, meaning that O∞ is a polytope because it is
compact. Therefore, it can be expressed as,

O∞ = {x : Hx ≤ h}, (4)

where H and h are an appropriately sized matrix and vector,
respectively. Note that O∞ sets are computed offline. This

important for reasons of practicality because it allows a sys-
tem to perform a prediction of future behavior by checking
the set condition x(t) ∈ O∞, instead of having to determine
the evolution of the state x(t), thereby greatly decreasing
computational cost. As shown above, O∞ can be described
by a finite set of linear inequalities. In implementation, the
matrices H and h are stored in computer memory. If storage
capacity is too low, we can use offline techniques to reduce
the number of constraints, which remove redundant and
almost-redundant constraints [11].

III. AUTONOMOUS CONTROLLER

In this section, we introduce our lane-keeping controller.
We begin by presenting the lateral vehicle dynamics and
the steering system dynamics, before presenting the control
system logics.

A. Vehicle and Steering System Dynamics

The vehicle model we use is the single-track error-tracking
model taken from [12] for a constant longitudinal speed vx,
which is given by,

ėy
ëy
ėψ
ëψ

 = Ae


ey
ėy
eψ
ėψ

+Bδδ +Bψ̇ψ̇d, (5)

where ey is the lateral displacement of the vehicle position
from the reference path, eψ is the difference between actual
and desired vehicle yaw angles, δ is the front wheel angle,
and ψ̇d is the rate of the desired vehicle yaw. The system
matrices are given in [12].

We consider a steer-by-wire steering system [13]. The
steering wheel dynamics are given by,

Jhθ̈h = −Chθ̇h + Td − Tff , (6a)

and the dynamics of the rack an pinion assembly are given
by,

Jpθ̈p = −Cpθ̇p + Te + Tm − Ta, (6b)

where θh and θp are the steering and pinion angles, respec-
tively. The input variables are the driver input torque Td,
the force-feedback torque Tff , the EPS motor torque Te, the
estimated driver input torque Tm, and the road alignment
torque Ta. The estimated input torque Tm approximates the
driver input torque Td and is determined according to,

Tm = Ks(θh − θp) + Cs(θ̇h − θ̇p). (7)

The force feedback torque Tff is determined so as to give
the driver a feeling of the torques resisting his input. It is
determined by passing through a PD filter the torques being
applied to the pinion shaft, excluding the driver torque,

Tff (s) = (kp,ff + kd,ff s)(Te(s)− Ta(s)), (8)

where kp,ff and kd,ff are the proportional and derivative
parameters in the PD filter and are tuned to give accurate
feeling of the road, while minimizing oscillations in the
steering wheel. The parameters of the system are described
in Table I.



symbols descriptions (resp.)
Jh, Jp steering and pinion shaft moments of inertia
Ks, Cs torque sensor spring stiffness and damping coefficient
Ch, Cp damping coefficients of steering and pinion shafts

TABLE I
STEERING SYSTEM DYNAMICS PARAMETERS

B. Lane-Keeping Assistance

To assist the driver in following the center lane, the goal
of the controller is to determine Te so that the lateral error ey
goes to 0 when the driver input torque Td is held at zero. To
do this we consider the coupled vehicle and steering system
dynamics, which are related to each other via a constant gear
ratio Gr between the road wheel angle δ and the pinion angle
θp,

δ = Grθp, (9)

and the alignment torque. The alignment torque Ta can be
approximated in the linear region by,

Ta ≈ T̂a = 2Ca(δ − θv,f ), (10)

where the coefficient Ca is an experimentally determined
parameter and θv,f is the front-tire velocity angle which,
according to small-angle approximation, is given by,

θv,f ≈
ẏ + `f ψ̇

vx
=
ėy − vxeψ + `f ėψ + `f ψ̇d

vx
,

where `f is the distance from the vehicle center of gravity
to the front axle.

Taking the above into account, and assuming that Td =
Tm = 0, the coupled dynamics are of the form,

ẋ = Ax+BTe +Bdψ̇d, (11)

where x =
[
ey ėy eψ ėψ θp θ̇p

]T
.

We assume that all states in (11) are measured. Since
the measurements are taken from a nonlinear model, we
utilize a Kalman filter to estimate the values of the state
vector x. The state estimate x̂ is passed through a feedback
gain K, which minimizes an LQR cost function with Q =
diag(100, 1000, 10, 1, 0.01, 0.01) and R = 10. We set,

Te := −Kx̂. (12)

C. Autonomous Lane-Change

The lane-change controller is designed to use the same
feedback gain as in the case of lane-keeping. The difference
is that, instead of stabilizing to the origin x = 0, the system
must track a desired reference `. The lane-change maneuver
is done on a straight road and so the desired yaw ψd is held
constant at 0. The lateral position on the road ey tracks the
reference `, so that ` = ±L, where L > 0 is equal to the
lane width, and the sign of ± corresponds to left- or right-
lane changes from the nominal lane, respectively.

We design the lane-change trajectory similarly to [14],
minimizing the total jerk,

min
|(t)|≤J

∫ T

0

|(t)| dt, (13)

with the dynamic constraint d3`
dt3 =  and end-point con-

straints `(0) = ˙̀(0) = ˙̀(T ) = ῭(0) = ῭(T ) = 0 and
`(T ) = L. The optimal  is given by,

(t) =



J if t ∈ [0,∆1),

0 if t ∈ [∆1,∆1 + ∆2),

−J if t ∈ [∆1 + ∆2, 3∆1 + ∆2),

0 if t ∈ [3∆1 + ∆2, 3∆1 + 2∆2),

J if t ∈ [3∆1 + 2∆2, 4∆1 + 2∆2),

(14)

where,

∆1 =
T − 2∆2

4
, ∆2 =

√
T 2 − 32L/JT

2
. (15)

The tracking controller is designed based on the solution
to the full-information output regulator problem [16]. We are
concerned with perfect tracking of the reference ` when jerk
 is held constant. In this case, it can be modeled as the
output of the following system,

ẇ = Sw, (16a)
` = C2w, (16b)

where,

S =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , C2 =
[
1 0 0 0

]
.

The solution is given by matrices G ∈ M6,4 and F ∈ M1,4

that satisfy the linear equations,

PS = AP +BF, (17a)
C1P = C2, (17b)

where C1 =
[
1 0 0 0 0 0

]
. To track `, the control

input is set to,

Te := −K(x̂−Gw) + Fw, (18)

where w :=
[
` ˙̀ ῭ 

]T
and the derivatives of ` are

computed by integrating (14). Note that (18) is consistent
with (12) whenever w = 0; as such, we can use (18) as our
control law and choose which lane to track by appropriately
modifying w.

IV. TRANSITIONS BETWEEN MODES

We are now prepared to present the main contribution,
a method of transitioning between manual and autonomous
modes and lane-keeping and lane-change modes. The possi-
ble transitions are shown in Fig. 1, where we present a state
diagram that shows the three modes of operation: manual
(M), lane-keeping (LK), and lane change (LC), and the
transition logic between the three. In this section, we present
explanations of the switching between the modes. We first
present the method of switching from manual to autonomous
mode, then from lane-keeping to lane-changing, and finally
from autonomous to manual mode.
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Fig. 1. Diagram showing the logic for switching between manual mode
(M), lane-keeping (LK), and lane change maneuver (LC), with labels on the
nodes showing requirements for transition

A. Autonomous Takeover

In switching from manual to autonomous modes, we
expect the driver to control the vehicle into a position from
which the controller can take over smoothly and safely. A
way to characterize this is through the use of constraints.
Specifically, we can set a constraint on the state,

Cx ∈ Ylk,

which we expect to be satisfied during the switchover to
autonomous mode. Moreover, these constraints ought to
be satisfiable by the autonomous feedback controller (12).
The set of all states for which the constraint above can
be satisfied is a maximal admissible set, a discrete-time
approximation of which we can define by defining AK
as the discrete-time closed-loop state transition matrix, a
discretization of A−BK with appropriate discretization time
Td. The maximal admissible set we thus define is given by
O∞(Ylk) := O∞(AK , C, Ylk).

The transition therefore occurs when the state estimate x̂
is determined to be in the maximal admissible set, i.e.,

x̂ ∈ O∞(Ylk). (19)

B. Driver-Initiated Autonomous Lane-Change

We define a quadratic cost function,

c(x) =
1

2
xTPx, (20)

where P is the solution to the algebraic Riccati equation
associated with the LQR problem and therefore (20) is a
Lyapunov function for the control (12). To test whether a
lane-change has been initiated by the driver, we compare the
cost of tracking the center of the lane versus tracking the
lane-change trajectory `,

c(x̂) > c(ˆ̃x), (21)

where ˆ̃x := x̂−Gŵ and ŵ is determined as if a lane change
has been initiated by the driver. Specifically, at every update
of the control Te, we test whether a lane change has been
initiated by the driver by comparing the costs (21) where ŵ is
determined by setting ` = ey and solving for the derivatives

˙̀, ῭, and  using (14). Since the reference `(te) = Jt3e/6 for
te ∈ [0,∆1) and ey > 0, we set te := 3

√
6|ey|/J and,

ŵ := sgn(ey)
[
ey

1
2Jt

2
e Jte J

]T
.

This is a rudimentary method of determining ŵ. Better
methods would use all state information x to obtain an
estimate of ŵ. Since this is not the focus of this research,
we have opted to use the simpler technique.

The cost-comparison test (21) is not sufficient for deter-
mining the initiation of a lane change as it does not provide a
way to differentiate between manual takeover of initiation of
a lane change. To differentiate between the two, we propose
a set-membership test, similar to the manual-to-autonomous
handover technique presented above. In this case, we define
a set of constraints that we expect to satisfy during the
transition to the lane change,

x̃ := x−Gw ∈ Ylc,

and define a maximal admissible set O∞(Ylc) :=
O∞(AK , C, Ylc). The set is invariant with respect to the dy-
namics of x̃, which can be seen by performing the derivation:
˙̃x = ẋ−Gẇ = Ax+BTe−GSw = Ax−BK(x−Gw) +
BFw−GSw = A(x−Gw)−BK(x−Gw)+(AG+BF −
GS)w = (A − BK)(x − Gw) = (A − BK)x̃. A switch
from lane-keeping to a lane change is successful if (21) is
satisfied and,

ˆ̃x ∈ O∞(Ylc). (22)

We determine that a lane change has been completed once
the reference has converged to the target value, i.e.,

`(t) = `(T ). (23)

C. Manual Takeover

It remains to present a method of determining whether
a driver has taken control of the vehicle. A departure from
lane-keeping or lane-change maneuver can be characterized
by defining constraints,

Cx ∈ Ȳlk,
Cx̃ ∈ Ȳlc,

and defining maximal admissible sets O∞(Ȳlk) :=
O∞(AK , C, Ȳlk) and O∞(Ȳlc) := O∞(AK , C, Ȳlc), respec-
tively. The system determines a manual takeover whenever,

x̂ /∈ O∞(Ȳlk), ˆ̃x /∈ O∞(Ylc). (24)

in the case of lane-keeping and,

ˆ̃x /∈ O∞(Ȳlc), (25)

in the case of a lane change.

D. Synthesis

In Fig. 1, we present a state diagram that shows the three
modes of operation, manual (M), lane-keeping (LK), and
lane change (LC), and the transition logic between the three.
Note that, since it is possible that (21) ∩ (22) and (24) could
both be simultaneously true, we negotiate any conflict by
checking that the former is not true before checking the latter.



Fig. 2. Schematic of driving simulator setup

V. DRIVING SIMULATOR EXPERIMENTAL RESULTS

We evaluate our control scheme in a driving simulator. A
schematic of the setup is provided in Fig. 2. The vehicle
dynamics are simulated using CarSim 2018.0 and MATLAB
Simulink R2015b. The road visualization is provided via
the CarSim VS Visualizer and projected onto a computer
monitor with 60Hz refresh rate. The driver actuates the
simulated system using a Thrustmaster T300RS gaming
wheel, which provides force-feedback. We use the predefined
E-Class CarSim vehicle to simulate the vehicle dynamics
with a modification of the steering system. Specifically, we
override CarSim’s internal steering system model with the
one presented in Section III-A, which is done to connect
the gaming wheel to the system. Simulink passes the force-
feedback torque Tff to the gaming wheel and receives the
angle of the steering wheel θh from the wheel. The angle
θh is differentiated in Simulink to obtain θ̇h. In Simulink,
we propagate the steering dynamics to determine the angle
of the road wheel δ, which is passed to CarSim. CarSim
passes the system state x to the Simulink model, which
determines all the other states, estimates, and the control
input. We assume a constant speed for the duration of the
simulation and therefore set the CarSim internal driver model
to track a preset speed, which is held at vx = 80km/h.

The constraint sets that we use to define the switch-over
behavior are given by,

Ylk := {(ey, ėy, θp, θ̇p) : |ey| ≤ 0.5m, |ėy| ≤ 0.5m/s,

|θp| ≤ 5◦, |θ̇p| ≤ 10◦/s},
Ȳlk := {(ey, ėy, θp, θ̇p) : |ey| ≤ 1m, |ėy| ≤ 1m/s,

|θp| ≤ 10◦, |θ̇p| ≤ 20◦/s},

and Ylc := Ȳlc := Ȳlk. The results of our experiments are
presented in Figs. 3-6. We have performed three experiments
in order to test the various transitions between modes.

In Fig. 3, we present results for the autonomous takeover
of Section IV-A. We compare the behavior of the nominal
control scheme to an alternative scheme where we replace
the use of (19) with the check,

Cx̂ ∈ Ylk. (26)

In both tests, the driver begins by driving in the lane left
of the target and steers the vehicle towards the center of
the target lane. As can be seen in the plot of the force-
feedback torque in Fig. 3, the alternative test (26) does not
perform as well. We qualitatively observed during testing
that it typically results in twice as much force-feedback to
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Fig. 3. Plots corresponding to autonomous takeover for nominal (dark)
and alternative (light) control schemes: Position from reference lane (top),
relative rate of change of position (middle), and dimensionless force-
feedback command sent to the gaming wheel (±10 are saturation bounds);
vertical lines signify a transition to autonomous mode

the driver, resulting in a jerky feel upon switchover. This
implies that the use of the maximal admissible set can lead
to smoother switching when compared to a simpler method.

In the next experiment, we test the lane-switching per-
formance of our method by initiating a left-lane change
followed by a right-lane change. From the results presented
in Figs. 4-5, we see that the driver is able to initiate a lane
change by actuating the vehicle into a state from which
the system can take over into a lane change. We can see
from figure 5 that this corresponds to smoothly moving the
steering wheel about 20◦ from the center position, until the
system determines that the cost of tracking a lane change is
less than the cost of lane-keeping.

In the final experiment, we perform two tests in which the
driver attempts to perform a manual takeover. In the first test,
we use the nominal control scheme and, in the second test,
we replace the LK→LC test with just (21) and the LK→M
test with just (24). Effectively, this ignores checking whether
the lane change has entered the constraint-admissible region
of attraction of the lane-tracking controller. As expected,
since we no longer check (22), the controller interprets much
larger forces from the driver as a request for a lane change,
instead of recognizing that the driver desires to manually take
over. This can be seen in Fig. 6, where the alternative scheme
mistakes a large and rapid change in the steering angle for
a request for lane change, but the nominal control scheme
is able to determine that a smaller, similarly rapid change in
the steering angle is a request for a manual takeover.
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Fig. 4. Plots corresponding to driver-initiated lane changes: Position from
reference lane (top) and relative rate of change of position (bottom); vertical
lines signify transitions between modes
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Fig. 5. Plots corresponding to driver-initiated lane changes: Steering wheel
position (top) and cost of lane-keeping (bottom, dark) and cost of lane
change (bottom, light); vertical lines signify transitions between modes

0 2 4 6 8 10

-1

0

1

2

3

4

0 2 4 6 8 10

-100

-50

0

50

Fig. 6. Plots corresponding to manual takeover for nominal (dark) and
alternative (light) control schemes: Position from reference lane (top) and
steering wheel position (bottom); vertical lines signify transitions between
modes

VI. CONCLUSION

In this paper, we presented and experimentally evaluated
a method for transitioning between manual and autonomous
modes in an automotive vehicle. The three modes we consid-
ered were manual mode, lane-keeping, and lane changes. The
autonomous mode controller was designed to track the center
of a lane when lane-keeping or a minimum-jerk lane-change
trajectory when changing lanes. To determine transitions,
we designed a state machine that would transition between
modes based on the satisfaction of maximal-admissible set-
membership criteria.

We performed experiments in a CarSim-based driving
simulator with a gaming wheel that obtains input from a
driver. Results from the experiments validated our approach
and show smooth, safe, and appropriate transitions between
modes.
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